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On Q-stability and structural stability of
endomorphisms satisfying Axiom A

by
FELIKS PRZYTYCKI (Warsaw)

Abstract. The main result of this paper is the following theorem:

If f: M-~M is a O"-map (r > 1) on a smooth, compact connected, boundaryless
manifold M which satisfies Axiom A, then f is Or-stable iff f satisties the no-eycle
condition and for every i f| | a; (£; — a component of Spectral Decomposition) is either
4 one-one map or & quasi-expanding map (i.e. dim (BY) = dim (M) for xe2;).

We give some simple examples of Axiom A endomorphisms which satisfy the
properties under consideration. ’

0. Introduction. In paper [6] we proved that if an Anosov endomor-
phism (a weak Anosov endomorphism in the terminology introduced
in [3]) is structurally stable, then it is either an Anosov diffeomorphism
or an expanding map. The same result for e-stability is proved in [3].
In the present paper we develop the ideas from [3] and [6] and prove
the following:

TaEorEM A. If f: M—>M is o O™-map (r>1) called a C"-endomor-
phism (*) on a smooth, compact, connected, boundaryless manifold M which
satisfies Axiom A, then the following two conditions are equivalent:

1 f is C"-stable,

2 f satisfies the no-cycle condition and for every i, 1<i<1I, f la; 18
either a one-one map or & guasi-expanding map.

We recall some definitions and notations. For a topological space
X and a map fe€(X, X) a point o is said to be non-wandering if for each
neighbourhood U of # there is a positive integer » such that f*(T)NT # 0.
The set of all non-wandering points will be denoted by 2(f).

One says that an endomorphism g on M is topologically conjugate
{2-conjugate) to f if there is a homeomorphism h: M—M (h: Q(f)~>2(g)
satisfying goh = hog. The map f is called 0" structurally stable (C" Q-stable)
if there is a (" neighbourhood N of f such that any geN is topologically
conjugate (£2-conjugate) to f.

() This terminologyis not consistent with [6]; there we assume that an endomor-
phism is a regular map. A
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Recall from [6] that feC"(M, M) satisfies Axiom A iff

(a) The periodic points of f are dense in 2(f);

(b) £(f) is a hyperbolic set, i.e. Sing(f)NQ(f) =& (Sing(f) denotes
the set of all singular points of f) and there exist constants ¢ > 0,0 < u < 1.
and & Riemannian metric -, -» on T'M such that for every f-trajectory
(#,) contained in Q(f) there is a splitting of
+o0 400
U e U I

Py — OO0 Nx= =00

+00
U T, M = F°QE" =

Nr= 00

which is preserved by the derivative .Df and the following conditions are
satisfied for » = 0,1, ...:

IR (o)l < Cu™loll for vek?,
IDf™(w) = O u~" ||| for wveB

(for the properties of hyperbolic sets of endomorphisms see [6]).

Recall that (a) implies Q(f) is an f-invariant set (f(2(f)) = 2(f).
It A< M and f(A) c 4, then by A~'( f) we denote an inverge limit of the
system ...« A<12 Al A | and by fthe shift operator (2,)—(fr,). Recall

et

that !)(f) = :!T(f) (f) (to simplify the notation we dénote Q2(f) (f) by .!5(}")).

For (,)e2(f) we define
Wie, =

{y¢ M : there exists a (y,) ¢ M (f) such thaty = Yo and o (@, ¥n) 7> 03

<
=

(Notice that Wiz, can depend on the whole f-trajectory (2,), cee [6])s

hag = e M o(f*(Y), Ba)imrsr 0}

If & is periodic, then W}, denotes the unstable manifold of the
periodic trajectory of «; the same notation will be used in the local cage.

Denote by WG . (or W3 1) a local stable (unstable) manifold contained
in a ball B(x, a) (or contained in some small ball with & centre in To)
Ii f is fixed, we denote Wi , by Wi, .

Define an equivalence relation in Per( f) as follows:

@~y if for some points ae W¥,,,, be Wiie and for some positive in-
tegers m, n the following conditions are satisfied:

f’”(a,)e W:/,lou f"‘(b)e

oo is transverse to the W, in the point a,

8
x,1009

o is transverse to the Wi 00 in the point b.

Let sets 2;(f) be defined .as closures of equivalence clagges of the re-
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la}tion ~. The sets 2;(f) are invariant. This decomposition of £ into a sum
U%;(f) is usually called the Spectral Decomposition.
J=1

Denote

W*(&;) = {y< M: there exist (y,)c M (f) such that y =y,
and dist(y,, 2)5—=>01},
W (2;) = {ye M: dist(j"'(y), 8 )s55>01

n—»:(»oo
‘We have
. Wu(s) ( Qj) — U ‘W:;L‘()S)
(en)ej(f)
(see [6]).

‘We say that f satisfies the no-cycle condition iff there exists no sequence

-of numbers j,, ..., 4, (k= 1) such that

(WS(Q,-r) —) m(W"(Qjﬂl) =80 .) #9
for 1 <7< % and j; = j,. (For the assumption that % 3> 1 see the example
in Remark 1.6.) )

Under the no-cycle condition one can choose a simple ordering < on
the £;, using indices such that 9, < Q,<...< Q; and 4 < j implies
that We(Q)nW*“(2,) = 0. :

Cfull f |Qj a quasi-cxponding map itf dim Bz, = @im M for an Sf-trajectory
(2n) e Q;(f) (it is independent- of the choice of (m,)).

In Sections 3 and 4 we prove the following Theorems B and C:

Theorem B. If condition 2° in Theorem A does mot hold, then in any
O -neighbourhood of f there ewists an infinite collection of pairwise non-Q-
conjugate endomorphisms.

It seems interesting to describe more precisely topological types
of endomorphisms in a small neighbourhood of an Axiom A endomorphism
which do not satisfy condition 2° (see Theorem 4.11 [67]). ’

TusorEM O. If a map f satisfying Aviom A is structurally stable, then
condition 2° from Theorem A. holds together with the following:

if for some iy 4,

W2 )N, + &,

then fl% 8 @ quasi-expanding map.

In Section 5 we give some examples of sets of endomorphisms; they
are open in C'-topology and consist of endomorphisms satisfying Axiom
A and the no-cyecle condition which are not C"Q-stable. We also give
a non-trivial example of ‘a non-Q-stable endomorphism which can be
perturbed to an £-stable one.
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I w1sh to thank Michael Shub for conversations which m&pmed me
to write this paper.

1. No-cycle condition, filtration. Let f: M—M be a C"-endomorphism
satisfying Axjom A.

1.1. PrOPOSITION. If f satisfies the mo-cycle condition, then for amy
family of compact neighbourhoods U, of 2, there exists an adapted filtration,
4.6, there ewist a finile sequence of compact sets (M, ..., M;) and a sequence
of positive integers (mq, ..., my) such that

1 G =Myc..cM;=M;

(2)  f(M;) <int(M;) for every i;

(3) Q< M;—f"(M;,) < int(T,).

Remark. Because of singularities, f need not be an open map. This
is the reason why we introduce a filtration adapted to U, instead of a
fine filtration.

Proof of Proposition 1.1. One can proceed as in [8] but with

some modifications:
1° We use the following topological lemmas:

Let f: M—>M be a continuous map. If @ = M is & compact neighbourhood
of a compact set P and, for every Nz=o,
Ni(@nflen..nfl@nf@)..) =»|
=l f n-times
then there emists @ compact set V such that
Pcint(V)e V@ and f(V)cint(V).
Our proof differs from the proof in [8] at the beginning. Observe
that there exists an n such that f(@ N... Nf(@)...) = @. This implies
’ . h f n-times
@)~ 2(@)n ... nQ) = f~&(Q);
hence f(W)<= W, where W = f~(@)n...NnQ. Moreover, W is
a compact neighbourhood of P. Hence f™(W) < int(W) for some posifive
integer m. Now one can proceed in almost the same way as in [8].
2° We define’ a fundamental domain of f on W“(Qi) in the following
way. For (mn)eQ,;(f) denote

(”"n) = {(yn)e M f) (ym wn) r=—r-gd 0}'

For sufficiently small ¢ > 0 Wy , is an embedded dise (see [6]). Hence
- ‘one can congider the metric ¢* in Wi, induced by the Riemannian metric
on M restricted to W";fl, Denote

W}‘zn),s o = { Jn € W;?vn) Qu(yu wi
W(x,n) g,0%0pen. = { yn € W(x") (?’/i,

)< ¢ for 1< 0},
) < e for 1< 0},
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We claim that the set

u
Fi(e,0) = U Wi )omu— U Wepotopen for &>
@nedd; @)ed;
is compact.
Indeed, for ¥ = 1,2, ... let
(1) (ym)elt(e, )  and  (y¥)->(gl).
Let
(y],i)e Wuzk)ag )

where ( )e.Q There exists a subsequence (zﬁ" f (2%) which converges

0 a (2, )e.Q For simplicity we shall denote (2,
continuity of the following function I,

75 by (z’,ﬁ) Hence, by the
o .Q’ Ly “w 1 -

(2) ()2 (2,) > sz,s€{0 -embeddings of the disc with C*-topology}
(for details see [6], Theorem 2.5), we obfain

(3) (Wa)e WD, o -
Suppose now that there exists an (m,,)ef)i (f) such that
(4) (ya)e W ‘

It follows from (3), (4) and [6], Theorem 2.1 (e) that if ¢ is sufficiently
small, then

(2p)»0,¢%,0pen *

W 20,40, 2 Wz oot for all <0
Hence, if ¢ is sufflclently small, and k is large enough, one can define the
f-trajectories (vf) for large k’s by the conditions

vhe on,loanz{,‘,m vEe Wik s for n <0,

k'—=fn?7k

By a local product structure of .Qi( f) (see [6], Proposition 3.7), we conclude
that (vf) e 2( (f) and (VE)mas w-id (W Therefcne, in view of (4) and by the conti-
nuity of the functions L;, we get (yEye W(,, )8,6%open 10T sufficiently large

k, which contradicts (1). Therefore F¢ (e, 0) is compact. This finishes
the proof.

Define the fundamental domain of f on W*(£, ) by T (e, 8) = moF%(e, 8)
for 6/s sufficiently small (m,: M (f)->M n,,(( %,)) = @,). The fact that
Fi(s, 0)nQ; = O easily follows f.rom the local maximality of ,(f).

for n>=0.

5 — Studia Mathematica 60.1


GUEST


66 ‘ F. Przytycki

1.2. NoraTIoN. Let g be O"-near f. There is a unique conjugacy
bt (209),4) > (b 2(1), §) = (D(0), §)
- +00
near the inclusion 2(f) < PM,, M, = M.

6, is an induced conjugacy 0y Per(f)-»0,Per(f)c— Per(g). The
existence and properties of A, and 6, are described in [6], Theorem 1.20
and [3].

CE‘h]e following Lemma is a simple conclusion of the local maximality
of Q(f) and of the theorem on s-trajectories (see [2], [6]):

1.3. LemuA. There ewist a neighbourhood U of Q(f) and o ‘netghbourhood
N < 0" M, M) of f such that geN implies that if (m,) 18 a g-trajectory in
U then (m,)ehyB(f). ‘

1.4, PROPOSITION. Let (My, ..., My) be o filtration for f adapted to
sufficiently small sets Uy. Then there is a neighbourhood N, of f in C*(M, M)
such that if geNy then hg maps .é( f) onto @(g) and Q(g) is g-invariant,
e g(2(g) = 2(g).

Proof. Let U and N be such as in Lemma 1.3. One can assume
that U.’s are pairwise disjoint and lj U;c U. Let N, = N be a neighbour-

=l

hood of f such that if geN, then

1y gmir (™ (M) < int (M),
(2) 9(M;) = int (M),
(3) g™ = i),

For-any geNy, (1) and (2) imply Q(g) = U ((M;) —f~™(M;_,))
So Q(g) = hy ().

Now we claim that g(2(g)) = 2(g). Suppose that we 2(g) and g~} (z) A
N82(g) = . For some 4, @eint (M,) ~fT™(M,;_,). Since g™ (x) e 2(g) for n > 0,
we have g"()e U . Since »¢£(g), there exists a sequence of g-trajectories
(%) such that 2 5w and z;“(,,)——m for some sequence of negative integers
s(k). Let («%%) be a subsequence of (2£) such that (#0%) converges to some
g-trajectory (@,). Of course @, = g"(x) for n > 0. Lemma 1.3 yields the
existence of a negative integer ¢ such that @q¢ Uy This and (3)- imply
Z,¢ M. Hence there exists a p;, such that 20kd M, bub z’,f’(’;,,k)e My (3(pp) < @)
This contradicts (2).

In the similar way to that followed in [4] one can check the following:

1.5. PROPOSITION. If, for. all g O"-mear §, by maps !5( f) onto f)(g),
then f satisfies the no-cycle condition.

1.6. OorOLLARY. If there is a cycle for f,’ then f is mot OF Q-stable.

< L’:)Ui-
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Proof. Indeed for g O™near f let (2,) be a g-trajectory such that
(@) ¢hye B (f) and (w,)e 3(g). By Lemraa 1.3, there exists an integer N such
that @y ¢0,Per(f). For the existence of a conjugacy Q(f) with 2(g), 2y
must be a limit of a sequence of g-periodic points; hence Per(g) £ 0,,Per(f).
Now it is obvious that the conjugacy cannot exist because 0, is & one-one
map and, for any positive integer k, f has only a finite number of points
of period k.

1.7. Remark. In the no-cycle condition for endomorphisms satisfying
Axiom A it is essential to congider the cage of cycles of length one. It is.
well known that such cycles cannot exist for diffeomorphisms.

Exawprn. f: §'->8", f(2) = ¢"?(-*1%6)  where ¢ is as in Figure 1.

3nfmm e — -

Mpm———————

.
o) SO

Fig. 1

Here 2 = {—1,1}, @, = {1}, 2, = {—1}. A point 6" W*(2,) " W*((2,).
However, we have
1.8. ProrosiTioN. Let f: M2 M satisfy Awiom A. Suppose that
under Spectral Decomposition Q(f) becomes a sum of only one set Q,. Then
Qf) = M. «
Proof. First we claim that

M= U,

150
Let @« M. I U is any neighbourhood of @2, then there exists an N > 0
such that if n > N then f*(#)e U. If U is sufficiently small, then /¥ (x)e WS,
for a y< Q(f) and for an s such that f* (W2 ) "Sing(f) = @ for 4 > 0. There
exists a point » arbitrarily close to fV(x) such that ze W3,s for a periodic
v and fY (W ,)nSing(f) = @ for i = 0.

\

@)
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If V is any neighbourhood of 2, then the A-Lemma (see [5]), the fact
that f”JWu1 AWy for any periodic w and suitable p, the continuity
v,loc 4

of I (see 1.1 (2)) and the density of Per(f)in Q(f) imply W*(R2 Uf‘ (V).
ze W¥(2) because f maps M onto M. Thus ze¢R. So fN(w e.Q, Whlch

proves (1).
Denote f~(Q2) - 2by A. Suppose A # @. (1) yields M = !.?Uig)u -4

Arguments which prove (1) give us ANU = 0 hence 4 is a closed set.
Thus we conld decompose M into a union of a countable family of
closed sets from which two at least are nonempty, but this is impossible.
(Indeed, if a connected, locally arcwise connected, complete metric space
o«
M=K, E;nE; =@ for i #j, K; are closed sets and K,, K, 0,

Gl

then FrK, # @ or FrK, + &; hence N = M — UmbKi % @. WK, are

f=1
nowhere dense in N and N is the complete metric space. This situation
contradicts the Baire theorem.)
1.9. Remark. It f is not “onto”,
not true. Here is an example: f: §'— 87, f(z) = ¢

2. Proof of Theorem A. Lt fe 0" (M, M) be an endomorphism satistying
Axiom A.
] 2.1. LmMMA. There ewist numbers B> 0, a> 0, A >0 such that if
~eoM(fy 91) < o and oo(f, g2} < @ then for any > 0 eon(g, g2) < 7 implies:

then the above proposition is
(i/2)-sin(i-1og(s)) _

1) Q(mja ”jhalpz ((mn))) < 4,
(2) QH(ng,njhgl”z((xn)),R7 Wg,,xj,n) < A4,

Jor any g -trajectory (®,)e m(.é( f)) (g — a Hausdorff metric between sets).

The proof is standard and will be omitted.

It is easy to prove that we can choose an B such that if gou(f, ) < @
then g|3(,,0,,ﬂf(w,,R) is a diffeomorphism onto its image and R has the prop-
erties described in [6], Theorem 2.1.

From Lemma 2.1 one can obtain by a standard procedure:

2.2. LeMMA. There exists an a > 0 such that for any & > 0 there emists
a positive integer P(0) which has the following property.
. For any n>0 fmd 915 920" (M, M) such that er(f, g1) < a, 0er(f, )
< a if 0o0(g1, g2} < 7 then for every (#,) € hyy s Q(f) the conditions

W) ailw, = galw, for every g: 0 < g < p(9)
(we define W, O(gz[B(x_l,m)-l(W?zmo,R)),
(2)  ga(@) = g.(m)) for —p(®) < q<p(d)

= (gziB(z_q.R))—l 0...
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imply
(Wgz zp. B W‘ﬂ‘p"ohalgz((zn)LR) < dn.

Assuming only (2), we get
0 (ot (), @) < B,

2.3. LEMMA. Let D,(f) be infinite. Then for dny (m,
0> 0 there exists a ye(Wa s0Q2(f)) —{@,).

Proof. Of course, dim Wz, >0, and so the lemma easily follows
from the local product stluctuxe of 2(f) (see [6], Proposition 3.9).

Now we shall prove our key proposition:

2.4. ProrosITION. If f lo, is mot a one-one map, then there ewist: o
geC" (M, M) arbitrarily close 10 fin O"-topology and two different g-periodie
points x, yem, h,,,.Q (of periods arbitrarily large) such that y e W 100

Proof. Leb (z,), (4u)e By(f); @ = yo, ®_y #y_,, and let y_, be a
non-periodie point. (Tf @, iv periodic, we consider the periodic trajectory
of x, instead of (z,).)

Let

1) L= maX(Z'Slg)llszllf 2‘»“1[17) (Df) ", 1)
Ze &e
for @ U — a neighbourhood of Q,(f).
Let & =1/(8-1%) and let o, B, p = p(9) be as in Lemma 2.2. Let
V. and V, be neighbourhoods of #_, and Y—p, Tespectively, such that

f IV], are diffeomorphisms onto their images, for ¢: 0 < g<2p,j=1,2
Let d> 0 be a number such that i

Ve 2:(f) and any

B(y_,,d) = "1 (Vy) and  B(a,, d) « (V).
Denote
B = f]ﬂy+q(,,]))"lo e o(j]ﬂa..:(vl))'l(B(mo, d))  for ¢g<o,
F(B(z,, @) for g¢g>0,
BI = (f"fﬂw(rfg))—](?’ 0(]’/%?(712))*1(3(?/—17 d)) for g« -1,
ol B@L, @) o g> -1

Assume for d also the following:

gs<p,

B{NB(y_,,d) =@ for —p<
—PLg<p, g #F 1.

BinB(y_;,d) =@ for
By Lemma 2.3, there exists a point w_,e(W¥_; dan(f)—-{y_l},

for ¢: —p < ¢ <0 we define w, by the formulas: w,e B, f~¢ (w,) = w_;.
Let dy < p(w.y, ¥_1)/2.
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All endomorphisms appearing further in this proof will be some pertur-
bations of f imside the closed ball B(y_,, d,) = V.

If d, is sufficiently small, then one can fix coordinates on neighbour-
hoods of ¥V and f(V) such that the metric induced by a Riemannian metric
on M is close to the Buclidean metric defined by the coordinates. One
can introduce a standard metric ger(-, ) between perturbations of f.

Moreover, one can obtain f(V) = U (for the definition of U see (1)).

One can easily check that

(2) ) F(V) 2 B(yo, u/L).

Fix any number g > 0 such that f < a (ais defined in Lemmas 2.1, 2.2)
and if o (f, g) < f then g|p is a diffeomorphism onto f(V) and L is a
Lipschitz constant for ¢|p and (g(p)~*.

Let 6 > 0 (6 < d,) be such that the following condition holds:

(3) if ©, yeB(y_,, 6) and, for a posmve integer K, o(w ,y) < O/K, then l

for amy geBer(f, B) there emists a g” such that g(y) = ¢” (v ) 00r(9, 97)
<BIE and go(g,9") < 2Le(x,y)-

Moreover, assume that 4 satisfies the following condition :

(4)  A-2L64¢

< min( inf (dist(s,, M —BY), inf (dist(10g, M — BY)), dist (w
—PEe<P —-p=gsp

w_y, V).

Take periodic tm]ectorles ud and o), with periods arbitrarily large,
such that b

(5) o(vg, w,) < 6/2,

(6) 0 (g, m,) < 9,

for lg| <p and

(7) e(ug, Yo) < 6/413

(8) st (W0 g, wl) < 8/24

where u_{ is defined as a unique countenmwe (it exists by (2)
of ug under f which lies in V.

and (7))

Of course,
9) e(ull, y_1) < 8/4.
Observe that Wy g, < B;?
Let geC* (M, M) and
(10) oorlg, f)<2Ld  and  gm(y,f) < 8.
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Then from (4), (5), (6) and Lemma 2.1 it follows that

(A1) by(v))eBS, Bpp(v 1) ¢B(y 1, d) =V and O,(ul)eBf for Jg<p.
Then (by Lemma 2.2 and from the definitions of ¢ and p):

(12) o(0yr(up), ug) < 8/4L;

hence by (2) and (7) therp exists a %_;(g) — a unique counterimage of
O4r(49) under ¢ which lies in V.

‘We shall construct by induction a sequence of endomorphisms f
satistying the following conditions:

(13;). oor(fuy fuo1) < B2FT2,
(14y) 00t fis fuma) < 2L3/25F2,
(15,) . dist (W:;"i a2 Yo (f)) < 8/2%+4

(we denote Oy4(u) by wl, and Or(vn) bY ),
(16,) ' Q(’“—l i)y vy fk—l)) < §[2FE,

Of course, (13;), (14), (16;) make sense for £ > 1

Define f, = f; then (15;) holds by (8). Assume that f; are constructed
for j <k for which (13;), (14,), (15,), (16;) hold. We shall construct f,,;-.

By (15,) there exists a u™e Wik i Such that
(1) o (W™, u_y (fi)) < 8/27+4.
By (9), (16) (j = ., k) and (17)

e(uos(fi)s ya) < 8/2< 8 and - o(u™,y_;) <.
Then one can use (3) (put K = 2%+ to construct f,; such that
oo (fisns o) < B[2FH4,
" 000 (freyrs i) <2L5/2h+{4 and  fuy (v =fk(u—1(fk)) = uf.

Hince for g = fr,; (10) is satistied, formulas (11) allow us to use
Lemma 2.2. So, by definitions of ©# and p, one can obtain

(18) Q(u-—l(fkq-l)) '7"'%) < 5/21c-li6 and QH(W;Ik+1,UE4il,d/17 W?k,vﬁl,dlz) <82k,

which implies (154,)- N
(17) and (18) imply ¢ (_; (fip) %oy (fu)) < 6/2%*2,ice. (164,,)- This fin-
ishes our induction.

Define g = 11m f,c (13}), (14%), (15;) imply that g is a O"-map satisfy-

ing the eondmom of our proposition.
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This proposition and Lemma 1.3 imply the following

2.5. CoroLLARY. If fla,- is not-a one-one map, then there exist a
geC™ (M, M) arbitrarily close to f in C"-topology, two different periodic
g-trajectories (@), (y,)<hy () of periods arbitrarily large and a g-trajectory
(%) e‘hﬂf(ﬁ,) such that 2y = @y and @ (2,, Yp) 75— 0-

2.8. PROPOSITION. In some neighbourhood. N of f in O'-topology the
set of endomorphisms g satisfying the condition :

(#) if @, yePer(f) @ £y ond dim(BY) < dim (M), then 0,(x)¢ W},‘,,;M(,,)
48 a residual (dense, G4y subset of N in ("-topology.

Proof. One can proceed as in [6], Theorem 4.3.

We shall prove Theorem A.

Assume 1° for f. Then Corollaxy 1.6 yields the no-cycle condition.
Now, if there exists an ¢ such that f |94 is neither a one-one map nor a
quasi-expanding map, then one can perturb f to g, which has properties
described for ¢ in Corollary 2.5. On the other hand, one can perturb f to
& ¢, which has property (x) (see Proposition 2.6).

Now suppose that there exists an £2-conjugacy h. One can easily
check that b must preserve the relation between periodic points which
defines the equivalence classes £;; hence b induces a permutation o of £,%.

If g is C"-close to f, we say that glo satisties property P if 9|aye B
not a one-one map and we say glgj(,,) satisties property Q if ye Wi, for
some periodic points @,ye£;(g) (see Proposition 2.4 and Corollary 2.5).

Observe that o preserves properties P and Q. Observe also that if
g],,j(,,) it a quasi-expanding map which satisties property P, then 9oy
satisfies property Q. Thus if gg|gj(02) satisfies P, then this satisfies Q if
ond only if this is a quasi-expanding map. Because in the case of g, the
number of j’s such that glfgj(ﬂl) satisfies P and Q is greater than in the case
af g,, we obtain a contradiction.

Asgume that 2° holds. Then, in view of Proposition 1.4, it suffices
to show that.if g is ("-close to f, then g, is o lift of a homeomorphism.

First suppose that f],,‘ is a quasi-expanding map. Then there ave:
a neighbourhood N « C'(M, M) of f and numbers a > 0 and 4> 1 such
that geN implies:

(1) IDg (o)l > Al  for ’UeT( Lg B(z, Sa)),
. ae 3

(2) . 0 (mohgry o) < @

and

(3) for we LQ%,)(B(% @), 9|pwae i a diffeomorphism onto its image.
Ve
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. Suppose that for some geN there exist (), (yn)e!i(f) such that
@0 = Yo and 7oy ((,)) # myhyy((y,)). Denote .

mr; = ”nhvf((wn))7 '.'/7: = nnhyf((yn))r Q(WOA; f’/nA) =T
(2) implies ¢(@, , ¥, ) < 2a for 43> 0. Let K be such that .
(4) E1> 2a.

Using (1), (2), (8), one can easily construct a family of curves L,: <0, 1>—->M
such that goL, = L, ,, L,(0) = @, and L,(1) =y, for n: 0 <n< N,
length(L,) < 2¢. Thus, by (4), length (L) < 7, which is a contradiction.
Therefore, if geN then h, is a lift of some continuous map h,. Similarly,
hyy = hyf isalift of a hy. S0 kyhy = hyhy = id, and hence A, is a homeomor-
phism.

Now suppose that f l ;18 8 one-one map. Then there exists a neighbour-
hood U of 2; such that f [U is a diffeomorphism onto its image. So if
ge<C* (M, M) is ("-close to f, then there exists a unique homeomorphism
I close to identity which conjugates £,(f) with a g-invariant subset of
U (this is a well-known fact). Thus, the uniqueness of fyy implies that
Fogr 18 @ lift of h.

2.7. Remark. Using a similar idea to that presented in [3] or in
the Introduction of [6] and something like Lemma 2, one can easily prove
that condition 2° is necessary for the &—O" Q-stability of an Axiom
A endomorphism. This is of course weaker than Theorem A.

Theorem A implies the following

2.8. PROPOSITION. If f has no cycles and for some i Q,(f) is a repeller
(t.e. there emists a compact neighbourhood U of Q,(f) such that f~(U) < int U

and (\f™"U = Q; or equivalently W*(2;) = Q,) and if f[,,i 18 neither a
n=0
quasi-expanding nor a one-one map, then there emists a neighbourhood in

O-topology N sf such that ge N implies that g is not C" Q-stable.

Proof. The above-mentioned properties of f are preserved under
C"-perturbations. The main thing is to prove that the property “the map
is not one-one’ ig preserved.

3. Proof of Theorem B. Let O" (M, M) = B(f, dy) = ... o B(f, d,) > ...
be a sequence of balls with a centre f in C"-topology with radii d,—0. Let

a, = inf{m: there is a map ge¢B(f, d,) and there is a point
fwePer(g) —0,,Per(f) such that m is a period of a}

(we assume that inf & = - o0).
By Lemma 1.3, @,~+ co. _
(a) Suppose that, for every », a, < -+ oo. Let ay, be a strictly increasing
subsequence of a,. It is obvious that the maps g;, which realize numbers
;, are pairwise non-conjugate.
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(b) Suppose that a, = oo for an integer g. By Proposition 2.4, one
can construct (by induction) maps g; eB(f, d,) = N such that

(1) yFe Wity for some o, y*e 0, (Perf) with minimal periods s, 1%,

respectively, and such thal
max (s¥, %) < min (s"+, )
for b =1,2,... ‘
Using an idea from the proof of Theorem 4.8 of [67, it i easy to perturh
g, 0 gie N with the property (1), where we replace gn DY gi, and moreover
a¢ Wy, for any @, yePer(g) such that dim (B}) < dim (M) and the mini-
mal periods of # and y are smaller than min(s®, #%).
Proceeding as in the proof of Theorem A, one can check that g, are
pairwise non-conjugate.
4. Proof of Theorem C.
41, LevMa. If WYQN)nQi(f) # O for i % j, then there exist o
geC™ (M, M) arbitrarily O"-close to f such that £« Wy, for some v¢ Oﬂf(!zi(f)n
nPer(f)) and 9 e B2 (f) NPer (f)).

Proof. A proof of this lemma can be based on the same ideas as the

proofs of Proposition 2.4 and Lemma 4.6 of [6] but iy easier.

Proof of Theorem 0. Theorem C immediately follows from Lemma
4.1 and Proposition 2.6.

5. Examples. Introduce the following symbols:

2" —the standard expanding map of &%,

h — a diffeomorphism of §* with a sharp source (i.e. the expansion
coefficient large enough) at 2 = -1, a sharp sink at 2 = -1 and no other
fixed points,

U — any Anosov diffeomorphism M--M,

H — the Shub endomorphism (see [7]) described as follows:

H: §>8, H(z) = ¢?~tlose)

where ¢ is given by Figure 1 (p. 67). )
The point 1 is a sink. Denote other two fixed points by « and b, Of

courge, 2, = {1}, &, = &' — | H™"(P), where P iy ag in Figure 2.
00
Further we shall denote 2, by w.

We shall consider some examples of endomorphisms:

LHXU: 8 xM->8" %M.

Here Q(Hx U) = {1} x M, Q,(Hx U) = o xM. Hx U is £,-stable
but is not 2,-stable persistently (in view of Proposition 2.8).

2 Hx&": T*-T°. ‘
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Here O, = {1}x 8, & =ox8., Hx is Q,stable since it is
quasi-expanding but H X 2" is not -stable persistently because it is

not a one-one map persistently. Indeed, !51(H x 2") is a solenoid, and so

L o o o ot e e -

/
1 LS TPURREY N F—r—— e

I ..
s ———

2n
Fig. 2 ' Fig. 3

it cannot be homeomorphically mapped into R* (no solenoid is a movable
compact and only movable compacta can be homeomorphically mapped
into R*, see [1]).
The same arguments can be applied for a non-Q-stability of the map
b TP,
3. f=Rhxhxz: T*~1°
IHere
Q= {1} x {1} x 8, Q, = {1}x {—1}x &,
Qy = {1} x{1}x 8, 8, ={-1}x {—1} x 8.

Jis Qstable as a quasi-expanding map, f i3 not Q,-stable but can be
O"-small porturbed to £2,-stable map by a standard construction of a golenoid
inside o solid torus 1%, The map f is neither 2,-stable nor £,-stable per-
sistently. Indeed, lot W denote the intersection of the set S x {1} x &
with some solid. torus which iy a neighbourhood of a circle {1} x {—1} X st
The point —IL is the sharp source for &, and so if g is & C*-small perturba?:ion
of f, then there exists & 2-submanifold W' of I* (*-close to W, invariant
under g. W’ containg £2,(g) — the image of the solenoid 2,(f).

Now, by the arguments applied in Example 2, g|92(,,) ig not a ‘one-

~ one map.
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4. hxH: T*—T*.
Here
0, ={1}x{1}, L={1}Xo,
Q ={-1x{1}, L,={-1}xo.
hx H is not Q-stable in view of the nature of Q,. However, it can be
¢"-small perturbed to an ©-stable map H~ which is defined as follows:

H (z“ 2y) = (h(zl) e»i-a-ein(i‘-log(zﬁ))-w(zl)’ H(za)),

where @: §—(0, 1) is a smooth bump function such that @ is equal to
0 in a neighbourhood of 2, = —1 and i3 equal to 1 in a neighbourhood
of z, =1 and e > 0 is an arbitrarily small number.

Since the point 1 is a sharp sink for h, there occurs a kind of Smale’s
“horseshoe” example near the circle {1} x &'

P
)

Tig. 4

S0 H' gz~ is & one-one map; more exdcetly, it is a Bernoulli shift.
Thus, owing to Theorem A, H" is £-stable.

I do not know whether H " is structurally stable or not.

Let ¥: B—{—1, 1) be a periodic, smooth bump function (with period
equal to 2w) such that v is equal to 0 in the interval <0, =) and iy equal
to the function sinus in the interval (w--a, 2 —a) for a small number a.

If in the definition of H" we put ¥ instead of sin, then H " ix not
structurally stable by Theorem C, because W*{(Q,(H )N, (H") # @.
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