

STUDIA MATHEMATICA, T. LX. (1977)

On Ω -stability and structural stability of endomorphisms satisfying Axiom A

h

FELIKS PRZYTYCKI (Warsaw)

Abstract. The main result of this paper is the following theorem:

If $f\colon M\to M$ is a O^r -map (r>1) on a smooth, compact connected, boundaryless manifold M which satisfies Axiom A, then f is O^r -stable iff f satisfies the no-cycle condition and for every $if|_{\Omega_i}(\Omega_i-a$ component of Spectral Decomposition) is either a one-one map or a quasi-expanding map (i.e. $\dim(B_x^u)=\dim(M)$ for $x\in\Omega_i$).

We give some simple examples of Axiom A endomorphisms which satisfy the properties under consideration.

0. Introduction. In paper [6] we proved that if an Anosov endomorphism (a weak Anosov endomorphism in the terminology introduced in [3]) is structurally stable, then it is either an Anosov diffeomorphism or an expanding map. The same result for s-stability is proved in [3]. In the present paper we develop the ideas from [3] and [6] and prove the following:

THEOREM A. If $f\colon M\to M$ is a C^r -map $(r\geqslant 1)$ called a C^r -endomorphism $(^1)$ on a smooth, compact, connected, boundaryless manifold M which satisfies $Axiom\ A$, then the following two conditions are equivalent:

1 f is C^r -stable,

2 f satisfies the no-cycle condition and for every $i, 1 \leq i \leq I, f|_{\Omega_i}$ is either a one-one map or a quasi-expanding map.

We recall some definitions and notations. For a topological space X and a map $f \in C(X, X)$ a point w is said to be non-wandering if for each neighbourhood U of w there is a positive integer n such that $f^n(U) \cap U \neq \emptyset$. The set of all non-wandering points will be denoted by $\Omega(f)$.

One says that an endomorphism g on M is topologically conjugate $(\Omega\text{-}conjugate)$ to f if there is a homeomorphism $h: M \to M$ $(h: \Omega(f) \to \Omega(g))$ satisfying $g \circ h = h \circ g$. The map f is called C^r structurally stable $(C^r \Omega\text{-}stable)$ if there is a C^r neighbourhood N of f such that any $g \in N$ is topologically conjugate $(\Omega\text{-}conjugate)$ to f.

⁽¹⁾ This terminology is not consistent with [6]; there we assume that an endomorphism is a regular map.

Recall from [6] that $f \in C^r(M, M)$ satisfies Axiom A iff

- (a) The periodic points of f are dense in $\Omega(f)$;
- (b) $\Omega(f)$ is a hyperbolic set, i.e. $\mathrm{Sing}(f) \cap \Omega(f) = \emptyset$ ($\mathrm{Sing}(f)$ denotes the set of all singular points of f) and there exist constants C > 0, $0 < \mu < 1$ and a Riemannian metric $\langle \cdot, \cdot \rangle$ on TM such that for every f-trajectory (x_n) contained in $\Omega(f)$ there is a splitting of

$$\bigcup_{n=-\infty}^{+\infty} T_{x_n} M = E^s \oplus E^u = \bigcup_{n=-\infty}^{+\infty} E^s_{x_n} \oplus \bigcup_{n=-\infty}^{+\infty} E^u_{x_n}$$

which is preserved by the derivative Df and the following conditions are satisfied for n = 0, 1, ...:

$$\begin{aligned} \|Df^n(v)\| &\leqslant C\mu^n \|v\| & \text{for} \quad v \in E^s, \\ \|Df^n(v)\| &\geqslant C^{-1}\mu^{-n} \|v\| & \text{for} \quad v \in E^u. \end{aligned}$$

(for the properties of hyperbolic sets of endomorphisms see [6]).

Recall that (a) implies $\Omega(f)$ is an f-invariant set $(f(\Omega(f)) = \Omega(f))$. If $A \subset M$ and $f(A) \subset A$, then by $\tilde{A}(f)$ we denote an inverse limit of the system $\dots \leftarrow A \stackrel{f|A}{\leftarrow} A \stackrel{f|A}{\leftarrow} \dots$ and by \tilde{f} the shift operator $(x_n) \mapsto (fx_n)$. Recall that $\Omega(\tilde{f}) = \Omega(f)$ (f) (to simplify the notation we denote $\Omega(f)$ (f) by $\tilde{\Omega}(f)$). For $(x_n) \in \tilde{\Omega}(f)$ we define

$$W_{f,x_0}^u =$$

 $\{y \in M : \text{there exists a } (y_n) \in \tilde{M}(f) \text{ such that } y = y_0 \text{ and } \varrho(x_n, y_n) \xrightarrow[n \to -\infty]{} 0\}.$

(Notice that W^u_{f,x_0} can depend on the whole f-trajectory (x_n) , see [6]).

$$W_{f,x_0}^s = \{ y \in M : \varrho(f^n(y), x_n) \xrightarrow[n \to +\infty]{} 0 \}.$$

If x is periodic, then $W_{f,x}^u$ denotes the unstable manifold of the periodic trajectory of x; the same notation will be used in the local case.

Denote by $W_{f,x_0,a}^{s(u)}$ (or $W_{f,x_0,loc}^{s(u)}$) a local stable (unstable) manifold contained in a ball B(x,a) (or contained in some small ball with a centre in x_0). If f is fixed, we denote $W_{f,x_0,a}^{s(u)}$ by $W_{x_0,a}^{s(u)}$.

Define an equivalence relation in Per(f) as follows:

 $x \sim y$ if for some points $a \in W_{x,\text{loc}}^u$, $b \in W_{y,\text{loc}}^u$ and for some positive integers m, n the following conditions are satisfied:

$$f^m(a) \in W^s_{y, \text{loc}}$$
 $f^n(b) \in W^s_{x, \text{loc}}$

 $f^m|_{W^u_{x,loc}}$ is transverse to the $W^s_{y,loc}$ in the point a,

 $f^n|_{W^u_{y,loc}}$ is transverse to the $W^s_{x,loc}$ in the point b.

Let sets $\Omega_j(f)$ be defined as closures of equivalence classes of the re-

lation \sim . The sets $\Omega_j(f)$ are invariant. This decomposition of Ω into a sum $\bigcup_{j=1}^{I} \Omega_j(f)$ is usually called the *Spectral Decomposition*.

Denote

$$\begin{split} W^u(\Omega_j) &= \{ y \, \epsilon \, M \colon \text{there exist } (y_n) \, \epsilon \, \tilde{M}(f) \text{ such that } y \, = y_0 \\ &\quad \text{and } \operatorname{dist}(y_n, \, \Omega_j)_{ \overbrace{n \to -\infty}} \to 0 \}, \\ W^s(\Omega_j) &= \{ y \, \epsilon \, M \colon \operatorname{dist}(f^n(y), \, \Omega_j)_{ \overbrace{n \to +\infty}} \to 0 \}. \end{split}$$

We have

$$W^{u(s)}(\Omega_j) = \bigcup_{(x_n) \in \widetilde{\Omega}_j(f)} W^{u(s)}_{x_0}$$

(see [6]).

We say that f satisfies the no-cycle condition iff there exists no sequence of numbers j_1, \ldots, j_k $(k \ge 1)$ such that

$$\big(W^s(\varOmega_{j_r})-\varOmega_{j_r})\cap \big(W^u(\varOmega_{j_{r+1}})-\varOmega_{j_{r+1}}\big) \neq \emptyset$$

for $1 \le r \le k$ and $j_1 = j_k$. (For the assumption that $k \ge 1$ see the example in Remark 1.6.)

Under the no-cycle condition one can choose a simple ordering < on the Ω_{i} , using indices such that $\Omega_{1} < \Omega_{2} < \ldots < \Omega_{I}$ and i < j implies that $W^{s}(\Omega_{i}) \cap W^{u}(\Omega_{i}) = \emptyset$.

Call $f|_{\Omega_j}$ a quasi-expanding map iff $\dim E^u_{x_0} = \dim M$ for an f-trajectory $(x_n) \in \tilde{\Omega}_j(f)$ (it is independent of the choice of (x_n)).

In Sections 3 and 4 we prove the following Theorems B and C:

Theorem B. If condition 2° in Theorem A does not hold, then in any C^r -neighbourhood of f there exists an infinite collection of pairwise non- Ω -conjugate endomorphisms.

It seems interesting to describe more precisely topological types of endomorphisms in a small neighbourhood of an Axiom A endomorphism which do not satisfy condition 2° (see Theorem 4.11 [6]).

THEOREM C. If a map f satisfying Axiom A is structurally stable, then condition 2° from Theorem A holds together with the following:

if for some
$$i_1 \neq i_2$$

$$W^u(\Omega_{i_1}) \cap \Omega_{i_2} \neq \emptyset$$
,

then $f|_{\Omega_{t_{\bullet}}}$ is a quasi-expanding map.

In Section 5 we give some examples of sets of endomorphisms; they are open in C^1 -topology and consist of endomorphisms satisfying Axiom A and the no-cycle condition which are not $C^r\Omega$ -stable. We also give a non-trivial example of a non- Ω -stable endomorphism which can be perturbed to an Ω -stable one.

I wish to thank Michael Shub for conversations which inspired me to write this paper.

- 1. No-cycle condition, filtration. Let $f: M \rightarrow M$ be a C^r -endomorphism satisfying Axiom A.
- 1.1. Proposition. If f satisfies the no-cycle condition, then for any family of compact neighbourhoods U_i of Ω_i there exists an adapted filtration, i.e. there exist a finite sequence of compact sets (M_0, \ldots, M_I) and a sequence of positive integers (m_1, \ldots, m_I) such that
 - $(1) \quad \emptyset = M_0 \subset \ldots \subset M_I = M;$
 - (2) $f(M_i) \subset \operatorname{int}(M_i)$ for every i;
 - (3) $\Omega_i \subset M_i f^{-m_i}(M_{i-1}) \subset \operatorname{int}(U_i).$

Remark. Because of singularities, f need not be an open map. This is the reason why we introduce a filtration adapted to U_4 instead of a fine filtration.

Proof of Proposition 1.1. One can proceed as in [8] but with some modifications:

1° We use the following topological lemma:

Let $f: M \to M$ be a continuous map. If $Q \subset M$ is a compact neighbourhood of a compact set P and, for every $N \ge 0$,

$$\bigcap_{n\geqslant 1} \underbrace{f\left(Q \cap f\left(Q \cap \dots \cap f\left(Q \cap f\left(Q\right)\right) \dots\right)\right)}_{f \text{ n-times}} = P,$$

then there exists a compact set V such that

$$P \subset \operatorname{int}(V) \subset V \subset Q$$
 and $f(V) \subset \operatorname{int}(V)$.

Our proof differs from the proof in [8] at the beginning. Observe that there exists an n such that $\underbrace{f(Q \cap \ldots \cap f(Q) \ldots)}_{f \text{ n-times}} \subset Q$. This implies

$$f(f^{-(n-1)}(Q) \cap f^{-(n-2)}(Q) \cap \dots \cap Q) \subset f^{-(n-1)}(Q);$$

hence $f(W) \subset W$, where $W = f^{-(n-1)}(Q) \cap \ldots \cap Q$. Moreover, W is a compact neighbourhood of P. Hence $f^m(W) \subset \operatorname{int}(W)$ for some positive integer m. Now one can proceed in almost the same way as in [8].

2° We define a fundamental domain of f on $W^u(\Omega_i)$ in the following way. For $(x_n) \in \tilde{\Omega}_i(f)$ denote

$$\tilde{W}^{u}_{(x_{n})} = \left\{ (y_{n}) \in \tilde{M}(f) \colon \varrho(y_{n}, x_{n}) \xrightarrow[n \to -\infty]{} \right\}.$$

For sufficiently small $\varepsilon > 0$ $W^u_{x_i,s}$ is an embedded disc (see [6]). Hence one can consider the metric ϱ^u in $W^u_{x_i,s}$ induced by the Riemannian metric on M restricted to $W^u_{x_i,s}$. Denote

$$\begin{split} \tilde{W}^{u}_{(x_n),\,\epsilon,\epsilon^u} &= \{(y_n) \epsilon \ \tilde{W}^{u}_{(x_n)} \colon \, \varrho^u(y_i,\,x_i) \leqslant \varepsilon \text{ for } i \leqslant 0\}, \\ \tilde{W}^{u}_{(x_n),\,\epsilon,\epsilon^u,\text{open}} &= \{(y_n) \epsilon \ \tilde{W}^{u}_{(x_n)} \colon \, \varrho^u(y_i,\,x_i) < \varepsilon \text{ for } i \leqslant 0\}. \end{split}$$

We claim that the set

$$\tilde{F}^u_i(\varepsilon,\,\delta) = \bigcup_{(x_n)\in \tilde{\mathcal{Q}}_i} \tilde{W}^u_{(x_n),\epsilon,\varrho^u} - \bigcup_{(x_n)\in \tilde{\mathcal{Q}}_i} \tilde{W}^u_{(x_n),\delta,\varrho^u,\mathrm{open}} \quad \text{for} \quad \varepsilon > \delta$$

is compact.

Indeed, for $k = 1, 2, \dots$ let

(1)
$$(y_n^k) \in \tilde{F}_i^u(\varepsilon, \delta)$$
 and $(y_n^k) \to (y_n^0)$.

Let

$$(y_n^k) \in \tilde{W}^u_{(z_n^k),s,\varrho} u$$

where $(z_n^k) \in \tilde{\Omega}_i$. There exists a subsequence $(z_n^{p_k})$ of (z_n^k) which converges to a $(z_n^0) \in \tilde{\Omega}_i$. For simplicity we shall denote $(z_n^{p_k})$ by (z_n^k) . Hence, by the continuity of the following function L_j ,

(2) $\tilde{\Omega_i}(f) \ni (z_n) \stackrel{L_j}{\mapsto} W^u_{z_j, \epsilon} \in \{C^1\text{-embeddings of the disc with } C^1\text{-topology}\}$ (for details see [6]. Theorem 2.5), we obtain

$$(y_n^0) \in \widetilde{W}_{(z_n^0),s,\varrho}^{u_0}.$$

Suppose now that there exists an $(x_n) \in \tilde{\Omega}_i(f)$ such that

$$(y_n^0) \in \widetilde{W}_{(x_n),\delta,\varrho}^u, \text{open}.$$

It follows from (3), (4) and [6], Theorem 2.1 (e) that if ε is sufficiently small, then

$$W^{u_0}_{z_j,4\varepsilon,\varrho}u\supset W^u_{x_j,\varepsilon,\varrho}u \quad \text{ for all } j\leqslant 0.$$

Hence, if ε is sufficiently small, and k is large enough, one can define the f-trajectories (v_n^k) for large k's by the conditions

$$v_0^k \in W_{x_0, \mathrm{loc}}^s \cap W_{x_0^k, 4\epsilon}^{u_k}, \quad v_n^k \in W_{x_n^k, 4\epsilon, e}^{u_k} \quad \text{ for } n < 0,$$

$$v_n^k = f^n(v_n^k) \quad \text{ for } n > 0.$$

By a local product structure of $\tilde{\Omega}_i(f)$ (see [6], Proposition 3.7), we conclude that $(v_n^k) \in \tilde{\Omega}(f_i)$ and $(v_n^k)_{k \to +\infty} + (x_n)$. Therefore, in view of (4) and by the continuity of the functions L_i , we get $(y_n^k) \in \tilde{W}_{(v_n^k),\delta,e^u,\text{open}}^{u_k}$ for sufficiently large k, which contradicts (1). Therefore $\tilde{F}_i^u(\varepsilon,\delta)$ is compact. This finishes the proof.

Define the fundamental domain of f on $W^u(\Omega_i)$ by $F^u_i(\varepsilon, \delta) = \pi_0 \tilde{F}^u_i(\varepsilon, \delta)$ for δ/ε sufficiently small $(\pi_0 \colon \tilde{M}(f) \to M \ \pi_0((x_n)) = x_0)$. The fact that $F^u_i(\varepsilon, \delta) \cap \Omega_i = \emptyset$ easily follows from the local maximality of $\Omega_i(f)$.

5 - Studia Mathematica 60.1

1.2. NOTATION. Let g be C^1 -near f. There is a unique conjugacy

$$h_{\text{of}} \colon \left(\tilde{\Omega}(f), \tilde{f} \right) \to \left(h_{\text{of}} \, \tilde{\Omega}(f), \, \tilde{g} \right) \hookrightarrow \left(\tilde{\Omega}(g), \, \tilde{g} \right)$$

near the inclusion $\tilde{\Omega}(f) \hookrightarrow \overset{+\infty}{P} M_n$, $M_n = M$.

 θ_{gf} is an induced conjugacy θ_{gf} : $\operatorname{Per}(f) \to \theta_{gf} \operatorname{Per}(f) \subset \to \operatorname{Per}(g)$. The existence and properties of h_{gf} and θ_{gf} are described in [6], Theorem 1.20 and [3].

The following Lemma is a simple conclusion of the local maximality of $\Omega(f)$ and of the theorem on ε -trajectories (see [2], [6]):

1.3. Lemma. There exist a neighbourhood U of $\Omega(f)$ and a neighbourhood $N \subset C^1(M, M)$ of f such that $g \in N$ implies that if (x_n) is a g-trajectory in U then $(x_n) \in h_{gf} \tilde{\Omega}(f)$.

1.4. Proposition. Let (M_0,\ldots,M_I) be a filtration for f adapted to sufficiently small sets U_i . Then there is a neighbourhood N_1 of f in $C^1(M,M)$ such that if $g \in N_1$ then h_{gf} maps $\tilde{\Omega}(f)$ onto $\tilde{\Omega}(g)$ and $\Omega(g)$ is g-invariant, i.e. $g(\Omega(g)) = \Omega(g)$.

Proof. Let U and N be such as in Lemma 1.3. One can assume that U_i 's are pairwise disjoint and $\bigcup_{i=1}^I U_i \subset U$. Let $N_1 \subset N$ be a neighbourhood of f such that if $g \in N_1$ then

$$(1) g^{m_i+1}(f^{-m_i}(M_i)) \subset \operatorname{int}(M_i),$$

(2)
$$g(M_i) \subset \operatorname{int}(M_i),$$

(3)
$$g(f^{-m_i}(M_i)) \subset f^{-m_i}(M_i).$$

For any $g \in N_1$, (1) and (2) imply $\Omega(g) \subset \bigcup_i \left((M_i) - f^{-m_i}(M_{i-1}) \right) \subset \bigcup_i U_i$. So $\tilde{\Omega}(g) = h_{gf} \tilde{\Omega}(f)$.

Now we claim that $g(\Omega(g)) = \Omega(g)$. Suppose that $x \in \Omega(g)$ and $g^{-1}(x) \cap \Omega(g) = \emptyset$. For some i, $x \in \inf(M_i) - f^{-m_i}(M_{i-1})$. Since $g^n(x) \in \Omega(g)$ for $n \geq 0$, we have $g^n(x) \in U$. Since $x \in \Omega(g)$, there exists a sequence of g-trajectories (z_n^k) such that $z_0^k \xrightarrow{k \to \infty} x$ and $z_{s(k)}^k \to x$ for some sequence of negative integers s(k). Let $(z_n^{n_k})$ be a subsequence of (z_n^k) such that $(z_n^{n_k})$ converges to some g-trajectory (x_n) . Of course $x_n = g^n(x)$ for $n \geq 0$. Lemma 1.3 yields the existence of a negative integer q such that $x_q \notin U_i$. This and (3) imply $x_q \notin M_i$. Hence there exists a p_k such that $z_q^{n_k} \notin M_i$ but $z_{s(p_k)}^{n_k} \in M_i(s(p_k) < q)$. This contradicts (2).

In the similar way to that followed in [4] one can check the following:

1.5. Proposition. If, for all g C^r-near f, h_{gf} maps $\tilde{\Omega}(f)$ onto $\tilde{\Omega}(g)$, then f satisfies the no-cycle condition.

1.6. COROLLARY. If there is a cycle for f, then f is not $C^{r}\Omega$ -stable.

Proof. Indeed for g C^r -near f let (x_n) be a g-trajectory such that $(x_n) \notin h_{\sigma f} \tilde{\Omega}(f)$ and $(x_n) \in \tilde{\Omega}(g)$. By Lemma 1.3, there exists an integer N such that $x_N \notin \theta_{\sigma f} \operatorname{Per}(f)$. For the existence of a conjugacy $\Omega(f)$ with $\Omega(g)$, x_N must be a limit of a sequence of g-periodic points; hence $\operatorname{Per}(g) \not\equiv \theta_{\sigma f} \operatorname{Per}(f)$. Now it is obvious that the conjugacy cannot exist because $\theta_{\sigma f}$ is a one-one map and, for any positive integer k, f has only a finite number of points of period k.

1.7. Remark. In the no-cycle condition for endomorphisms satisfying Axiom A it is essential to consider the case of cycles of length one. It is well known that such cycles cannot exist for diffeomorphisms.

Example. $f: S^1 \rightarrow S^1$, $f(z) = e^{i \cdot \varphi(-i \cdot \log(z))}$, where φ is as in Figure 1.

Fig. 1

Here $\Omega=\{-1,1\}$, $\Omega_1=\{1\}$, $\Omega_2=\{-1\}$. A point $e^{i\cdot p}\in W^s(\Omega_2)\cap W^u(\Omega_2)$. However, we have

1.8. Proposition. Let $f \colon M \xrightarrow{onto} M$ satisfy Axiom A. Suppose that under Spectral Decomposition $\Omega(f)$ becomes a sum of only one set Ω_1 . Then $\Omega(f) = M$.

Proof. First we claim that

$$\mathcal{M} = \bigcup_{i\geqslant 0} f^{-i}(\Omega).$$

Let $x \in M$. If U is any neighbourhood of Ω , then there exists an N > 0 such that if $n \ge N$ then $f^n(x) \in U$. If U is sufficiently small, then $f^N(x) \in W^s_{y,s}$ for a $y \in \Omega(f)$ and for an s such that $f^i(W^s_{y,s}) \cap \operatorname{Sing}(f) = \emptyset$ for $i \ge 0$. There exists a point z arbitrarily close to $f^N(x)$ such that $z \in W^s_{y,s}$ for a periodic v and $f^i(W^s_{y,s}) \cap \operatorname{Sing}(f) = \emptyset$ for $i \ge 0$.

If V is any neighbourhood of z, then the λ -Lemma (see [5]), the fact that $f^p|_{W^u_{v,\text{loc}}} AW^s_{w,\text{loc}}$ for any periodic w and suitable p, the continuity of L_j (see 1.1 (2)) and the density of Per(f) in $\Omega(f)$ imply $W^u(\Omega) \subset \bigcup_{i \geqslant 0} f^i(\overline{V})$. $z \in W^u(\Omega)$ because f maps M onto M. Thus $z \in \Omega$. So $f^N(x) \in \Omega$, which proves (1).

Denote $f^{-1}(\Omega) - \Omega$ by A. Suppose $A \neq \emptyset$. (1) yields $M = \Omega \cup \bigcup_{i \geqslant 0} f^{-i}(A)$. Arguments which prove (1) give us $A \cap U = \emptyset$; hence A is a closed set.

Thus we could decompose M into a union of a countable family of closed sets from which two at least are nonempty, but this is impossible. (Indeed, if a connected, locally arcwise connected, complete metric space $M = \bigcup_{i=1}^{\infty} K_i$, $K_i \cap K_j = \emptyset$ for $i \neq j$, K_i are closed sets and K_1 , $K_2 \neq \emptyset$, then $\operatorname{Fr} K_1 \neq \emptyset$ or $\operatorname{Fr} K_2 \neq \emptyset$; hence $N = M - \bigcup_{i=1}^{\infty} \operatorname{int} K_i \neq \emptyset$. $\operatorname{Fr} K_i$ are nowhere dense in N and N is the complete metric space. This situation contradicts the Baire theorem.)

- 1.9. Remark. It f is not "onto", then the above proposition is not true. Here is an example: $f\colon S^1\to S^1, \, f(z)=e^{(i/2)\cdot\sin(i\cdot\log(s))}$.
- 2. Proof of Theorem A. Let $f \in C^r(M, M)$ be an endomorphism satisfying Axiom A.
- 2.1. LEMMA. There exist numbers R>0, $\alpha>0$, A>0 such that if $\varrho_{0^1}(f,g_1)<\alpha$ and $\varrho_{0^1}(f,g_2)<\alpha$ then for any $\eta>0$ $\varrho_{0^0}(g_1,g_2)<\eta$ implies:

$$(1) \qquad \qquad \varrho(x_j, \, \pi_j h_{g_1g_2}((x_n))) < A\eta,$$

(2)
$$\varrho_H(W^u_{g_1,\pi_jh_{g_1g_2}((x_n)),R}, W^u_{g_2,x_j,R}) < A\eta,$$

for any g_2 -trajectory $(x_n) \in h_{g_2f}(\tilde{\Omega}(f))$ ($\varrho_H - a$ Hausdorff metric between sets). The proof is standard and will be omitted.

It is easy to prove that we can choose an R such that if $\varrho_{\mathcal{O}^1}(f,g) < a$ then $g|_{\mathcal{B}(\pi_0h_{\mathcal{O}'}(\omega_n)),R)}$ is a diffeomorphism onto its image and R has the properties described in [6], Theorem 2.1.

From Lemma 2.1 one can obtain by a standard procedure:

2.2. Lemma. There exists an a > 0 such that for any $\vartheta > 0$ there exists a positive integer $p(\vartheta)$ which has the following property.

For any $\eta > 0$ and g_1 , $g_2 \in C^1(M, M)$ such that $\varrho_{O^1}(f, g_1) < \alpha$, $\varrho_{O^1}(f, g_2)$ $< \alpha$ if $\varrho_{O^0}(g_1, g_2) < \eta$ then for every $(x_n) \in h_{g_2f}\tilde{\Omega}(f)$ the conditions

(1)
$$g_1|_{W_q} = g_2|_{W_q}$$
 for every $q: 0 < q < p(\vartheta)$
(we define $W_q = (g_2|_{B(x_{-q},R)})^{-1} \circ \dots \circ (g_2|_{B(x_{-1},R)})^{-1}(W^u_{g_2,x_0,R}))$,
(2) $g_2(x_q) = g_1(x_q)$ for $-p(\vartheta) < q < p(\vartheta)$

imply

$$\varrho_H(W^u_{g_2,x_0,R},\,W^u_{g_1,\pi_0h_{g_1g_2}((x_n)),R})<\vartheta\cdot\eta\,.$$

Assuming only (2), we get

$$\varrho\left(\pi_0 h_{g_1g_2}((x_n)), x_0\right) < \vartheta \cdot \eta.$$

2.3. Lemma. Let $\tilde{\Omega}_i(f)$ be infinite. Then for any $(x_n) \in \Omega_i(f)$ and any $\delta > 0$ there exists a $y \in (W^u_{x_0,\delta} \cap \Omega(f)) - \{x_0\}$.

Proof. Of course, dim $W_{x_0}^u > 0$, and so the lemma easily follows from the local product structure of $\Omega(f)$ (see [6], Proposition 3.9).

Now we shall prove our key proposition:

2.4. Proposition. If $f|_{\Omega_i}$ is not a one-one map, then there exist: a $g \in C^r(M, M)$ arbitrarily close to f in C^r -topology and two different g-periodic points x, $y \in \pi_0 h_{of} \tilde{\Omega}_i$ (of periods arbitrarily large) such that $y \in W^u_{\infty, loc}$.

Proof. Let (x_n) , $(y_n) \in \tilde{\Omega}_i(f)$, $x_0 = y_0$, $x_{-1} \neq y_{-1}$, and let y_{-1} be a non-periodic point. (If x_0 is periodic, we consider the periodic trajectory of x_0 instead of (x_n) .)

Let

(1)
$$L = \max\left(2 \cdot \sup_{x \in M} \|Df_x\|, 2 \cdot \sup_{x \in \overline{U}} \|(Df_x)^{-1}\|, 1\right)$$
 for a $U-a$ neighbourhood of $\Omega_i(f)$.

Let $\vartheta=1/(8\cdot L^2)$ and let $a,\,R,\,p=p(\vartheta)$ be as in Lemma 2.2. Let V_1 and V_2 be neighbourhoods of x_{-p} and y_{-p} , respectively, such that $f^a|_{V_j}$ are diffeomorphisms onto their images, for $q\colon 0\leqslant q\leqslant 2p,\,j=1,\,2$. Let d>0 be a number such that

$$B(y_{-1}, d) \subset f^{p-1}(V_2)$$
 and $B(x_0, d) \subset f^p(V_1)$.

Denote

$$B_1^q = egin{cases} (f|_{f^{p_1+q}(V_1)})^{-1} \circ \ldots \circ (f|_{f^{p_1-1}(V_1)})^{-1} ig(B(x_0,\,d)ig) & ext{for} \quad q < 0\,, \ f^qig(B(x_0,\,d)ig) & ext{for} \quad q \geqslant 0\,, \end{cases}$$

$$B_2^q = \begin{cases} (f|_{f^{p+q}(\mathcal{V}_2)})^{-1} \circ \ldots \circ (f|_{f^{p-2}(\mathcal{V}_2)})^{-1} \big(B(y_{-1}, d)\big) & \text{for} \quad q < -1, \\ f^{q+1} \big(B(y_{-1}, d)\big) & \text{for} \quad q \geqslant -1. \end{cases}$$

Assume for d also the following:

$$\begin{split} B_1^q \cap B(y_{-1},\,d) &= \varnothing \quad \text{ for } \quad -p \leqslant q \leqslant p\,, \\ B_2^q \cap B(y_{-1},\,d) &= \varnothing \quad \text{ for } \quad -p \leqslant q \leqslant p, \; q \neq -1\,. \end{split}$$

By Lemma 2.3, there exists a point $w_{-1}\epsilon(W_{v-1,d/10}^u\cap\Omega(f))-\{y_{-1}\};$ for $q\colon -p\leqslant q<0$ we define w_q by the formulas: $w_q\epsilon B_2^q, f^{-q-1}(w_q)=w_{-1}.$ Let $d_1<\varrho(w_{-1},y_{-1})/2.$

All endomorphisms appearing further in this proof will be some perturbations of f inside the closed ball $B(y_{-1}, d_1) = V$.

F. Przytycki

If d_1 is sufficiently small, then one can fix coordinates on neighbourhoods of V and f(V) such that the metric induced by a Riemannian metric on M is close to the Euclidean metric defined by the coordinates. One can introduce a standard metric $\rho_{CT}(\cdot,\cdot)$ between perturbations of f.

Moreover, one can obtain $f(V) \subset U$ (for the definition of U see (1)). One can easily check that

$$(2) f(V) \supset B(y_0, d_1/L).$$

Fix any number $\beta > 0$ such that $\beta < \alpha$ (a is defined in Lemmas 2.1, 2.2) and if $\rho_{G^1}(f,g) < \beta$ then $g|_V$ is a diffeomorphism onto f(V) and L is a Lipschitz constant for $g|_{\mathcal{V}}$ and $(g|_{\mathcal{V}})^{-1}$.

Let $\delta > 0$ ($\delta < d_1$) be such that the following condition holds:

(3) if $x, y \in B(y_{-1}, \delta)$ and, for a positive integer K, $\rho(x, y) < \delta/K$, then for any $g \in B_{Cr}(f, \beta)$ there exists a g such that g(y) = g(x), $\varrho_{Cr}(g, g)$ $<\beta/K$ and $\rho_{c0}(q,q^{\hat{}})<2L\rho(x,y)$.

Moreover, assume that δ satisfies the following condition:

(4) $A \cdot 2L\delta + \delta$

$$< \min \bigl(\inf_{-p \leqslant q \leqslant p} \bigl(\mathrm{dist}(x_q, \ M - B_1^q) \bigr), \inf_{-p \leqslant q \leqslant p} \bigl(\mathrm{dist}(w_q, \ M - B_2^q) \bigr), \ \mathrm{dist}(w_{-1}, \ V) \bigr).$$

Take periodic trajectories u_n^0 and v_n^0 with periods arbitrarily large. such that

$$\varrho(v_a^0, w_a) < \delta/2,$$

$$\varrho(u_q^0, x_q) < \delta,$$

for $|q| \leq p$ and

$$\varrho(u_0^0, y_0) < \delta/4L,$$

(8)
$$\operatorname{dist}(W^{u}_{v_{-1},d/2}, u_{-1}^{0}) < \delta/2^{4}$$

where $u_{-1}^{\hat{0}}$ is defined as a unique counterimage (it exists by (2) and (7)) of u_0^0 under f which lies in V.

Of course,

(9)
$$\varrho(u_{-1}^{\hat{0}}, y_{-1}) < \delta/4.$$

Observe that $W_v^{u_0}$, $d/2 \subset B_2^{-1}$.

Let
$$g \in C^1(M, M)$$
 and

(10)
$$\varrho_{C^0}(g,f) < 2L\delta \quad \text{and} \quad \varrho_{C^1}(g,f) < \beta.$$

Then from (4), (5), (6) and Lemma 2.1 it follows that

$$(11) \quad \theta_{g\!f}(v_q^0) \, \epsilon \, B_2^q, \quad \theta_{g\!f}(v_{-1}^0) \, \epsilon \, B(y_{-1}, \, d_1) \, = \, V \quad \text{and} \ \ \theta_{g\!f}(u_q^0) \, \epsilon \, B_1^q \quad \text{for} \ \ |q| \leqslant p \, .$$

Then (by Lemma 2.2 and from the definitions of ϑ and p):

(12)
$$\varrho(\theta_{of}(u_0^0), u_0^0) < \delta/4L;$$

hence by (2) and (7) there exists a $u_{-1}(g)$ — a unique counterimage of $\theta_{at}(u_0^0)$ under q which lies in V.

We shall construct by induction a sequence of endomorphisms f. satisfying the following conditions:

$$\varrho_{C^0}(f_k, f_{k-1}) < 2L\delta/2^{k+3},$$

(15_k)
$$\operatorname{dist}\left(W_{v_{-1},d/2}^{u_{k}}, u_{-1}(f_{k})\right) < \delta/2^{k+4}$$

(we denote $\theta_{f,f}(u_n^0)$ by u_n^j and $\theta_{f,f}(v_n^0)$ by v_n^j),

(16_k)
$$\varrho(u_{-1}(f_k), u_{-1}(f_{k-1})) < \delta/2^{k+2}.$$

Of course, (13_k) , (14_k) , (16_k) make sense for $k \ge 1$.

Define $f_0 = f$; then (15_k) holds by (8). Assume that f_i are constructed for $j \leq k$ for which (13_i) , (14_i) , (15_i) , (16_i) hold. We shall construct f_{k+1} . By (15_k) there exists a $u^{*k} \in W_v^{u_k}$, d/2 such that

(17)
$$\varrho\left(u^{*k}, u_{-1}(f_k)\right) < \delta/2^{k+4}.$$

By (9), (16_i) (j = 1, ..., k) and (17)

$$\varrho(u_{-1}(f_k), y_{-1}) < \delta/2 < \delta$$
 and $\varrho(u^{*k}, y_{-1}) < \delta$.

Then one can use (3) (put $K = 2^{k+4}$) to construct f_{k+1} such that

$$\varrho_{O^r}(f_{k+1}, f_k) < \beta/2^{k+4},$$

$$\varrho_{\mathcal{C}^0}(f_{k+1},f_k) < 2L\delta/2^{k+4} \quad \text{ and } \quad f_{k+1}(u^{*k}) = f_k \big(u_{-1}(f_k)\big) = u_0^k.$$

Since for $g = f_{k+1}$ (10) is satisfied, formulas (11) allow us to use Lemma 2.2. So, by definitions of ϑ and p, one can obtain

$$(18) \quad \varrho\left(u_{-1}(f_{k+1}), \ u^{*k}\right) < \delta/2^{k+6} \quad \text{and} \quad \varrho_{H}(W^{u}_{f_{k+1}, v^{k+1}_{-1}, d/2}, \ W^{u}_{f_{k}, v^{k}_{-1}, d/2}) < \delta/2^{k+6},$$

which implies (15_{k+1}) .

(17) and (18) imply $\rho(u_{-1}(f_{k+1}), u_{-1}(f_k)) < \delta/2^{k+3}$, i.e. (16_{k+1}) . This finishes our induction.

Define $g = \lim_{k \to \infty} f_k$. (13_k), (14_k), (15_k) imply that g is a C^r -map satisfying the conditions of our proposition.

72

This proposition and Lemma 1.3 imply the following

2.5. COROLLARY. If $f|_{\mathcal{Q}_i}$ is not a one-one map, then there exist a $g \in C^r(M,M)$ arbitrarily close to f in C^r -topology, two different periodic g-trajectories $(x_n), (y_n) \in h_{gf}(\tilde{\mathcal{Q}}_i)$ of periods arbitrarily large and a g-trajectory $(z_n) \in h_{gf}(\tilde{\mathcal{Q}}_i)$ such that $z_0 = x_0$ and $\varrho(z_n, y_n) \xrightarrow[n \to \infty]{} 0$.

2.6. Proposition. In some neighbourhood. N of f in C^1 -topology the set of endomorphisms g satisfying the condition

(*) if $x, y \in \text{Per}(f)$ $x \neq y$ and $\dim(E_y^u) < \dim(M)$, then $\theta_{af}(x) \notin W_{g,\theta_{gf}(y)}^u$ is a residual (dense, G_0) subset of N in C^r -topology.

Proof. One can proceed as in [6], Theorem 4.3.

We shall prove Theorem A.

Assume 1° for f. Then Corollary 1.6 yields the no-cycle condition. Now, if there exists an i such that $f|_{\Omega_t}$ is neither a one-one map nor a quasi-expanding map, then one can perturb f to g_1 which has properties described for g in Corollary 2.5. On the other hand, one can perturb f to a g_2 which has property (*) (see Proposition 2.6).

Now suppose that there exists an Ω -conjugacy h. One can easily check that h must preserve the relation between periodic points which defines the equivalence classes Ω_j ; hence h induces a permutation σ of Ω_j 's.

If g is C^1 -close to f, we say that $g|_{\Omega_j(g)}$ satisfies property P if $g|_{\Omega_j(g)}$ is not a one-one map and we say $g|_{\Omega_j(g)}$ satisfies property Q if $y \in W^u_{x,loc}$ for some periodic points $x, y \in \Omega_j(g)$ (see Proposition 2.4 and Corollary 2.5).

Observe that σ preserves properties P and Q. Observe also that if $g|_{\Omega_j(\sigma)}$ is a quasi-expanding map which satisfies property P, then $g|_{\Omega_j(\sigma)}$ satisfies property Q. Thus if $g_2|_{\Omega_j(\sigma_2)}$ satisfies P, then this satisfies Q if ond only if this is a quasi-expanding map. Because in the case of g_1 the number of j's such that $g_1|_{\Omega_j(\sigma_1)}$ satisfies P and Q is greater than in the case af g_2 , we obtain a contradiction.

Assume that 2° holds. Then, in view of Proposition 1.4, it suffices to show that if g is C^{1} -close to f, then h_{gf} is a lift of a homeomorphism.

First suppose that $f|_{\Omega_i}$ is a quasi-expanding map. Then there are: a neighbourhood $N \subset C^1(M, M)$ of f and numbers $\alpha > 0$ and $\lambda > 1$ such that $g \in N$ implies:

$$(1) \qquad \qquad \|Dg(v)\|>\lambda \,\|v\| \quad \text{ for } \quad v\,\epsilon T \bigl(\bigcup_{x\in\Omega_t} B\,(x,\,3\,a) \bigr),$$

(2) $\varrho\left(\pi_{0}h_{gf},\pi_{0}\right)<\alpha$ and

(3) for $x \in \bigcup_{y \in \mathcal{Q}(f)} (B(y, \alpha)), g|_{B(x, 2\alpha)}$ is a diffeomorphism onto its image.

Suppose that for some $g \in N$ there exist (x_n) , $(y_n) \in \tilde{\Omega}_i(f)$ such that $x_0 = y_0$ and $\pi_0 h_{gf}((x_n)) \neq \pi_0 h_{gf}((y_n))$. Denote

$$\hat{x_n} = \pi_n h_{gf}((x_n)), \quad \hat{y_n} = \pi_n h_{gf}((y_n)), \quad \varrho(\hat{x_0}, \hat{y_0}) = \tau.$$

(2) implies $\varrho(\hat{x_n}, \hat{y_n}) < 2\alpha$ for $n \ge 0$. Let K be such that

$$\lambda^{K} \cdot \tau > 2\alpha.$$

Using (1), (2), (3), one can easily construct a family of curves $L_n: \langle 0, 1 \rangle \rightarrow M$ such that $g \circ L_n = L_{n+1}$, $L_n(0) = x_n$ and $L_n(1) = y_n$ for $n: 0 \leqslant n \leqslant N$, length $(L_n) < 2a$. Thus, by (4), length $(L_0) < \tau$, which is a contradiction. Therefore, if $g \in N$ then h_{gf} is a lift of some continuous map h_1 . Similarly, $h_{fg} = h_{gf}^{-1}$ is a lift of a h_2 . So $h_1h_2 = h_2h_1 = \mathrm{id}$, and hence h_1 is a homeomorphism.

Now suppose that $f|_{\mathcal{Q}_i}$ is a one-one map. Then there exists a neighbourhood U of \mathcal{Q}_i such that $f|_U$ is a diffeomorphism onto its image. So if $g \in C^1(M,M)$ is C^1 -close to f, then there exists a unique homeomorphism h close to identity which conjugates $\mathcal{Q}_i(f)$ with a g-invariant subset of U (this is a well-known fact). Thus, the uniqueness of h_{gf} implies that h_{gf} is a lift of h.

2.7. Remark. Using a similar idea to that presented in [3] or in the Introduction of [6] and something like Lemma 2, one can easily prove that condition 2° is necessary for the $\varepsilon - C^{r} \Omega$ -stability of an Axiom A endomorphism. This is of course weaker than Theorem A.

Theorem A implies the following

2.8. Proposition. If f has no cycles and for some i $\Omega_i(f)$ is a repeller (i.e. there exists a compact neighbourhood U of $\Omega_i(f)$ such that $f^{-1}(U) \subset \operatorname{int} U$ and $\bigcap_{n\geqslant 0} f^{-n}U = \Omega_i$ or equivalently $W^s(\Omega_i) \subset \Omega_i$) and if $f|_{\Omega_i}$ is neither a quasi-expanding nor a one-one map, then there exists a neighbourhood in C^1 -topology $N \ni f$ such that $g \in N$ implies that g is not $C^r \Omega$ -stable.

Proof. The above-mentioned properties of f are preserved under C^1 -perturbations. The main thing is to prove that the property "the map is not one-one" is preserved.

3. Proof of Theorem B. Let $C^r(M, M) \supset B(f, d_1) \supset \ldots \supset B(f, d_n) \supset \ldots$ be a sequence of balls with a centre f in C^r -topology with radii $d_n \to 0$. Let

 $a_n = \inf\{m : \text{there is a map } g \in B(f, d_n) \text{ and there is a point }$

 $\{x \in \operatorname{Per}(g) - \theta_{gf}\operatorname{Per}(f) \text{ such that } m \text{ is a period of } x\}$

(we assume that inf $\emptyset = +\infty$).

By Lemma 1.3, $a_n \to +\infty$.

(a) Suppose that, for every n, $a_n < +\infty$. Let a_{j_n} be a strictly increasing subsequence of a_n . It is obvious that the maps g_{j_n} which realize numbers a_{j_n} are pairwise non-conjugate.

(b) Suppose that $a_q=\infty$ for an integer q. By Proposition 2.4, one can construct (by induction) maps $g_k \in B(f,d_q)=N$ such that

F. Przytycki

(1_k) $y^k \in W^u_{x^k,loc}$ for some x^k , $y^k \in \theta_{g_k^*f}(\operatorname{Per} f)$ with minimal periods s^k , r^k , respectively, and such that

$$\max(s^k, r^k) < \min(s^{k+1}, r^{k+1})$$

for
$$k = 1, 2, ...$$

Using an idea from the proof of Theorem 4.8 of [6], it is easy to perturb g_k to $g_k \in N$ with the property (1_k) , where we replace g_k by g_k , and moreover $x \notin W_{g_k,y}^v$ for any $x, y \in \text{Per}(g)$ such that $\dim(E_y^u) < \dim(M)$ and the minimal periods of x and y are smaller than $\min(s^k, r^k)$.

Proceeding as in the proof of Theorem A, one can check that g_k are pairwise non-conjugate.

4. Proof of Theorem C.

4.1. LEMMA. If $W^u(\Omega_j(f)) \cap \Omega_i(f) \neq \emptyset$ for $i \neq j$, then there exist a $g \in C^r(M, M)$ arbitrarily C^r -close to f such that $x \in W^u_{g,y}$ for some $x \in \theta_{gf}(\Omega_i(f) \cap \operatorname{Per}(f))$ and $y \in \theta_{gf}(\Omega_j(f) \cap \operatorname{Per}(f))$.

Proof. A proof of this lemma can be based on the same ideas as the proofs of Proposition 2.4 and Lemma 4.6 of [6] but is easier.

Proof of Theorem C. Theorem C immediately follows from Lemma 4.1 and Proposition 2.6.

5. Examples. Introduce the following symbols:

 z^n — the standard expanding map of S^1 ,

h-a diffeomorphism of S^1 with a sharp source (i.e. the expansion coefficient large enough) at z=-1, a sharp sink at z=+1 and no other fixed points,

U — any Anosov diffeomorphism $M \rightarrow M$,

H — the Shub endomorphism (see [7]) described as follows:

$$H \colon S^1 \to S^1, \quad H(z) = e^{i \cdot \varphi(-i \cdot \log(z))},$$

where φ is given by Figure 1 (p. 67).

The point 1 is a sink. Denote other two fixed points by a and b. Of course, $\Omega_1 = \{1\}$, $\Omega_2 = S^1 - \bigcup_{n \geq 0} H^{-n}(P)$, where P is as in Figure 2.

Further we shall denote Ω_2 by ω .

We shall consider some examples of endomorphisms:

1. $H \times U : S^1 \times M \rightarrow S^1 \times M$.

Here $\Omega_1(H \times U) = \{1\} \times M$, $\Omega_2(H \times U) = \omega \times M$. $H \times U$ is Ω_1 -stable but is not Ω_2 -stable persistently (in view of Proposition 2.8).

2. $H \times z^n : T^2 \rightarrow T^2$.

Here $\Omega_1=\{1\}\times S^1$, $\Omega_2=\omega\times S^1$. $H\times z^n$ is Ω_2 -stable since it is quasi-expanding but $H\times z^n$ is not Ω_1 -stable persistently because it is not a one-one map persistently. Indeed, $\tilde{\Omega_1}(H\times z^n)$ is a solenoid, and so

it cannot be homeomorphically mapped into R^2 (no solenoid is a movable compact and only movable compacta can be homeomorphically mapped into R^2 , see [1]).

The same arguments can be applied for a non- Ω -stability of the map $h \times z^n \colon T^2 \to T^2$.

3.
$$f=h\times h\times z^n\colon T^3\to T^3$$
. Here
$$\begin{aligned} \Omega_1&=\{1\}\times\{1\}\times S^1, & \Omega_2&=\{1\}\times\{-1\}\times S^1, \\ \Omega_3&=\{-1\}\times\{1\}\times S^1, & \Omega_4&=\{-1\}\times\{-1\}\times S^1. \end{aligned}$$

f is Ω_4 -stable as a quasi-expanding map, f is not Ω_1 -stable but can be C^r -small perturbed to Ω_1 -stable map by a standard construction of a solenoid inside a solid torus T^2 . The map f is neither Ω_2 -stable nor Ω_3 -stable persistently. Indeed, let W denote the intersection of the set $S^1 \times \{-1\} \times S^1$ with some solid torus which is a neighbourhood of a circle $\{1\} \times \{-1\} \times S^1$. The point -1 is the sharp source for h, and so if g is a C^1 -small perturbation of f, then there exists a 2-submanifold W' of T^3 C^1 -close to W, invariant under g. W' contains $\Omega_2(g)$ — the image of the solenoid $\Omega_2(f)$.

Now, by the arguments applied in Example 2, $g|_{\Omega_2(\theta)}$ is not a one-one map.

4. $h \times H : T^2 \rightarrow T^2$.

Here

$$\Omega_1 = \{1\} \times \{1\}, \quad \Omega_2 = \{1\} \times \omega,$$

$$\Omega_3 = \{-1\} \times \{1\}, \qquad \Omega_4 = \{-1\} \times \omega.$$

 $h \times H$ is not Ω -stable in view of the nature of Ω_2 . However, it can be C^r -small perturbed to an Ω -stable map H which is defined as follows:

$$H^{\hat{}}\left(z_1, z_2\right) = \left(h\left(z_1\right) \cdot e^{i \cdot \epsilon \cdot \sin\left(i \cdot \log\left(z_2\right)\right) \cdot \varphi\left(z_1\right)}, \ H\left(z_2\right)\right),$$

where $\Phi: S^1 \to \langle 0, 1 \rangle$ is a smooth bump function such that Φ is equal to 0 in a neighbourhood of $z_1 = -1$ and is equal to 1 in a neighbourhood of $z_1 = 1$ and $\varepsilon > 0$ is an arbitrarily small number.

Since the point 1 is a sharp sink for h, there occurs a kind of Smale's "horseshoe" example near the circle $\{1\} \times S^1$:

Fig. 4

So $\hat{H} \cap |_{\Omega_2(H^{\wedge})}$ is a one-one map; more exactly, it is a Bernoulli shift-Thus, owing to Theorem A, $\hat{H} \cap \Omega$ stable.

I do not know whether $H^{\hat{}}$ is structurally stable or not.

Let $\Psi: R \to \langle -1, 1 \rangle$ be a periodic, smooth bump function (with period equal to 2π) such that ψ is equal to 0 in the interval $\langle 0, \pi \rangle$ and is equal to the function sinus in the interval $(\pi + \alpha, 2\pi - \alpha)$ for a small number α .

If in the definition of H we put Ψ instead of sin, then H is not structurally stable by Theorem C, because $W^u(\Omega_2(H)) \cap \Omega_1(H) \neq \emptyset$.

References

- [1] K. Borsuk, On movable compacta, Fund. Math. 66 (1969), pp. 137-146.
- [2] A. B. Katok, Dynamical systems with a hyperbolic structure, IX Mathematical Summer School, Kiev 1972 (in Russian).

[3] R. Mañe and C. Pugh, Stability of endomorphisms, Warwick Dynamical Systems 1974, Lecture Notes in Math., Springer-Verlag, 1975.

[4] J. Palis, A note on Ω-stability, Proc. Symp. P. Math. vol. 14, pp. 221-222.

5] - On Morse-Smale dynamical system, Topology 8, pp. 385-405.

[6] F. Przytycki, Anosov endomorphisms, Studia Math. 58 (1976), pp. 249-285.

[7] M. Shub, Endomorphisms of compact differentiable manifolds, Amer. J. Math. 91 (1969), pp. 175-199.

[8] S. Smale, The Ω-stability Theorem, Proc. Symp. P. Math. vol. 14, pp. 289-297.

INSTYTUT MATEMATYCZNY

MATHEMATICAL INSTITUTE POLISH ACADEMY OF SCIENCES

Received July 19, 1975

(1050)