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STUDIA. MATHEMATICA, T. LXI. (1977)

Integrability of seminorms, the 0-1 law and the affine kernel for
product measures

by
J. HOFFMANN-JORGENSEN (Aarhus, Denmark)

Abstract. Let (X,) be a sequence of random variables taking values in a measur-
able linear space B, and let ¢ be a quasi-convex subadditive function on E®. The
first part of the paper deals with the problem of finding conditions, which assures
that E(e*™) is finite for some positive & where M = supg(Xy, ..., Xy, 0,0,...).

n
In the second and third part of the paper we take B = R, and we show that if X,
has no mass points, then every linear subspace of R™has probability 0 or 1. Finally,
we study the affine kernel of (X,,), i.e. the intersection of all affine subspaces of prob-
ability 1, and we give an analytic expression for this.

1. Totroduetion. If 4 is a Gaussian measure on a locally convex
space, there are three main results which have proved to be useful.

The first iy the result of Fernique stating that, if ¢ is a measurable
a.e. finite seminorm, then E(exp ep?)) < oo where E denotes expectation
with respect to u. A similar result has been proved by O. Borel ([1]) for
certain other classes of measures. In Section 2 of this paper we shall prove

[+ n .
some results in this direction when 4 is a produet measure on ( [l]En, @;Bn)

and (#,, B,) is a measurable linear space. Here we define a measurable

linear space, (H, B), to be a linear space. B equipped with a o-algebra B
satisfying

(1.1) (#, y)—>o+y is measurable: (Ex B, BRB)~(E, B),
(1.2) {4, y)—~Ay is measurable: (E’ xR, B®B(R))—>(E, B).

The .methods and the results of that section are closely related to the
regults of Marcus and Jain in [9] and to the results in [2] and [3].

The second result is the 0-1 law by Kallianpur in [5]. C. Borel has
in [1] shown that the same result holds for certain other classes of measure.
In Section 3 we ghow that, if 4 is a produet measure on R* with non-
atomic factors, then u(4) =0 or 1 for all u-meagurable affine subsets.

The third result on Gaussian measures, which has proved to.be a very
powerful tool, is the reproducing kernel Hilbert space which, in case u
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has mean 0, can be characterized as the intersection of all y-measurable
linear subsets of measure 1. In Section 4 we ghall show that, if 4 is a prod-
uct measure on R with non-degenerated factors, then R (the set of
sequences with atmost finitely many non-zero coordinates) is contained
in the intersection of all u-measurable linear sets with measure 1. We
shall also give an analytic expression for this intersection under some
restrictions on u. ‘

2. Integrability of quasi-convex functions. Let (%, B,) be a measur-
ablelinear space, and (X,,) a sequence of independent random vectors so that
E" takes ity values in B, for all n > 1. Let ¢ be & map from B, into
R, = [0, co], where

By=][]B, end B,=@®B,
n=1 ) n=]1
-and suppose - that
(2.1) @ i8 B -measurable,
(2.2) e(ko+1y) < max{p(), p(y ¥} Vm, yel,,
(2:3) Pty <¢@) +¢y) Vao,yel,,

that is, ¢ is a measurable quasi-convex subadditive function on By, We
shall say that @ is symmetric if

(2.4) p@) =g(—2) V.
Let us define the random variables
N; =¢(0,...,0,X,0,.,.), N= sup Ny,
i
M,=¢(X1,...,X,.,O,...), M = sup My;
we shall consider their tail probabilities
(%) =P(Nj>t)1 G (t) =P<N>t):
Fi(t)) =P(M;>1), F@)=P(M>1.

We shall use these notations throughout this section.
LEvma 2.1. Suppose that X, is symmetric Jor all m > 1; then we have

(2.3.1y P(max M, > 1)

I<ji<n

P(M > 1)

<2P(M,>1) Vizo0,

(2.1.2) £ 2lmintP (M, >1) Vizo.
00
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Proof. The proof is fairly standard and actually only requires quasi-
convexity of ¢. Let

T =inf{l<j<n| M;> 1) (inf (@) = o0),
Y, =(Xy,...,%,,0,...) for n=1,
Yy =(Xyy o0y Xy —Xjgy ey —X,,,0,..0) form=j>0;
then ¥; = }Y,-+}Y,, and so
M; = ¢(¥,) < max{p(¥,), ¢(¥py)}-

It T = §, then M, >, and so either p(¥,) > or ¢(¥,,) > t, however, ¥,
and Y,; are equidistributed and so

P(T = j)<P(T =j,p(¥,) > ) +P(T
= 2P(T =j, M, > 1).

=1 0(Ta) > 1)

Hence we have

P(max M; > t)
1<jsn

=P(T < n) <2P(M,>1).

Now let o > liminf#, (¢); then there exist integers n; < m,<<... 80

#i—+00
that I, ;( ) < @ for all § > 1. From the first part of the lemma we know that

P(max M,>t) <2 Vjx=1
1<u<ny
and since max M, increases to M, we have P(M > t) < 2a, and (2.1.2)

1<vny
follows.

LeMMA 2.2. Let (B, B) be measurable linear space and y a B-measw-

able fumction from E inio R 4y S0 that v is symmetric quasi-convex and
subadditive. If Z is an B-valued random vector and P(p(Z)< a) =% for
some az=0, then

(2.2.1) P(yp(2*) > 2t) < 2P(p(Z) >1) Vix0,
(2.2.2) P(y(2)>1+a) <2P(p(Z")>1) Viz0,

where Z* is a symmetrization of Z.
Proof. (2.2.1) is obvious. If u is the distribution law of Z, thexi

frwz 2) > 1)u fP > 1) u(dw),

y> % and 5o there exists med

IR

P(z/J(Z*) >t

where A = {w e B| y(») < a}. Then u(4

for all # > 0 so that
P(p(Z—m) > 1) < 2P(p(Z") > 1)

and sinee y(Z) < p(Z— )+ a, (2.2.2) follows.
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TeEOREM 2.3. Suppose that X, is symmetric for all n=1; then we
have .
(2.3.1) F(2+5) <2G(s)+4F ()2 Vi, >0

If we drop the assumption about symmetry of X,, but assume that ¢
8 symmetric, then we have

P (4i+s-+a) = 8G(s) +32.F(1)?

where a > 0 is determined by P(M < a) = 4.
Proof. Suppose first that (X,) is symmetric and define

T =inf{n>1] M,

(2.3.2) Vs, 630

> 1}
then M > 2{-+s implies that Tg % and so

F,(2tFs) = ZP = j, M}, > 2(+s).
Now let Z; = (0, ...,0, X, 0, ...) and ¥, = (X, ..., X, 0,...); then
we 1ave o
Yy = (Yp— X))+ ¥ya+4;
and 5o
My, < p(Xp— X))+ M, +N.

Hence if T —],N

s and My > 245, then M;_, s
and ‘so we have

<t and (Y, — X)) > 1

P(T =j, M;>2+5)<P(T =j, N>s)+P(T
=PI =j, N>+P(T

=], o(¥,— ;) > 1)
=) Plp(Xp— X)) >1

..since {T' =j} and ¥,— ¥, are independent. Now we observe that by
Lemma 2.1 we have

P(‘P(Yln'"

Hence we find

Y) > 1) < 2P (p(Xy) > 1) < 2P (M > ).

&
Fy(2t+5) < D P(T

J=1

=j, N >s)+2 ZP

i=1

=) P(M > 1) < F(s)-+20(1)*
and from Lemma 2.1, we find

F(2+s)

<2 Umint Fy(20-+5) < 261s) -+ 42 (1)?

which proves (2.3.1).
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Now suppose that ¢ is symmetric, and let (X7) be a symmetrization.
Define M* and N* in the obvious way and let F*, respectively, G* be
their tail probabilities; then by Lemma 2.2 and (2.3.1) we find

P4t 25 + a) < 2F* (424 25) < 467 (25) -+ 8F™* (21)? < 8G (s) + 32F ().

THEROREM 2.4. If (X,) is symmelric, M, < oo a.s. for n =1, and {M,}
stochastically bounded, then M < oo a.8.

If @ is symmetric, M, << co a.s. for all n >
ally bounded, then M << oo a.8.

Proof. The first case is an immediate consequence of Lemma 2.1.
8o suppose that ¢ is symmetric, and let (X;) be a symmetrization of (X,,).
Let M* and M* be detined in the obvious way. Then (2.2.2) shows thatb
{M;} is stochastically bounded, and so M* < oo a.5. Hence we find

[P (gs(X ~2) < o) u(da),
B

1, and {M,} is stochastic-

where p is the distribution of X, and

@) = SUp @ @y, vy By 0, ...) Vo = (1)) € B
n

So for some « € B, we have py (X —2) < 00 2.8, Liet 4, = (B1; --vy Bus 05 L)

and ¥, = (Xy,..., X,,0,...), then we have

(P(yn) < ¢(Yn’"yn)+qj( n) < 970(X_w)+Mn' ;

Now we choose a 3> 0 so that P(M,, < ) >} and P(py(X —0) <
for each n > 1 we have

(M, < a}n{po(X —2) <
2a for all n > 1. That is
M

a) > %, then’

a} #0@
and 80 (y,) <

= supcp(LYn)gzpo(X——m)+2a< oo a.8.

and the theorem is proved
THroREM 2.5, Suppose that M < oo a.8., Mvd let g be an inereasing
function from [t,, cc) into R, so that

(2.5.1) limg(t) =
' {00
(2.5.2) G(t) < Kexp(—glet)) Vi1,

for some constants K >0 and & > 0. Let ¢ > 1 and put A = (loge)/(log2),
andy = A% ‘

(A) If g satisfies:
(2.5.3) ‘

— 00,

lim (g (ef) —2¢(t)) =

t—>c0
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then there exisis K >0, 6 > 0 and i, > t, so that Then we have
n~—1
(2.5.4) F() < Eiexp(—g(8t) Vizt = if e>2, (iv) 7, < K 2"+2" 3 2770, Vn > 0,
5. < —g (8t} Vizt, 2 =0 ~ -
@un , Fo<Eeal-e0n) Ve de<s (5) Ty () < 18 Go(0 ), Golda_al® -Gl B}
(2.5.6) P < KIGXP(~9(T<EZ—)) Yizt, if c=2. Case (A), ¢ # 2. Now we choose g, > to from (2.5.3) so that

g(ct) < 2g(t) —3log (32K) Vt/Ze oy,

B . satisfi
(P) If g: oatiefies then. g,(ct) < 2g,(t) for all ¢> ¢,. Then we put o, = "0, for » > 0 and
(2.8.7) glet)=29(8) Vizt, choose T, = g, 50 that log F'(7,) < —1g,(0y). Now since 27 ¢,(o;) decreases

then there ewist K, > 0, 8> 0 and 1, > 1, so that in j we have

. —f 1 e
(2.5.8) F(t)< Kqexp(—6) Vizt, if e<2, Golo)" ™7 < exp (=27 gy(0y)) < exp(—go(05))
(2.5.9) Pty < Kyexp(— &) Vimt, if 0>2, for all 0 <j<n—1, and since g,(0,_;) < 2" gy(a,), We have
(2.5.10) P(t) < Kyexp ("*“M ) Vi>i, ifo=2 To(m)" < exp(—2"" go(0)) < exp(—o(on-1))-
Dl logt) 77 ) So by (v) we find

() If g satisfies . Fy(m,) < exp(—go(c" o))  Vn=>0.

(2.5.11) f gt At < oo, ‘ And from (iv) we find
to n—1
L 2"K, 420 Y<K, d* Vazo0

then there exist Ky > 0 and 6 > 0 so that S at Uoj..zol Gor<%u -
2.5.12) Py < Kyexp(—6t) Vixt,. ’ where d = max{2, c}. .
( . . (t) < Kyexp( ) = Now let t, = K,, and ¢>1; then there exigts an integer n>>0 so

Proof. Let (X,) be a symmetrization of (X,) and let M* and N* | that K,d" < t < K,d***, and so

be defined in the obvious way. Let F*(f) =P(M*>1) and G*(8)
=P(N*>1), then we have _
F*(20+5) < 267 (s) FAF* (1 Vi,630,
G (25) < 2G(s), .
. F(t+a) < 27% (), where a = ;760 >0, and 5o
where a > 0 is determined by P(M < a)> . Now let ) F(t) < 8Fo(1) < 8exp{—g.,(at7)) = 256 -Kexp(—g(éty))

= i A) ¢ #2.
Fy(t) = 8F*(t—a G (1) = 892G (2t where § = }esa. This proves cage ( ‘
® b G @), Oase (A), 0 = 2. g, and 7, is chosen a3 before and we find that

Fy(t) < Fo(v,) < exp ( — (6" 0y))
However, ¢ = d’, where y = min{l, 1}, and so

c”_l 0, = 2 (13 d'y(n+1) = at”

then we have .
(i) Fy(2t+28+3a) < $Gy(s) + 1Fy (1) < max {Gy (), Fy (1)%} Ty () < €XD (—0(0a-)) -
(i) F(2) < 8, (1), However, in this case we' have
(1) Go(t) < exp(—go(t) Vi1, Where g,(t) = g(}et) —log (32K). < 2K, F o2 < n2"K, Va1

Now suppose that o, (n > 0) and <, is given; thqn we define Now lot 1, = 2K, and let ¢3>f; then there exists m>=1 so that
A = } .

n—1 o
e 22K, <t << (n-41)2"H Ky, then
T, = 2%, 4 oM I~1(9g, +3a) = 27, _, 42 3a. PR . -
0 g; (20 ) -1 20y, 4 3a _E’O(Z)QF(T")QGXP(“QO(ZH 10,0)')'
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Now we observe that

P

< Bn+1)2"1 K,
logt

(n+1)+log(n—+1)-+logK,
it § = K;'27% ¢, Hence, '

< ﬁ2"+1K3 — 2n——10,0

Bty < 8F,(t) < 8exp | — g, (L1 )| = 256- —ol0
(?) o(?) OXP( go(logt)) 256 K@XP( g(log‘t ’
where § = }ef. ‘

Case (B). In thls, case we chooge 0, = ¢, and 7, 80 that. log P (z,)
< 190 (t). Now gy(et) > = 2g,(4) for all 14 by (2.5.7) and the definition
of %, hence we have that 2~ 9o (o) increases with j, and so

Gy (oy it g erp( —2"i~g, (0'0)) <
< Fy(mo)™ < exp(~ 2" gy (ty)).
From (v) we find that

exp ( - 2n~1‘go (to)) y

o(T

and as in case (A) we find

< exp (=2 g0(t)

o<y,

(E,
7, < n2" K, it ¢ =2,
MK, it o>2

S b
Cage (B) now follows by an argument sumla.r to the prooi of case (A).’
Case (C). Let o, be defined by )
=1'1]f{t>tol‘go(t)QZ"'go(to)} - Vn> 0;
then go(o,) = 2"g,(%,), and we have Coee ‘ '

Go(g-j)aﬂ“.'f—-l < exp( 2ﬂ—f 1 ) = pr( 2%»—- % (to))

—46o(%;), then we havé by (v}
exp ( fzwr—lgo(to));- '
=%0;277, then we have

%G
f 90 (%)

%1

So if 7, is chosen so that log F'(7,) <

C Rym)<
Now let bj = ngo(o'j)—l

Trat 2 (05— 05_y) go(op) "

]
Yoot D ay(3)-
g=1

—3b;1,

b < %bj»1+aj< (%

icm®

Integrability of seminorms, 0-1 law, and affine kernel 145

So- using (2.5.11) .we find that

T < K2 42" nZ‘lz-Jaj <K;2'+2"(q, +2 k“b)

F=0 j=1

o ]
+ ) Y3

j==1i =1

<K 242" (o4,
= 2“(1{1+ by -+ 0p+ ™ 12%)
4=1

< 2By byt ot f gt dt) = K,2"
iy : i

from which (2.5.11) follows as above.
ExAMPLES. (3) G(t) < K. f(H)™", where f satisfies

(2.4) f is increasing on [y, co) and limf(?) =
. . . 00
(2.5) - fet < Mf@t) Vizt,, for some M >0,

then g(f) == logf(t) savisties (2.5.3) for all ¢ > 1, and so we find
(2.6) F(t) < Eof()y™. : : -

“Note that f(1) = 1? satisties (2.4) and (2.5) for all p > 0.’
A simple computation, using intégration by parts, shows that if f
satisfios (2.4) and (2.5), then we have -

(2.1) Ef(N) < eo Ef(M |
Klexp(—sl#”) where p > 0, then g() = _ 1 sa,twﬁes (2 5.7)

implies )< oo.

() Gy <
for ¢ = 247, hence we have
(2.8) T(t) < Kyoxp(— egf) i p>1,
(2.9) F(t) < Kyoxp(—el”) i op<l1,
(2.10) F(i) < Kyoxp(—etlogt)™) i p=1.
(e) G(t) = ]mep(——& i(logt)?) for some p >1, then g(t) = t(logt)®
sa‘msﬁoﬁ (2.5.11), and go ‘we have
(2.11) (1) < Kyexp(—et).

3. The zero-one law for product measures. Let u, be probability
meagure on (R, B), and let
el 00 o
=[IR7 Bm=®B7 M=[1Mn
ﬂltfl n=1

Puma L

A sot A < R™ is called & tail event if A satisfies
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(3.1) IfxeR™ and m; =y, for all j=n, for some y e A and some n > 1
then X e A.

If Ry is the sefi of # = (;) € R™ with almost finitely many non-zero coordi-
nates, then it ig easily checked that (3.1) is equivalent to

t

(3.2) Ry+AcA.

It is well know that u(4) is either 0 or 1 if 4 is a u-measurable tail
event. We shall in this section show that the 0-1 law also holds for linear
subspaces of R™.

Trmorem 3.1. Suppose that u, i3 non-atomic for all n> 1, and let I
be a u-measurable linear subset of R®. Then either u(L) = 0 or w(l) =1
and, in the latter case we have R < L.

Proof. Since x is a Radon measure on R®, we can find a g-compact
linear subset L, < L, so that u(Lo) = u(L), 80 we may as well assume
that L itgelf iy o-compact.

Now suppose that (L) > 0, and that R{* & L. Then for some > 1
we have ¢, ¢ L, where ¢, is the nth unit vector in R®, Let

F = LRy

and let & be a linear complement to F in Ry, so that e, € G. Then @ iy
o-compact (note that all linear subsets of RP are o-compact), and so
L, = L@ is ¢-compact. Moreover, we have

L2 F+@ =RY, p(L) > pu(L)>0.

Since L, is linear, we find that Ijl is a tail event, and so u(L,) = 1.
Now we observe that LnG = (0), and so

(®y )wty

is & continuous bijection from L x & to L@, hence, by Theorem IIi.8.4
in [4], we see that there exist linear Borel maps p and ¢ so that

p: L+6G~L, g¢: L+G-@,
@ =p@)+q® Veel,.

, Let m, be the projection of R™ onto the nth coordinate, and put

Po = 0P and g, = m,0q. Then p, and % are Borel measurable linear
functionals which are defined p#-a.e., and we have

%(w) =0
% (En) 1'7

for ze L,

?u(gn) =0,
Hence we have

icm
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Do(®) = Do (@1y -5 Byy, 0, Bpy1yen) Vo= (%) € Ly

50 py and m, are independent and p,-+- ¢, = =, a.s. Hence if » is the distri-~
bution law of p,, we have .

WO <plgo =0) =upy =m)
J wlm =aplan) = | p,({0})v(dw) =0

00 —0a

since u, is non-atomie. So we have derived a contradiction, and we must
have that Ry < L whenever (L) > 0. However, sinee I is linear, we have
that Ry < L implies that L is a tail event and so p(L) = 1.

4. The affine kemel of a product measure. Let ¢ = [] p, be a product
fm]l
probability measure on R*, then the affine kernel of u, A (u), is defined
by
A(p) = (M {4| A p-measurable affine set with u(4) = 1}.
The meagurable affine subsets of R™ with full measure are often too badly

behaved, and we shall mainly restriet ourselves to consider only those
affine sets, .4 = R™ which satisfy

(41) Ve>0 3K compact comvem, so that K = A and u(K)>1l—e.

An affine space satisfying (4.1) will be called a w-Lusin affine space, and
we define the Lusin affine kernel of u, Az (u), by

Ayp(u) = (M{4] A is a p-Lusin affine space}.

- Let A(u) denote the set of M-méa.sura,ble linear funeﬁions, f: R®—R.
Again these functions are often too badly behaved, and we shall call
fed(u) a p-Lusin functional, if f satisfies
(4.2) Ve 03K compact comen, so that u(K) > 1—¢ and f|K is conti-
NUOUS . .
And wo denote the set of u-Lusin functionals by 4 (u). The ipace_/l(y)
and Ay, () may be considered as subspaces of L°(u), where L' (u) is the
space of all y-measurable functions, X, equipped with the metric .

X = [ (ol du
o .
where p(@) = @/(1-+ ). It is well known (s¢e Theorem 1 in [10]) thab

(4.3)  A(u) and Ay (u) are closed subspaces of L’ (u) and Az () = CL(RF)
(closure in L®(u)), where RY is identified with the dual of R®.

4 — Studia Mathematica LXI.2
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The main results of this section state under certain conditions on u
that every f € A, (u) admit a representation of the form

x) = Zajmj,

i=1
where a = (a;) belongs to the set:

o) = |

o0
d
a,-)lz a;@; converges ,u-a,.e.}
VI .

and that"the Lusin affine kernel A4, (u), is equal to the séquence dual,
C*(u), of O(p), that is :

O*(u) = {(bj) e R™| Z'ajb, converges Ya eO( )}.

The conchtwn, which assures the validity of Lhese two results, i that
0 € 4;(u), and we shall say that u is aentered at 0, if 0 e 4, (1).
If a0 ( ), then we defme

= Jo(| 3o

=1
A shght modification of the proof of Theorem 5.2 in [2] shows that,
if u, is non- degenera,ted for all n > 1, then -
(44)  (O(w)

TuROREM . 4.1. If u, is non-degenerated for. all n>1, and A is a u-
measuradle affine set with u(A) =1, then A +RP < A.

Proof. Lets* be the symmetrization of 4. Then

#*(B) = [ w(B+w)u(dn)

R

‘1) 45 a Préchet space (in general non-locally convex).

VBeB™,

and, in particular, we have

prd—a) = [ p(A—ay-+o)p(ds) = [ u(A—2y-+0)u(da).

R A
Soif wye 4, then A —x)+2 = 4 for all @ € A, and so
w4 —xy) = Vo, ed.

Let L = A—a,, where u, A, then L is a linear set and u* (L) = 1.
Let X be the set of linear transforma,tlom, o: B*—R>, of the form

o = (e,x,) for @ = (z,)eR™
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where ¢, = 4-1and ¢, = 1for all # > N for some ¥ >> 1. Then X is a count-

able group and

4*(0(B)) = p*(B) VBeB® VoelX.
So if L, == ﬂo‘( ), then wu*(L;) =1. Let n>
degenerated We can find y'e L, so that y, # 0. Now let o be defined by

1, now since u, is non-

O = (@y, ..vy Bygy — By Bpirs oee)s

then o € X and since o(L,) ==
is linear, we have

L,, we have that oy e L,. Moreover, since L,

e = (2y n)_l(?/"*ﬂy) e Ly,

- where e, is the nth unit vector. Hence we have

Ry cL,cL - A-a,

from which we find that RD +4 c A.
THEOREM 4.2. Suppose ‘that Uy, 18 mon- degenemted for a,ll "= 1 and
let u* be the symmetrization of u, that is

w(B) = [ p(B+a)p(dn)

R>®

Y, c A

VB eB"".

Then u is centered at 0 if and only if C(u) = C(u*).

Proof. Suppose that u is centered at 0, and let @ € C'(u*). Let

L = {(#;) e R°| > a;x; converges};
i1
then I is a linear Borel subset of R® with 4* (L) = 1, that is
J #(L @) (d)

R
{z| w(L-+z) =1}. Now let b = (b)) e M,

1 =u"(L) =

and 80 w(M) =1, where M =
then

L4b = {(z;) e R®| 3 a;(w;—b;) converges),
Je=1

w(L4-b) =1.

Lot ¢ > 0 be given, then by Egoroff’s theorem there exists B e B>
and n, < Ny < ... 80 that

'

Vazu, Vm, k=1 VseB,

-k
ay(z—by) | < 27"

J=n+41

w(B)>1—e.
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Now let
C= ﬂ ﬂ ﬂ{wl 1 :L a’](wj—bj)lgz—'k};

k=1 n=ng m=1

‘then B = 0 < L+ b, and O is convex and closed. Now we choose a compact
sef D € B s0 that u(D)> 1—e¢, and put K equal to the closed convex
hull of D. Then D < K < 0 < L+, since O is convex and closed, and
4(K) > 1—e This shows that L+b is a u-Lusin affine space and so by
assumption 0 e L+b for all be M, or M < L. Hence u(M) = u(L) =1,
and & e O (u) which proves that O(u*) = O(u), the other inclusion is trivial,

Now suppose that O(u*) = U(u), then |-|, and |-|. are Fréchet
metries on O(u), so that

ol <2al, YaeO(u).

Hence the two metrics are equivalent, and so we have -
(i) Ve >0 35> 0 so that |a|,. < 6 implies |a|, < e.
Now we consider the linear operator, T: C(u)—L°(u), defined by

Ta = Zajwj,
I=1
then | Tall, < |al,, 80 T is continuous. Let ¢ > 0 be given and choose § > 0
aceording to (i), if a € O(u) and [2Za||, < d, then by Theorem 2.6 in [3],
we have

R® J=1

{ 90(12 ajmj') (do) < 31270+ < |2Tall, < &

for all n > 1. Hence (6] < 0 and so |al, < ¢, that is 2T, < 6 implies
that [a], < &. This shows that 7' is an isomorphism and T(O(,u)) is a closed
subspace of L°(u). So by (4.3) we have

(i) Az () € T(C(w).

Let A be a u-Lusin affine space, and suppose that 0 ¢ 4, then there
exists a linear functional, f, so that f(z) = 1 for # e A. Obviously, we havo
that f e Ay (u), and so by (ii) we have f = Ta for some & & ¢ (u), That is

ol .
ija] = 1 u-a.e.

=1 .
and 50 ¢ 5= 0. Let n > 1 boe chosen, so that &, # 0, then the random vari-
ables . (defined on (R%, B®, u))
‘Xn(m) = @y ¥y, :Yn ::Zujmﬂ
J#n

Al

icm
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are independent and X, + ¥, =1 a.s., but this implies that X, iy de-
generated contrary to the assumption, that u, is non-degenerated. Hence
0cd and p is centered at 0.

TEEOREM 4.3. Suppose that u is centered at 0, and u,, is %on-degeneratéd
Sfor all m > 1. Then there exists a linear functional, 2: A(u)—R, so that

(4.2.1) A(f) = lim f( 3 0, @y, By, - fora.a. z e R®;

(42.2)  (fle) €Cw) and  f() =Z(f)+2wjf(e,) 0.}
j=1
(4.2.3) Af) =0 Viedy(u);
(4.2.4) =0 if u, is symmeiric for all n>1.
Proof. Let fe A(u) and define a; = f(¢;) and
X;(0) = ajmj,‘
‘ Y,(@) = f(0,...,0, Bpiss Buyay«.-)s
= ijf ¢) = ij J@)— Yy (2),
=1 =1

for @ = (2;) e R*. Then X,,..., X, Yn are independent as random
variables on (R, B%, u) 8o if ¢, ¢, and v, denote the characteristic func-
tions of f, X, and Y,,, we have

0= v [ [0
j=1

and s0

< lim n |(pj

Hence by Corollary 2, p. 251, and Theorem b, p. 250 in [7], we find that
(f(e;)) = a e O(u*), and so by Theorem 4.2 we have a & O(x). That is,

A(f) =lm¥,

Nn->00

exists a.e., and A (f) is measurable with respect to the tail o-algebra,
that is A4, (f) is constant a.s. Hence there exists A(f) € R so that

A(f) =lim f(0, ..., 0, @y, Byygy --) DL

N0

and, clearly, 1 is linear on 4(u), and we have

flm) = Af)+ Zw,f(e,-) a.e.
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Now suppose that fe Az(u), and let

L = {w] 4\.Jasjf(e;) eonverges},

F=1 .
Iy ={we Il (o)~ Y aufle) = HP);
F=1

then an argument similar to the first part of the proof of Theorem 4.2
shows, that L, is a u-Lusin affine space and so by a;ssumptlon we have
0 eL. That is A(f) = 0.

Now suppose tha.’c Uy, 18 symmetric for all n > 1 and lot fed(u).
If we define

9 (¥) = f(») ZWJf &),
. J=1

then ¢ and —g has the same distribution law, and g = A(f) a.e. Hence
A(f) = 0.

THEOREM 4.4. Suppose that u is centered at 0, and. u, 48 non-degener-
ated for all n= 1. Then we have that C* () = A (&).

Proof. Let b e *(u) and let*.4 be a u-Lusin affine space. Then 4
is linear, since x iy centered at 0, and we can find compact convex gym-
metric sets, K,, so that

Lo Kn cd, K, +EK,<K,.,, uE,)>1-2""
Let L = U »j then L is a hnea,l space I = A and u(L) = 1. Now let

n=1

= {f| f linear: L—»R, fI K, is continuous Van},
Ifln = supIf(@)]  VfeF, '

2 27 f—gl  Vf,geF;
L =1 N .
then it is easily seen that (#, o) is a locally convex Fréchet space. More-

" over, it is clear that the g-topology is stronger than the o (¥, L)-topology
" (note that (F, L) is a dual pair).

If y ¢ K, , then there exists f e (R®)’, so that f () > 1 and |f(m)| :\ IL
forall # e K,,, thatis f € Kj,, where Kj, is the polar of K, in F'; Sinee f(y
this shows that y ¢ K2, where K7’ is tho polar of XY, in L. Henece K% c: I( -
and since the converse inclusion is obvious, we have K, = K“" Bo K,
is o(L, F")-compact and convex.

Since the g-topology is the topology of uniform convergence on each K,
we find that the p-topology is weaker than the Mackey topology: «(F, L).
Hence we have

) : (7, b) = L.
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Now let feF and define
8,f = be (&);
J=1

then 8, is a linear functional on ¥, and 8, ié continuous since ¢; e I for
all 1 by Theorem 4.1. Moreover, we have

thf 8f = ijf(e)

j=1

since (f(¢;)) € 0(u) by Theorem 4.3 and b € C*(u). But (¥, o) is a Fréchet
space and 0 S ¢ I'. So by (i) there exist @ e L with '

ijf(@ =f@) Vfel.

Now the functional f;(z _— @; for » e L belongs to F and so b; = a; for
all j>1. Hence b =wel < 4 and so C*(u) < Az (p).

Now suppose that b ¢ 0 (u), then there exists.a e 0'(u) so that D a;b,
1
diverges. Let )

L = {m e R®| 5‘1 ;T convergegi};
1

then as in the proof of Theorem 4.2 one finds that L is a u-Lusin affine
space, and since b ¢ L, we have b ¢ 4, (u), and so C*(u) =2 Az (p).

THEOREM 4.5. If u, 18 symmetric for all n > 1, then u is centered at O,
and actually we hama 0 eA(u).

Proof. Let 4 be a u-measurable affme set, then u(A4) = u(—A4),
50 if p(4) =1, then An(—A4) #@ and 50 0 € 4.

LevyMA 4.6, Let ur be the symmetrization of u,; then the following
five statements are equivalent: :

(4.6.1) da > 0, so that supsup/,an([w @, s+ al)<1;

da > 0, dm, o median for w,, so that
(4.6.2)

Sup/‘n([mn—"aﬁ mn"l'a‘]) < 15
7
(4.6.3) qu > 0, so that supun([—a,a]) < 1;
n
(4.6.4) 8, is mot a weak limit point of {un};
6.5 1ff———-—n > 0.

(4.6.5) T “ )
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¥

Remark. If {u,} satisfies one of the five statements above, we shall
say that p is totally non—degenemted Note that u is totally non-degenerated
if and only if p* is totally non-degenem‘ued Condition (4.6,3) appears
in [8] as condition (4.2).

~ Proof. From Theorem A, p. 245 in [7], we have
tnle| |- < 2 (] o] > @) < dpy (2] |o—D| > a)

if m,, is a median of u,. Hence it follows that (4.6.1), (4.6.2) and (4.6.8)
are equivalent. It is obvious that (4.6.3) implies (4.6.4), and (4.6.4) implies
(4.6.5).

Now suppose that (4.6.5) holds, then we have

. [l
b=t [

and if ¢ = b(2—b)™, then a > 0 and

my| > )

fin () > 0

b< o] ol > a) +— = P+ ul(al 7] > a)

1+

and 80 g ([—a, a]) <1—}b. Hence (4.6.5) implies (4.6.3) and the lemma

is proved.
Lemwma 4.7, Suppose that p, satisfies

(4.7.1) [ opy(@w) =0 Va,
(4.7.2) it [ |l (der) > 0,
(4.7.3) sup f |@]® () <

for some p > 1, then u is totally non-degenerated.

.Pro of. Let 1< ¢< oo be-taken so that 1/p--1/q = 1, then a glight
modification of the proof of Inequality II, p. 6, in [6], shows that

(1) P(X > AEX) > (1—A)YEX)(EX?)"%? whenever X is a non-
negative random variable with finite pth moment and 0 < A < 1.

Let X, be a random variable with distribution law u,, and let X!

1;- X, —X, be g symmetnzatlon of X,. Then by Theorem 2.6 in [3], ‘we
ave

E X, <E|X;,
E|X;[? < 2°E|X,|.

icm
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Now let o = infE|X,| and 4 = supE|X, ", then >0 and A< oo
n n
by (4.7.2) and (4.7.3), hence by (i) we have
P(|X7| > $a) > P(1X;| > }E|X;))
> 2"“(E |X:\)Q(E ]me)—qlp > 92 g8 AP

and g0 (4.6.3) is sabisfied.
TaeorREM 4.8. If u is iotally non-degenerated, them O(u) S
is the space of square-summable sequences).

Proof. We have O(u) & O(u*), where 4* is a symmetrization of u.
Tet &> 0 be chosen so that ui([—e, ¢]) <1—e Now we can find Borel
functions f, from I = [0, 1} into R so that

M (A) = pa(d)  Vax

where 2 is the Lebesgue measure on I. Let 2 = I° and P == [] , and let
’ 1

I (here U

>1 VA4 eB(R),

for o = (m,) & Q.

-Xn(w) =fn(wn)

Then X,, X,,... are independent random variables and X, has distri-
bution law u,. Since we have that
S>>
we can find a,, > 50 that Co
A(1fal > @) < e S Aol = 0)
and so there exist  Borel set 4, so that A(4,) = ¢ and
{ful > 4} < Ay € {15l > s}
Now let ,
1 if o,ed
Y,,,(CU) = . " "
! 0 if o, ¢4,
then ¥,, ¥,... are independent identically distributed random vari-

ables, so that

P(Y,=1)=¢ P(I,=0)=1—s.
Moreover, we have 0 < Y,,\an 1 Xl < 7 Xl
Now let b == (b;) € O(u *); then by ]?roposmon 2.8 in [3] we ha.ve
that

D BE(0) < o a.s.

i=1
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and $o0
o
2b}1’§< o a8,
j=1

Since b; X;~+0 a.5. and x is tofally non-degenerated, we must have that {b;}

is bounded Hence
sup B Y7 < sup B* << oo

So from Corollary 3.3 in [3] we find thdt

(Z B 73 _3213,< o0
and so b el’. Hence O(u) < O(u*) < Zz.
TerorEM 4.9. Suppose that w satisfies

(4.9.1) [ @i (da) =0 Vax1
(4.9.2) sup [ @*u, (do) < oco;

-0
then B O(u) and Ag(u) < I
Proof. Let a = (a,) elz, then

n+m nm
EJ 2 anj‘ supL‘[X |2 Z Jay[®
Jumip-1 J=n41

imel y Xa, ... are independent and X; has distribution law u;- Hence

2 a; X; converges in I* and 5o a € O(y). That is 12 < O(w)-
&

. It is easily seen that A, (u) = C* (@), and since I*
O"(p) < 1%, and so the theorem is proved.

TrmorEM 4.10.. Suppose that u savisfies

< C(u) we have

(4.10.1) [ wu(dw)y =0 Vn,
-0
o
(4.10.2) sup [ @, (d2) < oo,
e
(4.10.3) " isytomlly non-degenerated

then u-is centered at 0 and we have
(4.10:4) A(p) = *u),
(4.10.5) =C0"u) = Ay (u) = 1.

icm
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Remark. Note that under (4.10.1) and (4.10.2) we have that

(4.10.3)* ' int [ 10w, () > 0

implies (4.10.3) by Lemma 4.7.

Proof. By Theorem 4.8 and Theorem 4.10, we have O (u) =
and 8o u is centered at 0. Moreover, it is clear that

D, a9 € I )

Jual

Cu*y =0

VYo = (a;) e 1%
Hence by Theorem 4.3 we have that 4(u) < L*(u), and from Theorem 4.4
it follows that Ay (u) = 0*(u) =1

TaporEM 4.11. Let g be o non-negative fwnctwn on R, and p=>
If we have .

(4.11.1) [ apa(dm) =0 Vn,
(4.11.2) R, (15) < g(t)R,(s) Vi, sza Vnz
(4.11.3) w18 totally non-degenerated, .,
(4.11.4) j Py < o,

where R, (t) = u,(® € R| |o| >1) and a is a-positive number, then u is cen-
tered at 0, and we have

(4.11.5) ) A(u) = LP(u).
Remark. From Lemma 4.7 it follows easily (4.11.1), (4.11.2), (4.11.4)
and .
(4.11.3)* inf [ |o]p;(dw) > 0
' ~00

implies (21:.11.3), whenever p > 1. o
Proof. Lot Xy, Xy, ... be independent random variables with digtri-

butions py, pg, ... It @ € O(u), then 3 0, X; converges a.8., and 50 Sl}p o X
1
< o0 a.8, Hence by Lema 3.1 in [9] we have that

Swr

J=1

M) < 00
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for some %, > 0, moreover, since ¢ € I* by Theorem 4.8, we have that »

= inf{#,a; "} > 0, and we may assume that 1, is taken so large that {,0;" > g
]

for all j > 1. Then we have
P(sgplajle >1) <2”Rj<mf) <g(7) jg’Rf(toafl)
= - Jrml
for t > af,, and so sup la; X;| € L* by (4.11.4). Hence from Corollary 3.3
in-[3] we have that
Zang eL”(,u) Vo = (a;) € O(u).

F=1
Now we may define

lal, = 511P{f|2,%“1]# }Ip VaeO(u),

Ta = Za,w,. VaeO(y).
1

Then by Theorem 2.6 in [3] we have =~

(i) ”T“ l» ={f|§“ﬂ4(pﬂ(dw)}up = la|, Ya € O(u).

Moreover, & slight modlﬁca,tlon of the proof of Theorem 5.2 in [2}
shows that

(iii) (C(g), |-l,) is a Banach space.

Since the identity map, I: (O(m)s I1s)=(0(n), |+1,), obviously is
continuous, we have that |-|, and ||, give the same topology on (u)
by the closed graph theorem. Hence by (ii) we find that T i an isomorphism

of (C(u), |-|,) onto a closed subspace of L?(u). Then T(0(u)) is certainly
also closed in Z°(x) and by (4.3) we have

(@v) Ag(u) < T(0(u)).
Now let A be a u-Lusin affine space. If 0 ¢ A, then there exists a linear

functional, f, so that f(#) =1 for all # e 4. Then fedy(p) and so
we
can find a € C(u), such that =

3
D am =1 ae
. J=1
But the sum converges in I”(x) and p > 1, and so

1= fdu =2aj f @ py (dm) = 0.
. J=1 —00
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Hence the assumption of 0 ¢ A leads to a contradiction, and so we must
bave that u is centered at 0. Finally, (4.11.5) follows from (iv) and The-
orem 4.3. ’
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