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. S’ineve @ (—1— 5"") = f({®") = 0 for »>>1, we have ¢ = 0, and conse-
4" .

quently f = 0.
Remark 4. Our Theorem remains true for real analytic functions.
The above proof may be repeated without any change
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A "cb_l'ihtcrexample to seve;:il questions about Banach. spaces
‘ v . k by :
JA'M'E 8 H‘AGLER (Washington)

Abstract. There exists a sepa,rable Banach space X with nohseparable dual
such that * does not imbed jn X and such that every normalized weakly null sequence
in X has a gubsequenca eqmvalent to the usual basis of ¢,. Weak sequenmal convergence
and norm convergence in X* coincide. Other properties of X and X* are mvestxga.ted.

1. Introduction. In this paper we construct a Banach space X which
provides answers to many open questions about the isomorphic structure
of Banach spaces. Our main result is .

THEOREM 1. There exists a sepamble Banach space X satisfying the folv
lowing :

(a) Bvery sequence in X which converges weakly but mot in morm to
zero has a ¢, subsequence.

(b) There ewists o separable subspace F of X* such that X*[P is iso-
metrically isomorphic to ¢,(I), where I has oardinality c. i

(e) X is heredztamly o

(d) There exists a subspace ¥ of X with Y* separable such that ¥ does
not imbed in ¢,.

(e) X* has the Schur property; i.e., weak sequential comvergemce amd
norm convergence in X* coincide. In particular, X* is hereditarily 1.

(£) There ewists a bounded set I' in X* of cardinality ¢ such that no
sequence in I is a weak Cauchy sequence. Yet, no subspace of the closed linear
span of I' is isomorphic to 11 (A) for any -uncountable set A. -

Ot course, (b) and (¢) of Theorem 1 show that X iy another example
of a separable space with X* nonseparable such that I* does not imbed
in X, The first of these examples was given by James in [7]. Later, Lin-
denstrauss and Stegall [11] gave a second example of such a space (which
they ecalled JF) and studied the duality properties of the above mentioned
example of James (which they called JT). The space JT' is hereditarily
%, while the space JF has many subspaces isomorphic to 12 and many
isomorphic to ¢,. Both the spaces JT and JF are closely related to the
non-reflexive space J isometric to J** introduced by James in [6]. In
the gpace X of Theorem 1, ¢, plays the role that J does in JT and JH.
(The influence of the papers {7] and [11] on this paper is considerable.
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The definition of the space X is a variation of the definition of the space
JT. The study of the duality properties of X is inspired by a similar study
in [11].

[Pir)t (c) of Theorem 1 shows that if ' does not imbed in the separable
space Z and Z* is nonseparable, then Z need not contain a reflexive sub-
space. Parts (a) and (d) answer this question: If Z is a Banach space
(even with Z* separable) such that every sequence going weakly but not
in norm to zero has a ¢, subsequence, must Z imbed into ¢,? (The author
was asked this question by W. Johnson.) To prove that there are subspaces
of X with separable dual which do not imbed into ¢,, we use the Szlenk
index [22]. (Possible use of the Szlenk index in this setting was suggested
by P. Wojtaszezyk.) As we indicate following the proof of (d), the methods
we use actpally show the following: For any countable ordinal a, there
exists a subspace ¥ of X with ¥* geparable such that ¥ does not imbed
in C(a). ‘ .

An easy application of part (e) shows that a Banach space with the
Schur property need not have the Radon-Nikodym property. (EL. Rosen-
thal pointed out that the proof that X* is hereditarily I* actually shows

that X* has the Schur property.) In fact, the proof of (e) (together with

a trivial modification in the nonseparable case) actually shows that any
Banach space satisfying (a) also satisfies (e).

Part (f) shows that an uncountable version of this theorem of . Ro-
senthal [18] fails: If a bounded sequence {#(n): n =1,2,...} in a Ba-
nach space Z has no weak Cauchy subsequence, then a subsequence of
{®(n): » =1,2,...} is equivalent to the usual basis of I*. Rdsenthal
deduces this from a combinatorial result (Theorem 2 of [18]) concerning
the behavior of a sequence of pairs of sets {(4,,B,): n =1,2,..}
The uncountable version of this result fails also, as we show following
the proof of (f) in § 3.

One other interest in (f) is that it shows the difficulty of finding
general conditions on a Banach space Z (or its duals) which imply that
1(A4) imbeds in Z for some uncountable set 4. For example, if I} {0, 1}™
imbeds in Z* and m > ¢, then it is easy to show (cf. [6]) that Z contains
@ bounded set of cardinality ¢ out of which no sequence is weak Cauchy.

- It is not yet known if 1*(4) imbeds in Z for some uncountable 4 whenever
I}{0,1}" imbeds in Z*. (There are some positive results in this divection.
For example, in [4] we show that every nonseparable subspace of ¢{0, 1}™
contains an isomorph of I*(A) for some uncountable set 4.)

An interesting use of (b) and (e) is that they illustrate the sharpness
of this result of Rosenthal [17]: If ¢,(4) imbeds in Z* for some set 4,
then 1™(A) imbeds in Z*. If X is the space of Theorem 1, X* contains no
isomorph of ¢,. But the quotient of X* by a separable space is isometrie
ta..¢,(4), where A is uncountable. '
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Let us briefly discuss the ideas involved in the definition and study
of the space X. First, ag in the space J7, X is a space of functions defined
on a dyadic tree 7. However, we define the norm in X in terms of “admiss-
ible” segments (see §2). Next, at the beginning of §3, we define the
notion of a strongly incomparable sequence of nodes of the tree 7. Such
a sequence has a stronger property than that its terms are pairwise in-
comparable (with respect to the partial order on 7). Lemma 2 shows the
existence of many such sequences of nodes of T, and may be of independent
interest. The crucial component in the proof of Theorem 1 is contained
in Proposition 5, which gives a decomposition of an element ze X and
is used to analyze the most general sequence in X which is equivalent
to the wsual basis of ¢,. This “diagonal decomposition” which is used
in Proposition 5 may be useful in other connections.

Let us indicate the orgamization of the remainder of this paper. §2
contains basic Banach space definitions and notation, the definition of
the tree and related notions, and the definition of the space X which
satisties Theorem 1. The key results here are Lemma 2 and Proposition. 5.
The proof of (c) of Theorem 1 follows closely the analysis of the duality
Droperties of the space JT given in [11], so we do not present the proof
in great detail. Following the proof of (f) of Theorem 1, we show how
to obtain an uncountable counterexample to the “independence” lemma,
of Rosenthal mentioned above. §4 contains some remarks and open.
problems. :

The author wishes to thank the Departments of Mathematics and
especially the Banach space groups at the Ohio State University and the.
University of Illinois for their hospitality while some of the research in
this paper was being done. Special thanks are due to W. J ohnson, B. Mau-
rey, H. Rosenthal, F. Sullivan and P. Wojtaszezyk for suggestions which
led to improvements in the paper.

2. Preliminaries. For the most part our notation and terminology
are standard, or can be found in references [1], [2], [3], or [4].

All Banach spaces will be real Banach spaces. If X is a Banach space,
X* denotes its dual space. A subspace of X is a closed linear submanifold
of X. An operator I': XY is a bounded linear operator. The Banach
spaces X and Y are isomorphic if they are linearly homeomorphie, i.e.,
if there is an operator I': X-»Y which is one-to-one and onto. For a set
D in X, [D] is the closed linear spam of the set D, i.e., the smallest subspace
of X containing D. A sequence #(1), @(2), ... in X is weakly null if # (n)—>0
weakly in X, ie., if lim &*(#(n)} = 0 for all #*¢ X* Let ¥ be a Banach

n

space. Then we say that ¥ imbeds in X if ¥ is isolnorphic to a subspace
of X. Also, we say that a Banach space X is hereditarily ¥ if ¥ imbeds in
every infinite-dimensional subspace of X. ‘
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The Banach space ¢, is the space of all sequences t;,'tﬁ,‘:.. of real
numbers with hmt =0 and [[(t)] = manc [t A sequence (1), x(2)

m X is called a c(, segumoe if it is eqmvalent to the usual basis of ¢, ie.,

if there are constants 6, K > 0 such that 6mfwc 4l < HZ () |[ Kmax It;]

for.all s, and scalars y, ..., &
' The example we shall study is a space of functions on a dya,c’llc tree,

which we now define. The dyadic tree T' is the set T’ = U {0,1}" together

Wlth the partial order defined below. Elements ¢« T w111 be called nodes.
Tf @ is a node and ge {0, 1}" we ‘write |p| =n and ¢ = (&, ..., &,). Leb
m > n and let = (dy, ..., ;) be a node. Then y > ¢ if §; = & for i =1,
.y n. If p =g and [p] > |¢|, then we write v > ¢ If ¢ and y are nodes
sueh that neither ¢ =y nor y > @, then ¢ and y are incomparable.

Let integers n and m be given Wlth n < m. Then we say that a subset
8 of T is an n-m segment if

(1) for every k with n < <k<
mm k’

(2) if @, we S and |p| > |y, then @ >y. Asubset S of T is a segmzmt
1f it is an n-m segment for some n and m. We say that § passes through
@ node it ge 8. It is clear from these definitions that there is & segment
8 passing through ¢ and o if and only if ¢ = p or p = ¢.

A branch B of T is a sequence ¢(0), ¢(1), ... of nodes such that

(1) |p(n)| = n for each m; , ‘

(2) if m > n, p(m) > g(n). It is clear that each branch of T' can be
identified uniquely with an infinite sequence of 0’s and 1’s.

" Now let #: T—R be a function. We will denote @ = {t,: @ T},
wheret, = () forall g« 7. Let us define soms (algebraic) linear functionals
and prOJectlons on the vector space of fnntely nonzero functions on T.
Fix such an @ = {i,} pe T} If 8 1s a segment, then we define §*()

m there exists. a unique pe S with I

= Et (£ 8 == {(p}, ‘then we write ¢* instead of {¢}*.) If B is a branch, then
We defme B*(z) = D 1,. We now define the projections. For pe T', define
. geB '
P, by
t if =
Pya(p) = ‘ v r=w

0 otherwise.

t, i . |pl=a,
Poaop)=1°%
n (%) ‘0 otherwise..
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Tinally, for a branch B of T, define Py by

t, if ¢geB,

Pra(p) =
2%(7) 0  otherwise.

(Once the Banach space Xis defined, it will be clear that [[S*| = [|B¥||= ||P, |
= [|P,| = ||Pgll =1.)

To define the Banach, space X, we need the notion of an admissible
family of segments. Let Sj,..., 8, be segments in 7. These segments
are admissible provided .

(1) there exist integers m < n such that each §; is an m-n segment;

(2) ;n8; =@ if i #j. For a finitely nonzero function z: TR,
define .

r
ol = max 3|8} (@),
=1
where the max is taken over all families §,, ..., 8, of admissible segments.
The Banach space X is the completion of the space of finitely nonzero
funections on T in the above norm.
For e T, let ¢,e X be defined by

1 i ¢=u9,

€, =
(%) 0 otherwise.

If we list the elements in 7 as ¢(0,1);9(1,1),¢(1,2);..., where for
each n, p(n,1), ..., @(n, 27 is an enumeration of {0, 1}*, then it is easily
checked that the .sequence of wunit vectors ey Cerr,1r Cot,e)i--- 18
a Schauder basis for X.

Let S be a p-q segment and ze X such that s = (P, —P;z. We
say that 8 passes through the support of x if p.<k < j<< q We say that
8 begins in (below) the support of x if k<< p < j (§ < p) and ends in (above).
the support of z if k< q<j (¢g> k).

Let 4 = {0, 1}* denote the Cantor set, C(4) the Banach space of
continuous real valued functions on 4. Then the “natural” base of closed
open sets of A can be denoted by U, = {(e1, &, --.): (&1, -+, &) = @}
a8 @ runs through 7. The we identify A with the set I" of branches of T’
and the sets U, with the nodes ¢. To make this a little more precise, we
obsgerve that qu weak* homeomorphic to the Cantor set. Thus, if B (n)*—B*
weak* and pe 7', then there exists an N such that, for n 2> N, either

(i) if pe B, then B(n) passes through ¢; or

(ii) it @¢ B, B(n) does not pass through ¢.

By a slight abuse of language, we will let I" denote both the set of
branches B of T' and the associated set of functionals B* No confusion
will arise from this practice.
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Many of the proofs involve the selection of subsequences. of given
sequences. As the constructions can involve several parameters at one
time, we adopt the followmg conventions: Sequences of vectors will be
denoted by #(1), #(2), ... and sequences of nodes by ¢(1), ¢(2), ... (Some-
times, these sequences may be indexed as functions of two or more
variables.) There will be no confusion between ®(n), the nth term of a se-
quence, and @(p), the value of the function  at the node ¢.

Whenever possible, we index sequences by infinite subsets of the
integers N. If M is an infinite subset of N, we will consider M as
a subsequence of .

On the other hand, we will index sequences of scalars by the tra-
ditional subscripts, e.g., a sequence of scalars #;,%,, ... or {f: je N}.

3. Proofs of the main results. This section contains the analysis
of the space X. Before proving any of the.assertions of Theorem 1, we need
some preliminary lemmas. The first of these concerns the behavior
of a sequence of nodes of T. Let us say that a sequence of nodes {¢(n)
ne N} is a strongly incomparable sequence if

(i) ¢(n) and ¢(m) are incomparable if n = m; and

(ii) no family of admissible segments passes through ‘more than two

. of the ¢(n)’s, ne N.

LEMMA 2 Let {p(n): ne N} be a sequence of nodes of T such that
lp(n)] > |g(m)| if n>m. Then there exvists a subsequence N' of N such
that either

(1) {p(n): ne N'} determines a unique branch of T'; or

(ii) {p(n): neN'} is a strongly incomparable sequence.

Proof. If n > m, then either ¢ (n) > ¢(m) or p(n) and ¢(m) are incom-
parable. So by a direct use of Ramsey’s theorem (cf. [12], for example)
or by translating the proof of Lemma 4 of [13]into the appropriate termin-
ology, we can pick a subsequence M of N such that either

) {p(n): ne M} determines a unique branch of T'; or,

(i) if m,ne M and m 5 n, then g(m) and ¢(n) are incomparable.

What remains to be shown is that if (i)’ holds, then a subsequence
N' of M satisfies (ii).

First, inductively pick a sequence p(0), ¢(1),... in 7' satistying,

for each 1,
(a) (@) =1;
p(i+1) > w(i),
c) {neM: p(n) (%)} is infinite. }
Now mductwely pmk sequences %, fg, ... in M and ky, ky, ... such
that k; = jp(n,)| and @(n) > y(k) (pub @(n;) = @(1)). We show that

N’ = {ny, ny, ...} satisties (ii).

icm®
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¢4

Let 8, 8, ..., 8, be an admissible family of p-¢ segments. Let %,
be the smallest integer for which ;> p. Then if <> j, g(n) > (k).
Since at most one of the segments can pass through y(k;), since every
p-q segment which passes through ¢(n,)(i > j) must pass through p(k;),
and since no segment can pass through two p(n,)’s, we have that 8, ..., S,
can pass through at most one ¢(n;),4>j. Also, one of the segments
8y, ..., 8, can pass through ¢(n;_;). Finally, for i<<j—2,my; <P so
the segments 8,,..., S, cannot pass through ¢(n;). m ‘

Remark. The conclusion of Lemma 2 is still valid if we assume only
that the segments S8, ..., S, are pairwise disjoint and begin at the same
level (i.e., if there is & p such that each §;is a p-q; segment fori =1, ..., 7).

The proof of part (a) of Theorem 1, which will be our first concern,
is accomplished by a decomposition of an element of X into what are roughly
ity “isomorphic” and “non-isomorphic” components. We turn our attention
first to what will turn out to be the non-isomorphic part of the decompo-
gition.

Recall the identification between I' and the Cantor set A (see §2).
Define an operator RB: X->0(4) hy Ra(B) = B*(»). It is easy to check
that R is well defined and ||R] = 1.

LeMmA 3. Let w (1), w(2),... be o bounded sequence in X and n,
<My < ... & sequence of integers such that w(k) = (P,,k =Py, +1)w(k). As
sume also that [[Rw (k)| < 271,

Let 8,,...,8, be an admissible fomily of segments passing through
the supports of w(c), st w(d). Then, given scalars i, ..., 15, we have

2]8, (th J))l max|t,]

Proof. First, observe that » < 2™ and that if j > ¢, we have r2-(49+1
< 2"~y L 9-U=e=D, Algo, observe that since w(j) = (Pp —Py,, )0 (),
then

© 2705+ > |Rw (j)]| = sup |8 (w(4))]

where the sup is taken over all segments passmg through the support
of w(j). ‘
Uiing these observations, we have that

r d d r []
218 (Jywil< Yy B8t i)l < X wirimo i
dnal Jmag Jme fu] e

a
<2 127000 max]t,]. n

j=c

Remark. If we assume only that |[Rw(j)|—0 in Lemma 3, then

a subsequence of {w(j): je N} (and a different sequence of n,’s) will satisfy
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the assumptions of Lemma 3. Ttis also immediate that a sequence satisfying
Lemma 3 is equivalent to the usual basis of ¢o, but we will not prove fthis
" here.

The final preliminary lemma concerns the “1s0morph1c” part of the
decomposition of an element of X.

LeMMA 4. Let (1), #(2),... be a bounded sequence in X, ny < n,
< ... a sequence of integers and 8> O satisfy the following:

(1) For each k, z(k) = (P, —Py, Yo (k);

(2) For each k, there exwists @(k)e T with |p(k)| = ny such that a(k)
= Puyz(k); ‘

,(3) For every brameh B, |B*(w(k))| < &

. Let 8y, ... 8, be an admissible family of segments passing through the
supporis of z(e), ..., »(d), and let scalars t,, ..., 15 be given.
a) If {p(k): ke N} determines a branch B, of T and |Bj (2 (k)| <27%

for each k, then

r
(Note: {p(k): ke N} determines a branch B, if there is a unique branch
B, of T with p(k)e B, for each ke N.)

(b) If {p(k):

S} (jt,m(j))] < (6+2“+‘)mjax lt;15

ke N} is a strongly incomparable sequence, then

r a
2 18i() voti)) < 2emaxis.
=1 =c J

Proof. To prove case (a), observe that at most one of the 8;’s can
have the property that '
. a )
8: (Y 4w () #o.
=0

If 8 denotes this segment, and if 8 passes through ¢(c), ..., ¢(k), but
not g(k-+1) (hence, not through ¢(j) for j > k--1), we have

r d T~1 k-1
218t Suati)ls X b+ 8@l < 3 15127 +1nls
i=1 =g J=0 Jeme

< (6427 ymax [f].

To prove (b), observe that the segments 3, veny S,. can pass through
at most two of theﬂ o(k)’s, and each segment can pass through at most
one ¢(k). So, if 8, and 8, pass through ¢(k) and ¢(m), then

b

=1

S*(Ztm )|_|S*(z,n @(k))|+ |8t ))[g%mjax[tj[.

icm
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The cases where 8, ..
gimilarly. m

The key to the proof of (a) of Theorem 1 is Proposition 5 which follows.
To obtain (a) of Theorem 1, we must only apply a standard perturbation
argument, which we omit.

PROPOSITION 5. Let (1), w(2 . be a sequence of norm one elements
in X and Ny < Ny << ... & SEGUENCE of integers such that «(k) = (P, —

~P, x (k) for each k. Assume also that x(k)—0 weakly as k—co.

M- 1
len there ewist integers ky < ky < ... such that

, 8, pass through zero or one node are handled

m?x 4l < Hj;:t,w(kj)”.g 7 mj\,x 17

e

Proof. For each m = 1,2,... and fixed %, let F(k,m) be the set
of those ge{0,1}" such that there exists at least one branch B passing
through qz with |B* (#(k))| > 2~™ and, for all branches B passing through
@, |B*{ (k)| < 2™t . Define

a(k,m) = Y P,o(k).

weB(k,m)
Then for any m, we have & unique decomposition
z(k) = @k, L)+... +a(k,m)+wk, m),

where w(k, m) has the property that for any branch B, |B*(w(k, m))|
£ 27™. Obgerve that x(k, j) is well defined independent of m, and that
F(k, m) has fewer than 2™ elements independent of k.

For m =1, consider the sequences {w(k,1): ke N} and {F(k,1):
ke N}. Pick a subsequence N, of N such that the cardmahty of the set
F(k,1) is an integer b, independent of ke N,. If b, = 0, then put NY
= N; = N,. If b, > 0, then bl—-l and we write F(k, 1) = {p(k,1; 1)}
for ke N,. Pick a subsequence N; of N, and a subset I, < {1} (so I, = {1}
or @) such that {p(k, 1;1): ke N} either determines a branch B(1,1)
it 1ely or is s‘rronvly 1ncompara,ble it 1¢I,. Pick ke Ny such that, if
le Iy, |B(L, 1)*(w(ky, 1))| < 27 (recall that the sequence & (k)—0 weakly;
it I, =@, MlV ke N7 will work). Liet Ny == {ke Ny k> K}

Agsume now that we have selected for m =1, ...,J infinite subsets
N, Nm, and N, of N, integers b,,, and, for those m with b,, > 0, an integer
Tom e N, and a subset I, = {1,..., b,} satisfying the following properties:

(i) Ny=> Ny=> Ny = ...:Nj:Nj:NJ.
(i) The set I'(k, m) has cardinality b, for all ke N,,.

(iil) If b,, =0, then N, = N, = N,.

(iv) It b,, > 0, then

W
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o ‘
(a) if ke Ny, then @(k,m) = 3 Py mqolk) (where
Fst

Fk, m) = {p(k, m;4): 4 =1, IRES) bm});

(b) for fixed de{l,..., by}, if ie I, then {p(k, m;4): ke N,} deter-
mines a branch B(m, i) of T, and if i¢I,, then {p(k, m;i):ke N;}is a
strongly - incomparable sequence;

(c) for each n =1,...,m and iel,, |B(n,1)"(®(ky, n)| <2~

() Ny = {he Npt &> k) .

We must pick Nyii, Ny, Njb, byyg, and, i by, >0, an integer
Ky Njyy and a subset Iy < {1, ..., by} all satisfying (i)~(iv) above.

Consider {w(k,j-+1): ke N/} and {F(k,j+1): ke N;}. Pick a sub-
sequence N;,, of Nj" and an integer by, such that, for each ke Ny.y, the
cardinality of the set F(k,j-+1) is byyy. If by, =0, put Njyy = N,
= Ny If b, > 0 then enumerate F(k,j-+1) = {p(k,j+1;4): 4 =1,
«+vy by} Then, by by, repeated applications of Lemma 2, we can select
a subsequence Ny, of Ny, and a subset I,y = {1,...,8;,,} such that
i iely,, then {p(k,j+1;40): keN,,,} determines a branch B(j+1,4)
of T, and if ¢¢ I, then {p(k, j+1;4): ke Ny} is a strongly incomparable
sequence.

Now select Kj,ie Ny, such that, for m =1,...,j+1 and diel,.
|B(m, iy* (wy(ﬁ”” m))| <2797% (This is possible since (k)0 weakly

and since U I, is finite.) Finally, let N;\; = {ke Nj.q: k> Iy }. This
m=1 .
completes the induction process. ’

]
Let us write z(k;) = > @ (kyy m) +w (k;, §). By construction, |Rw(%;,j)lk

M= 1

<277, Bo, passing to a subsequence J/ of those j with b; > 0 so that
{w(ky,j): je M} satisfies the assumptions of Lemma 3, we have the fol-
lowing: !

For' any admissible family of segments §,, ...y 8, passing through
the supports of #(c), ..., #(d) and any scalars Ty vony Bgy

r a
;:'S: (12 tyo (g, )| < max|4].

For the remainder of the proof, we adopt the following converntion
to aivoid introducing additional notation. Any statement about j's vefery
only to those j% in M. For example, it we pick scalars toy ...y g, then we

: a

pick them only for those je M between ¢ and d. Similarly, 3t (k) denotes
a sum only for those je M between ¢ and d. g=0

Next, we consider (for fixed m) the elements @ (k;, m) for j = m. By
definition of #(-, m) and by (iv) of the induetion process, if we fix an.
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ie{l,..., by}, then the elements {P,,(kj'm,‘)m‘(k,)': j = m} satisfy the assump-
tions of either (a) or (b) of Lemma 4 with § = 2~™*!. But now, since each
(k;, m) is a sum of b,, terms of the form Pﬂkj,m;‘)w(kj), a direct application
of Lemma 4, the triangle inequality, and (when (a) of Lemma 4 applies),
the fact that if ¢ > m, (6 +27°F) = (2-™+! L 2~0+ly < 2-"+2 yield the fol-
lowing: ‘

For any family of admissible segments &8, ..., S, passing through
the supports of (e), ..., #(d) and any scalars ¢, ..., &, ’

_S:‘[ Ko (Zdt,w(k,, m))[ < bm2‘m+2mjax It
fm=l =0

8
At last, we are ready to estimate || 3¢;# (k;)|. Liet s and scalars ¢, ..., 1,
F=1

be given. Let Sy, ..., S, be an admissible family of segments. To be precise,
we should’ distinguish five separate (but obvious) cases. We consider
only the most illustrative of these, which is the following: The segments
begin in the support of w(%,_;) and end in the support of »(ks,,), where
1< e—-1<d+1<s Then,

1 B

r

S5t (Stats)|

\ fml Jmal

7 r r d
< omal 2 |83 (0 (hor))|+ Hagal 7 18% (0 (as))| + ;;18? ( jZ ()|
Tl feal = =T

da
s (,2 tyw (I, )| +
=C

< [fomatll@ (B Il + [Egpal 0 (gl + Z',’
i=1

r » i
SIS St

F=c m=1 .
a 7 d
< 31’1};1,); Jty] - Z ’ ZS;“( 2 b (%, m)”

Ml el J=max(m,c)

< ( 34 S;' QM2 bm) max [t].

Ml i

"To complete this part of the inequality, we show that Y ,2"" < 1.
’ Ml

Tor fixed j, consider the norm one element @ (k;). Write o (k) = a(ky;, 1) +
ookl §) - w(ky, ). Recall that F(k;, m)yn F(ky, n) =@ if m % .
So,-for- each m =1, ...,7, there exist b, distinet T Ty, ) SEgMeENGY
Bty ooy By, such that 27" < |87, (w (k)| < 27™* for each 4. But


GUEST


300 : © - J. Hagler

th.e]l, Sl,l’ “ery S!,bli Sz’“ Qedy
of gegments. Thus,

Sj,15 +e05 By, forms an admigsible family

i g o
Zzl*"m k,))];%b,,‘,z-’n,

m=1 =1

= llw (k)|
as desired.
i , . - :
It remains only to show that |3t@(k)|= For fixed
Nz .
admissible p-¢ segments 8y,..., 8, such 1,hal. L = |l (%)t

p <<y, Then, Z[Si (Z'I,w )| = Ity
max. |t;], which completes the proot of I’roposmlon 5. W
i . .

max ft;].
B pick !

2|S*(m k)| and m <
Thus, |{2zjm B =

Remark. If in Proposition 5 we do not assume that {x(k): ke N}
is weakly null, we can prove directly that there are subsequences (Teg)
and (m;) of N with &y <m, < ky< m,<... such thay {@(k;)—a(m):
je N} is equivalent to the usual basis of ¢,. The proof is similar to that
of Proposition 5, but involves more notation. (In particular, (¢) can be
proved without the use of (b) and Rosenthal’s characterization of Banach
spaces containing I' [18].)

We begin now to assemble the components which will be used in
the proof of (b). Let I = [{¢p*: pe T}]. We will show that X*/F' is iso-
metrically isomorphic to ¢q(1).

Let E be the completion of the normed space of all finitely non-zero
sequences (fo,ty, ..., %,0,0,...) with

|-max]2tl

k<m ' {zg

Letting {e(n): » > 0} be the unit vector basis for H, {f(n): »n > 0}
the biorthogonal functionals to "the e(n)s, we have the following
easy result, whose proofiwe omit.

LeMMA 6. (a) The space B i8 isomorphic to ¢,.
limf(e(n)) emists. If limf(e(n

k3 n
the set {f(n): ne N}. )

Since for every branch B, Pp(X) is isometrically isororphic to B,

this lemma implies that if «*e X*, then Lima™(eyy,) = limPha*(emm)
n n

. (b) If feE*, then
) = 0, then f is in the closed linear span of

ex1sts and is zero if and only if PRa* is in the cloged .span of {p(n)*:
nye BY.
Let us define an operator @: X*—®(I")

where B = {¢(0), (1

) by @Q2*(B) = hmw (Comy)s
...}. This next lemma shows that QX *) c eo(I).
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Levuma 7. Let 2*¢ X* and ¢> 0 be.given. Then, . {BeI1 |Qz* (B)]
> &} is finite.

Proof. Assume that {B(n): ne N} is a sequence of distinet branches
of T' with |Qm*(B(n))| > ¢ for each n. By passing to a subsequence and
reindexing, we may assume that there is a Be I" such that B(n)*—>B*
weak™ and that Qo* (B (n)) > ¢ for all n.

Let n, = 1. Pick ¢(1)e B,\B with & (%(1)) > e Pick p(1)e B, [p(1)]
> lp(1)]. Then since B(n)'—B* weak”, there exists an infinite subset
N, of N such that B(n) passes through 1/1( ) for all ne N,. Now pick nye N,
and @(2)e B(ny)\B such. that m*(ew(g)) > e. Continuing this process induc-
tively in the obvious fashion, we obtain a subsequence N’ = {n,, %y, ...}
of N and a sequence {@(j): je N} of nodes such that ¢(j)e B(n;) and
m*(ew)) > ¢ for each j, and such that {p(j): je N} is 4 strongly incompar-
able sequence. (The proof that this sequence is strongly incomparable
is the same as that given in Lemma 2 ) But then, {em) je N} is a ¢, se-
quence, hence is weakly null. Thus, # (eq,(,))—>0 as j—>o0, which contra-
dicts @ (%U)) > ¢ for all j. m

Thus, we may regard the operator Q: X*—c,(I"). For a fixed branch

B, 1Q2*(B)| = lllmm ()| < 0"l s0 Q< 1. Since |@B*(B)| =1, we
conclude that 1|QH = 1. i :
To see that @ is a quotient map, pick distinet branches By, ..., B,

in I' and scalars t, ..., f, with max || = 1. Pick m so that, if ¢(i)e By,
i

lp(t)] = m, then p(i) and ¢(j) are dlstlnct if ¢ % j. Define 2* = ZtiP* (BY).
Then |lz*|] = 1 and

4, i B=B8B,

0  otherwise.

Qa*(B) =

Thus, @ is a quotient map. -

Let @ be the kernel of @. It is clear that F = G. To complete the proof
we roust show that F = G. The next result is proved in the same manner
as Lemma 1 of [11] combined with theidea of Lemma 7 above, so we omit
the proof.

LmMMA 8. Let #*e @. Then limmax [|Pha™ = 0.

! n fol=n
Proot of (b) of Theorem 1. Pick 0 < d < 1/8 (so that 2440
< 8—40). Assume that o*e @, Jo*| =1, and inf{o* —f]: fe F} > 1—0.
Pick we X, |lo|| = 1, such that P,,(#) = 0 (for some m) and o*(2) >1—0.
Let & > 0 be such that 2™: < 6. By Lemma 8, there exists an n > m
such that ||P"w*|i < ¢ for all ¢, |p| =n, and such that »> 2™+ Pick
ye X, |yl = 1, such that P,y =y, *(y) >1—0 and P,y = 0 for some
k> n. I‘1na11y, pick ze¢ X, [l = 1, such that Py(z) =z and @ (z >1—86.
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Then w+y-+2[|>o*(@+y-+2) >3(1—3). To reach a contradiction,
we consider two cases.

Case 1. Assume that for any admissible segments Sy, ..., Sym pass-
ing through the support of y, e :

2m
DSt <1—46.

i=1
Then it follows easily from the definition of the morm that |jv-y-+ 2|
< 3—44, and since 3 —44 < 3 — 34, we have a contradietion.

"Case 2. For some admissible segments SI? ..oy Bym passing through
the support of y,
om
D187 ()1 > 1—48.
Frul -
Let ¢(j) = 8;n{0,1}* for j =1, ...,2™ Put y(1) =12;P¢(1)"-/ and y(2)

=y—y(). - ‘
Then for any family R,,..., Rym of admissible segments passing

icm

through the support of y but disjoint from the ségments S,,...,%m,

we have the following:

om ) om

D B = B (y(2))] < 45.

j=1 = :
This is -true, since by suitably truncating above and below the support
of y, we can make the segments 8, ..., 8ym, Ry, ..., Bym into an admissible
family (recall that 2™+! < n). If the inequality above were false, we would
then have |y|| > (1L—46)+4d =1, which is impossible.

Thus, for any admissible family of segments R, ..., R,m passing

through the support of ¥(2), we have

2m
ZIR;‘(y(zm < 48.
Fruml

2m m
On the other hand, |o*(y(1))| = |w*jzl Poyy)| <j21 [P e™l il < 2™ < 6.

Thus, o*(y (2)) = o*(y) —a*(y(1)) = (1 —8) — 8 = 1 —24, Therefore, o*(m
+y(2)+2) >3 —48. But if By,..., R, (where s < 2™) is any admissible
family of segments passing through the support of ¥(2), we have that

8 8
D) 1B (o+9(2) +4)| <lall+ ) |B(y/(2))] + llell < 2+ 46.
F=1 J=1
This implies that |z 4y (2)+2| < 2448, which contradicts a* (m +y(2) -+

+z)>3—46. Therefore, #*e F, and the proof of (by of Theorem 1 iy
complete. '
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Proof of (¢) of Theorem 1. Tt clearly suffices to show (by virtue
of (a)) that every bounded sequence in X has a weak Cauchy subsequence.
By the Main Theorem of [18], we need only show that X has no subspace
isomorphie to 7', and to do this, it is clearly enough to prove that the car-
dinality of X™ is ¢. This is immediate from :

Lmyua 9. X* ds dsomorphic to T* @)

Proof. Let @: X*-q,(I') be the quotient map defined in the proof
of (b)**arbove. We are done once we show that Q* (*(1)) is complemented
in X :

Let By, ..., B, be distinct branches of 7. Pick m so that if 4 #4
and p(d)e By, p(j)e By, and |p(i)] =m, [p(j)] =m, then ¢(i) + @(j).
Define G = [{Pr(B}): ¢ =1,...,n}]. It is clear that G is isorhetrieally
isomorphic to I} and @%s is an isometry onto [{Q*(BY): ¢ =1, sy nll
Thus, by Lemma 1 of [20], @*(1*(I")) is complemented in X**. m

To finish the proof of (c), we observe that since F is separable, 7™
has cardinality ¢, as does I'(I'), since I has cardinality ¢. Thus, X** hag
cardinality ¢.

Proof of (d) of Theorem 1. Recall that the set I"is weak™ ho-
meomorphic to the Cantor set. 8o, by Theorem 2, p. 285 of [9], we can
pick a subset Q of I with 2 weak* homeomorphic to »®. Let ¥ = {me X:
#(p) = 0 if ¢ J{B: Be Q}}. Since Q is weak™ closed and countable,
if follows from part (b) of Theorem 1 that ¥* is separable.

To prove that ¥ does not imbed in ¢,, we use properties of the sets
used in the definition of the Szlenk index (cf. [22]). We define these sets
as follows: Let B be a Banach space, &> 0. Define 4,(c, B) = Sg =
{fe B*: IIf| <1} If Ag(e, B) has been defined for all ordinal numbers
B < a, we define 4,(s, B) by ‘

(i) if @ = -1 for some B, then A,(e, B) = {fe B*: there is a se-
quence f(n)e dy(e, B), f(n)->f weak™, and a weakly null sequence @ (n)e B,
lo(n)l << 1, such that limsup|f(n)(w(n))| > &;

n

(i) it « is a limit ordinal, then A,(s, B) = (M) 44(e, B).

. p<a
Tn [22], Szlenk shows that if B* is separable and a > f, then 4,(e, B
H

is & closed nowhere dense subset of Ag(e, ).
.

We need only the following restatement of Proposition 2.3 of [22].

Lmmma 10. Let B and @ be separable Banach spaces with B isomorphic
to a subspace of G. If A, (L, B) @ for some ordinal number a, then A,(z, G
# @ for some &> 0.

To prove that ¥ does not imbed in ¢,, we use the following obvious
lemma, which we state without proot.

6 — Studia Mathematica 60.3
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Leyma 11. Let f(n), fe It = ¢5. Assume that > &> 0, that |f(n
+fll< 4 for all n, that f(n)—>0 wealk*, and that there exists o weaqu wull

sequence {@(n): ne N} in ¢y, o (n)]| < 1 for all n, such that im sup'f (o (m))]

> & Then, |flIl<

An easy apphcafmon of Lemma 11 yields that for every &> 0, there
oxists an n such that A,(e, 6) = @. Therefore, 4,(s, c,) =0 fm all
¢> 0. To complete the proof of (d), we will show that 4,(1,Y) %@

d then apply Lemma 10.
" To prfxlr)eyth‘mt A,(1,Y) %0, we show that Q@< 4,(1,Y) for
every ordinal « (where 2 is the ath derived set of ). Since the with
derived set of w® is non-empty, this shows that 4,(1, ¥) # @. The fact
that 2@ < A,(1, T) for all a follows easily from

Iemva 12. Let B(n), B*e @, B(n)*—~B* weak™. Then there evists
o ¢, sequence o(jle X, w(j)ll =1 for all _1, and -a subsequence {B(ny)*:
je N} of {B(n)*: ne N} such that B(ny)*(#(j)} =1 for all jeN.

Proof. Let n; = 1. Pick p(1l)e B,\B and y(1) B, |p(1)|= lp(1)].
Then, since B(n)*>B* weak®, there exists an infinite subset N, of N
such that B(n) passes through w(1) for all ne Ny. Now pick ny¢ N, and
@(2)e B(n,)\B. Continuing this process inductively in the obvious fashion,
we obtain a subsequence N' = {n,, Ny, ...} of N and a sequence of nodes
{p(j): je N} with p(j)e B(ny) for all j such that {p(j): je N} is a strongly
incomparable sequence. Then, {¢y;: je N}isa ao sequence, hence converges
weakly to zero. Finally, eyne ¥ and B(m)*(e o) =1 for all jeN. m

Remark., Using the same techniques for higher countable ordinals,
we can show the following:

PROPOSITION 13. For every coumtable ordinal a, there exists a subspace
Y of X with Y* separable such that ¥ does not imbed in C(a).

Proof of (e¢) of Theorem 1. It suffices to show that if f(n)e X*,
f(n)—>0 weak* and not in norm, then a subsequence of {f(n): ne N}
is equivalent to the usual basis of I'. For then, it {g(n): ne N} converges
weakly to ge X™* but not in norm, then there exist a pair of subsequences
{m;: ie N} and {n;: 1¢ N} with m; <n; <my< ... such that g(ng)—

—g(mg)— 0 weakly and not in norm. In pamtxcular 1f Fld) = g(ng) -—g(my),
then f(4)-0 weak® and not in norm. Since {f(¢): i¢ N} has a subsequonce
equivalent to the usual basis of ¥, {f(i): 4¢ N} cannot converge weakly
to zero. This contradiction will complete the proof. So we prove

LeMMA 14. Let {f(n): ne N} be a sequence in X*, |If(n)]==1 for
all n. If f(n)—0 weak*, then {f(n): ne N} has a subsequence equivalent
to the usual basis of 1"

Proof. By Theorem IIL 1 of [8], {f(n): ne N} has a subsequence
(which we do not reindex) which is a weak* basic sequence. In particular,

icm®
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it follows from the proof of this result that there exists a requence {®(n)
ne N} in X, jo(n)| < 2 for all n, such that f( n) (@ (M)} = by

Since I' does not imbed in X, {#(n): ne ¥} has a subsequence (which.
we again do nob reindex) which is weak Cauchy. It follows that z(n)
= 3(2n) —x(2n+1)—>0 weakly and ||z(n)||>f(2n)(z(n)) = 1. Thus, by
part (a) of Theorem 1, {2(n): ne N} has a ¢, sequence (which we continue

to call {#(n): ne N}). Let K be a constant such that |}2 8;2(1)|| < K when-

ever |6 <1lforalls,i =1,...,s. The following eaqy computation shows
that {f(2n): ne N} is equivalent to the usual basis of I, Let s and scalars

tyy -y tybe given. Let 6; = 1if £, > 0 and —1 if £;< 0. Then, K“1[|26z(1, i
<1, and so

| Srasen]> 5 Yo 2 see(i) > K 3Ty
J=1 J=1

j=1
which completes the proof of (e).

Proof of (f) of Theorem 1. We first show that if {B(n)*:ne N}
is a sequence in I', then there is a subsequence N’ of N such that {B
ne N'} is equivalent to the usual bams of 1. First, pick a subsequence
N, of N and a B*e I' such that {B(n)*: ne N,} converges weak* to B*.
Then, as in the proof of Lemma 12, there exists a subsequence N’ of W,
and a sequence of nodes {p(n): ne N’} such that @(n)e B(n)\{J{B(m)
me N, m % n} and such that {(p ): me N'} is a strongly incomparable
sequence. But then, {e,,: ne N'} is equivalent to the usual basis of ¢,
and B(n)*(e on) = Opm, 50 the same computation as in the proof of Lem-
ma 14 shows that {B(n)*: neN'} is equivalent to the usual bagis of I~

Thus, no sequence chosen out of the set I"is a weak Cauchy sequence.
On the other hand, it follows from Theorem 1 of [3] (cf. also [13]) that
I*(4) does not imbed in X* if A is uncountable. In particular, for no un-
countable subset 4 of I'is A equivalent to the usual basis of 1'(4). =

At this point, let us indicate how to translate (f£) of Theorem 1 into
a statement concerning families of pairs of sets. For a branch B of T, let

= 1/2};

Dy = {2*e X*: 2™ < —1/2}.

Since no subspace of X™* is isomorphie to I*(A4) for any uncountable set 4,
and since X* is isometric to a subspace of (Sxw), for no uncountable
Adc iy {(Op, DB Be A} an independent family of pairs of sets. (Of
course, Sy = {™: o™ <1}. A family of pairs of sets {(U,, V.):
ae A} i3 in.dependenb if, given distinct ay, ... , Gpe A, then

Op = {&™¢ X™: 2™ <1 and 2™ (B*
and,

1 and 2**(B*) <

) Opy Opgpy oo
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(FL‘] Ug)n ( ﬂ Va,) #@.) So to show that the uncountable version of

'l‘henrem 3 of [18] is fa,lcse, we need only show that if {B ): ne N} iq
a sequence of distinet branches, then there exists an ™ sueh that o™
¢ Uy for infinitely many ne N and @**e Dy, for infinitely many ne N.
(Thus, in the language of [18], no sequence chosen from the set {(CUg, Dp):
Be I'} is convergent.)

By passing to a first subsequence, we may assume that "B (n)*->B*
weak™ for some B™e I As in the proof of Liernma 12, we can select a strongly
incomparable sequence {p(j): je N} and a subsequence n, <<y << ... of
N sucb. that  B(n)* (eu) = dy- For m =1,2,... define  a(m)

= "”12 4,@) Then
B(ny) (m ) = (—1) /"
Let 4™ be a weak™ aceumulafmon point in X"* of the sequeuw {w(m
me N}. Then Hm**ﬂ <1 and @ (B(n)¥) = (—1)/2, so a**¢ Oy i‘f
jis even and ™ ¢ Dy if j is odd. ‘

lo(m)| < L and it m > =4, we have that

4. Remarks and open problems. We begin by “mentioning. other
possible norms related to the norm on the space X. For a finitely non-zero
funetion « on the free T we define

l]ly = max (Z (87 () )1/2

i=1

Whére the max i3 taken over all families of admissible segments Sy, ..., Sy;
and

e

lell, = max D' |8} (@),

=1

where the max is taken over all families of segments which are pairwise
dlsgomb and begin at the same level. Let X, be the completion of the finitely
non-zero functions in ||-||; for 4 == 2, 3. . Rosenthal hag shown (using
a similar but sémewhat more sophisticated analysis than that in Prop-
osition 5) that both spaces X, and X, are hereditarily ¢,.

We conclude by stating some opsn problems related to or suggested
by our study.

ProsrEM 1. Dods X have property u?

PrROBLEM 2. Let Z be a separable Banach space having property u such
that 1 does not imbed in Z. Is Z* separable?

Tt is clear that an affirmative answer to ‘the first problem gives a nega-
tive answer to the second. :

icm
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Now, it follows from results in [197] that the unit ball of X is weak™
sequentially dense in the unit ball of X**. So, according to the definition
of property u given in [14], an affirmative answer to Problem 1 is equiv-
alent to one for this problem:

I [ e X**, is there a weakly Kly mwondﬂwm&lly converging  (w.u.c.)
series 2 @(n 'I,n X such that {2

=] A=l
(A series 2 is & wu.c. if for every s*e X* Z]m (m(m))| < o0.)

Recall ‘Lhe decomposutxon (in Lemma 9) of X** as X** =ZOG* ("I )
where Z is isomorphic to F* If is not difficult to show that every «*
Q" (ll ) is the limit of & w.u.c. So the funectionals which remain to he
checked ‘aré those #*eZ. oot

ProBLEM 3. Let Z be o separable Banach 3190»@9 such that T* does not
imbed in Z. Does there ewist ¢ separable subspace r of Z* such that Z* /I’
is weakly compactly generated?

If Z* is reparable, the answer is trividlly yes. Also, the answer to thls
problem is yes for the spaces JT, X, and X,. We do not know the answer,
for the space JUI. R

): me N} converges weak* 1o &1

Added in proof: In the article On Bamach spaces which contain IMz) and

- lypes of measures on compact spaces (to appear), R. Haydon has shown the following:

Let m be a cardinal number such that n < m implies w0 < m. Then if IY0,1ym
imbeds in X*, 1L, imbeds in X.
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