

STUDIA MATHEMATICA, T. LX. (1977)

- [4] P. G. Casazza and Bor-Luh Lin, Projections on Banach spaces with symmetric bases. Studia Math. 52 (1974), pp. 189-193.
- [5] P. Enflo and H. P. Rosenthal, Some results concerning $L_p(u)$ -spaces, J. Functional Analysis 14 (1973), pp. 325-348.
- [6] J. L. B. Gamlen and R. J. Gaudet, On subsequences of the Haar system in $L_n[0,1]$, (1 , Israel J. Math 15 (1973), pp. 404-413.
- [7] V. F. Gaposhkin, Absolute basis in L_p spaces, U.M.N. 13 No. 4 (1958), pp. 179-184.
- [8] W. B. Johnson and E. Odell, Subspaces of L_p which embed into l_p , Compositio Math. 28 (1974), pp. 37-49.
- [9] J. Lindenstrauss and A. Pelozyński, Contributions to the theory of classical Banach spaces, J. Functional Analysis 8 (1971), pp. 225-249.
- [10] J. Lindonstrauss and L. Tzafriri, Classical Banach spaces, Lecture Notes in mathematics 338, Springer-Verlag 1973.
- [11] B. Maurey, Sous-espaces complémentes de L_p, d'après P. Enflo, Seminaire Maurey-Schwartz 1974-1975, Ecole Polytechnique, Paris.
- [12] B. S. Mitjagin, The homotopy structure of the general linear group of a Banach space, Russian Math. Surveys 25, 5 (1970), pp. 59-103.
- [13] A. Pelezyński, Projections in certain Banach spaces, Studia Math. 19 (1960), pp. 209-228.
- [14] H. P. Rosenthal, On the subspaces of L^p (p > 2) spanned by sequences of independent random variables, Israel J. Math. 8 (1970), pp. 273-303.
- [15] G. Schectman A remark on unconditional basic sequences in $L_p(1 , to appear.$
- [16] Complemented subspaces of (l₂⊕l₂⊕...)_p (1
- [17] Examples of \mathcal{L}_p spaces (1 , to appear.

THE OHIO STATE UNIVERSITY, COLUMBUS, OHIO and STANFORD UNIVERSITY, STANFORD, CALIFORNIA

Received October 8, 1975

(1089)

A general result on the equivalence between derivation of integrals and weak inequalities for the Hardy-Littlewood maximal operator

b

IRENEO PERAL ALONSO (Madrid)

Abstract. In this paper we consider integrals of functions belonging to $\varphi(L)$ classes, and their differentiation properties with respect to a translation invariant (B-F) differentiation basis. We prove that the differentiation of certain integrals is equivalent to a certain property of weak type for the maximal function of Hardy-Littlewood, which is associated to the basis. In a sense, this is a sharp result (see Peral [3]).

Introduction. We consider for each $x \in \mathbb{R}^n$, a family of open bounded sets $\mathscr{B}(x)$ such that each $B \in \mathscr{B}(x)$ verifies:

(i) x & B;

(ii) there is a sequence $\{B_k\}_{k\in N}\subset \mathscr{B}(x)$ such that $\delta(B_k)\to 0$ as $k\to\infty$ $(\delta(B_k))$ stands for the diameter of B_k).

If these conditions are satisfied, we say that $\{B^k\}$ contracts to x, and that $\mathscr{B} = \bigcup \mathscr{B}(x)$ is a differentiation basis in \mathbb{R}^n .

 \mathscr{B} is a Busemann-Feller (B-F) basis, if for each $B \in \mathscr{B}$ with $y \in B$, we have $B \in \mathscr{B}(y)$.

A differentiation basis $\mathscr B$ is translation invariant, if each translation of $B \in \mathscr B$ belongs also to $\mathscr B$.

We denote by \mathscr{B}_r and $\mathscr{B}_r(x)$ all the elements in \mathscr{B} and $\mathscr{B}(x)$ with a diameter less than r.

If B is a measurable set, then |B| will be its measure.

Let f be a locally integrable function on \mathbb{R}^n , i.e. $f \in L^1_{loc}(\mathbb{R}^n)$; we define the *upper* and *lower derivatives* of the integral of f with respect to \mathscr{B} by:

$$\overline{D}\left(\int f; x\right) = \sup\left\{ \limsup_{k \to \infty} \frac{1}{|B_k|} \int_{B_k} f(y) \, dy \colon B_k \to x; \ \{B_k\} \subset \mathscr{B}(x) \right\},$$

$$\underline{D}\left(\int f; x\right) = \inf\left\{ \liminf_{k \to \infty} \frac{1}{|B_k|} \int_{B_k} f(y) \, dy \colon B_k \to x; \ \{B_k\} \subset \mathcal{B}(x) \right\}.$$

We say that \mathcal{B} differentiates the integral of f, if

$$\overline{D}(\int f; x) = \underline{D}(\int f; x) = f(x)$$
 a.e.

The maximal operators of Hardy-Littlewood associated to 3 and 3, are defined respectively by

$$Mf(x) = \sup_{x \in B \in \mathscr{B}} \frac{1}{|B|} \int_{B} |f(y)| \, dy,$$

$$M_r f(x) = \sup_{x \in B \in \mathscr{B}_r} \frac{1}{|B|} \int_B |f(y)| dy.$$

When $\mathscr B$ is a B-F basis, it is easy to see that Mf(x), $M_rf(x)$, $\overline{D}(\int f;x)$ and $\underline{D}(\int f;x)$ are measurable functions, if $f \in L^1_{loc}(\mathbb R^n)$ (see Guzmán [1]). We also consider the $\varphi(L)$ classes:

$$\varphi(L) = \left\{ f \in L^1_{loc}(\mathbf{R}^n) \colon \int \varphi(|f|) \, dx < \infty \right\},$$

where $\varphi: [0, \infty) \to [0, \infty)$ is strictly increasing and such that $\lim_{x\to 0} \varphi(x) = \varphi(0) = 0$.

Note that the Orlicz spaces are included here.

Previous results and statement of the main theorem. For the proof of the main theorem we will use the following results:

LEMMA 1. Let $\{E_k\}_{k\in\mathbb{N}}$ be a sequence of measurable sets contained in Q, where Q is a cube in \mathbb{R}^n with center at the origin and side length 1/4, such that

$$\sum_{k=1}^{\infty} |E_k| = \infty.$$

Then there is a sequence $\{x_k\}_{k\in N}\subset Q^*$, where Q^* is the unit cube in \mathbf{R}^n such that, if $A_k=x_k+E_k$, then almost every $x\in Q$ belongs to an infinite family of A_k 's.

This lemma was proved by A. P. Calderón. See Zygmund [5], Vol. II, p. 165.

LEMMA 2. Let \mathscr{B} be a differentiation basis in \mathbb{R}^n . Then the following are equivalent:

- (1) \mathscr{B} differentiates integrals of functions $f \in \varphi(L)$;
- (2) for each $\lambda > 0$, for each decreasing sequence of positive real numbers $\{b_k\}_{k \in \mathbb{N}}$ such that $\lim_{k \to \infty} b_k = 0$ and for each decreasing sequence of positive functions with compact support $\{f_k\}_{k \in \mathbb{N}} \subset \varphi(L)$ such that $\lim_{k \to \infty} \int \varphi(f_k) dx = 0$, we have

$$\lim_{k\to\infty} |\{x\in \mathbf{R}^n\colon M_{b_k}f_k(x)>\lambda\}| = 0.$$

See Peral [3] for the proof of this lemma.

In the theorem the results of Guzmán–Welland [2] and Rubio [4], are generalized to $\varphi(L)$ classes and to translation invariant basis. The techniques used, are also different.

THEOREM. Let $\mathscr B$ be a B-F translation invariant differentiation basis in $\mathbb R^n$. Then the following are equivalent:

- (I) \mathscr{B} differentiates integrals of functions $f \in \varphi(L)$;
- (II) there are constants c > 0 and r > 0 such that, for every $\lambda > 0$ and every $f \in \varphi(L)$, we have

$$(2.1) |\{x \in \mathbf{R}^n \colon M_r f(x) > \lambda\}| \leqslant c \int \varphi\left(\frac{\alpha_n |f|}{\lambda}\right) dx,$$

where a_n is a constant which depends only on the dimension n.

In comparison with the case of $\varphi(u) = u^p$, we say that M_r is of weak type φ , if (II) is satisfied.

The above theorem gives, in a sense, the best result (see Peral [3]). We have also the following corollaries.

COROLLARY 1. Under the hypothesis of the theorem, if we also assume $\varphi(u) = u^p$, then we get the differentiation of integrals of functions in $L^p(\mathbf{R}^n)$ to be equivalent to the truncated maximal operator so that it is of weak type (p, p).

COROLLARY 2. If \mathscr{B} is also homothecy invariant, then \mathscr{B} differentiates integrals of functions $f \in \varphi(L)$ if and only if there is a c > 0 such that, for each $\lambda > 0$ and each $f \in \varphi(L)$,

$$|\{x \in \mathbf{R}^n \colon Mf(x) > \lambda\}| \leqslant c \int \varphi\left(\frac{a_n|f|}{\lambda}\right).$$

This corollary is essentially Rubio's result in [4].

Proof of the main theorem. (I) \Rightarrow (II).

First step. First of all we prove the theorem for functions $f \in \varphi(L)$ with support on a fixed cube $Q \subset \mathbb{R}^n$.

Assume that the inequality (2.1) is not true; then, for each r>0 each c>0, there exists $\lambda>0$ and $f\in\varphi\left(L(Q)\right),\,f\geqslant0$, such that

$$|\{w \in \mathbb{R}^n \colon M_r f(w) > \lambda\}| > c \int \varphi\left(\frac{|f|}{\lambda}\right) dx$$

Let $\{r_k\}_{k\in\mathbb{N}}$ be a decreasing sequence of positive real numbers which converges to zero, and let $\{c_k\}$ be another sequence of positive real numbers such that

$$\sum_{k=1}^{\infty} c_k^{-1} < \infty.$$

Consider now the corresponding sequences $\{\lambda_k\}_{k\in\mathbb{N}}$ and $\{f_k^*\}_{k\in\mathbb{N}}\in\varphi(L(Q)),$ $f_k^*\geqslant 0$, which verify for every fixed k:

$$|\{x \in \mathbf{R}^n : M_{r_k} f_k(x) > 1\}| \geqslant c_k \int \varphi(f_k) dx$$

where $f_k(x) = \lambda_k^{-1} f_k^*(x)$.

Let $E_k = \{x \in \mathbb{R}^n : M_{r_k} f_k(x) > 1\}$. Then, for every $k, |E_k| > 0$ and

$$E_k \subset A = \{x \in \mathbf{R}^n \colon d(x, Q) \leqslant 2r_k\}.$$

Let a, be a positive integer such that

$$|A| \leqslant a_{\nu} |E_{\nu}| \leqslant 2 |A|.$$

Then

94

$$\sum_{k=1}^{\infty} a_k |E_k| = \infty.$$

Let $\{E_k^i\}_{k\in\mathbb{N}}$ (where $E_k^i=E_k$), $i=1,2,\ldots,a_k$, which satisfies the hypothesis of Lemma 1. Then there exists the sequence $\{x_k^i\}_{k\in\mathbb{N}}, i=1,\ldots,a_k$ such that almost every point of Q belongs to an infinite number of sets of the family $\{E_k(x_k^i)\}_{k\in\mathbb{N}}$, where $E_k(x_k^i)=x_k^i+E_k^i, i=1,\ldots,a_k$.

Let $f_k^i(x) = f_k(x - x_k^i), k \in \mathbb{N}, i = i, ..., a_k$; then

$$\sum_{k=1}^{\infty} \sum_{i=1}^{a_k} \int \varphi\left(f_k^i(x)\right) dx \leqslant \sum_{k=1}^{\infty} \frac{a_k \left|E_k\right|}{c_k} \leqslant 2 \left|A\right| \sum_{k=1}^{\infty} c_k^{-1} < \, \infty \, .$$

Define

$$h_k(x) = \sup_{\substack{j > k \\ i=1,\dots,a_j}} f_j^i(x), \quad k \in \mathbb{N}.$$

Then it is obvious, from the above, that $h_k \in \varphi(L)$ and that $\{h_k\}_{k \in N}$ is a decreasing sequence which verifies $\lim \int \varphi(h_k(x)) dx = 0$.

But, on the other hand,

$$\begin{split} \{x\colon\ M_{r_k}h_k(x)>1\} &= \bigcup_{j>k} \left(\bigcup_{i=1}^{a_j} \{x\colon\ M_{r_k}f^i_j(x)>1\}\right) \\ &= \bigcup_{j>k} \left(\bigcup_{i=1}^{a_j} E_j(x^i_j)\right) = Q-N_k, \end{split}$$

where $|N_k| = 0$, for all $k \epsilon N$.

Then

$$\lim_{k\to\infty} |\{x\colon\, M_{r_k}h_k(x)>1\}|>|Q|\,\neq\,0\,,$$

but this is a contradiction, according to Lemma 2. This proves the first step.

Second step. If we consider a cube Q of \mathbb{R}^n and the constants r_Q and c_Q of the first step, both constants are valid for each cube of the same size as Q, because the basis is translation invariant.

Let l be the side of Q, and consider

$$r < \frac{1}{2} \min \{r_0, l\}$$

Let us fix the cube Q of side length l with one vertix on the origin and the others with nonnegative coordinates. Let $\{Q_i\}_{i=1,\ldots,2^n}$ be the cubes obtained from Q by the translations $l\vec{n}$, where n is a vector with coordinates that take only the values zero or one. Let Z^n be the integer lattice.

For every $i = 1, 2, ..., 2^n$ and every $\vec{m} \in \mathbb{Z}^n$, let us consider

$$Q_{i\overline{m}} = 2l\overline{m} + Q_{i}$$

and

$$A_i = \bigcup_{\overline{m} \in \mathbb{Z}^n} Q_{i\overline{m}}, \quad i = 1, 2, \dots, 2^n.$$

Then

$$\bigcup_{i=1}^n A_i = \mathbf{R}^n, \quad ext{and} \quad |A_i \cup A_j| = 0 ext{ if } i
eq j.$$

The operator M_r acts independently over each cube of A_i , because 2r < 1. Let $f \in \varphi(L(\mathbf{R}^n), f \geqslant 0$, then we define $f_{i\overline{m}} = f \cdot \chi_{Q_{i\overline{m}}} (\chi_{Q_{i\overline{m}}}$ characteristic function of $Q_{i\overline{m}}$) and $f_i = \sum_{m > r} f_{i\overline{m}}$. It is clear that

$$f = \sum_{i=1}^{2^n} f_i.$$

From the first step we have

$$|\{x\colon \ M_r f_{i\overline{m}}(x)>\lambda\}|\leqslant c_Q\int\limits_{Q_{i\overline{m}}} \varphi\left(\frac{f_{i\overline{m}}}{\lambda}\right)dx$$

for $\lambda > 0$; and this implies

$$|\{x\colon\, M_rf_i(x)>\lambda\}|\,=\,\sum_{\overline{m}\in\mathcal{D}^n}|\{x\colon\, M_rf_{i\overline{m}}>\lambda\}|\leqslant c_Q\int\,\varphi\left(\frac{f_i}{\lambda}\right)\,ds\,.$$

Then

$$|\{x: M_r f(x) > \lambda\}| \leqslant c_Q \int \varphi\left(\frac{2^n f}{\lambda}\right) dx.$$

Note that for functions in $\varphi(L)$, the constant α_n is 2^{n+1} . (II) \Rightarrow (I). It is a trivial consequence of Lemma 2.

Acknowledgement. I wish to thank Professor M. de Guzmán for his suggestions and very helpful comments that made possible the preparation of this paper.

References

- M. de Guzmán, Differentiation of integrals in Rⁿ, Lecture Notes 481, Springer-Verlag, 1975.
- [2] M. de Guzmán and G. Welland, On the differentiation of integrals, Rev, Univ. Mat. Argentina 25 (1971), pp. 253-276.
- [3] I. Peral, Nuevos Métodos en Diferenciación, Tesis Doctoral Univ. Complutense, Serie A 232 (1975).
- [4] B. Rubio, Weak continuity of the Hardy-Littlewood maximal operator and derivation of integrals (to appear).
- [5] A. Zygmund, Trigonometric series, Cambridge University Press, Cambridge 1959.

DEPARTAMENTO DE ECUACIONES FUNCTIONALES FACULTAD DE CIENCIAS MATHEMÁTICAS UNIVERSIDAD COMPLUTENSE, C. U. MADRID-3, SPAIN

Received November 19, 1975

(1093)

Antisymmetry of subalgebras of C*-algebras

by

WACŁAW SZYMAŃSKI (Cracow)

Abstract. In the present paper we introduce a generalization of antisymmetric sets, known in the function algebras theory, to a noncommutative case. We prove a de Branges-type theorem and a generalization of the Bishop decomposition theorem. As applications we prove a version of the Stone-Weierstrass theorem and an approximation-type result in connection with the Bishop decomposition proved earlier.

1. Preliminaries. L(H) stands for the C^* -algebra of all linear, bounded operators in a complex Hilbert space H. A^* -homomorphism π of a C^* -algebra A into $L(H_\pi)$ is called a representation of A, the dimension of H_π is called the dimension of π . Characters of a C^* -algebra A are one-dimensional representations of A. A representation π of a C^* -algebra A is called irreducible if the algebra $\pi(A)$ has no non-trivial invariant subspace in $L(H_\pi)$. If A has the unit e, we will assume always that, for every representation π of A, $\pi(e) = I_\pi$ — the identity operator in H_π .

If \mathcal{S} is a subset of L(H) we denote by $C^*(\mathcal{S})$ the C^* -algebra generated by \mathcal{S} and the identity. If $T \in L(H)$, we write $C^*(T)$ for $C^*(\{T\})$. By the spectrum \hat{A} of a C^* -algebra A we mean the set of unitary equivalence classes of all irreducible representations of A equipped with the hull-kernel topology. For a subset K of \hat{A} we write $J(K) = \bigcap \{\ker \varrho, \varrho \in K\}$. If J is a closed, two-sided ideal in A, then by the hull of J we mean the set hull (J) consisting of all $\pi \in \hat{A}$ such that $J \subset \ker \pi$. It follows from [2], 2.9.7 (ii), that $J = J\left(\operatorname{hull}(J)\right)$. The closure \overline{K} of a subset K of \hat{A} in that topology is equal to $\operatorname{hull}(J(K))$, by the definition.

If two C^* -algebras are *-isomorphic, then their spectra are homeomorphic. Namely, if $\varphi \colon A_1 \to A_2$ is a *-isomorphism of the C^* -algebras A_1, A_2 , then the mapping $\hat{\varphi} \colon \hat{A}_1 \to \hat{A}_2$ given by the formula $\hat{\varphi} \colon \varrho \to \varrho \circ \varphi^{-1}$ is the homeomorphism induced by φ . For basic facts concerning C^* -algebras we refer to [2].

2. Sets of antisymmetry. To begin with, we recall two results due to de Branges, Bishop and Glicksberg [3].

Let X be a compact Hausdorff space and let $B \subset C(X)$ be a function algebra. B^\perp denotes the set of all finite, complex (regular, Borel) measures