

References

- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, I, Comm. Pure Appl. Math. 14 (1961), pp. 187-214.
- [2] S. Bochner, Group invariance of Cauchy's formula in several variables, Ann. of Math. 45 (1944), pp. 686-707.
- [3] J. Dixmier, Les algèbres d'opérateurs dans l'espace Hilbertien, 2nd ed., Gauthier-Villars, Paris 1969.
- [4] S. G. Gindikin, Analysis in homogeneous domains, Uspekhi Mat. Nauk 19 (1964), pp. 3-92 (in Russian).
- [5] A. Korányi, Holomorphic and harmonic functions on bounded symmetric domains, (C. I. M. E., Summer course on bounded homogeneous domains) Cremonese. Roma 1968.
- [6] The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. 82 (1965), pp. 332-350.
- [7] A. Korányi and E. M. Stein, H² spaces of generalized half-planes, Studia Math. 44 (1972), pp. 379-388.
- [8] S. Murakami, On automorphisms of Siegel domains, Lecture Notes in Mathematics 286, Springer, Berlin 1972.
- [9] R. D. Ogden and S. Vági, Harmonic analysis of a nilpotent group and function theory on Siegel domains, to appear.
- [10] E. M. Stein, Note on the boundary values of holomorphic functions, Ann. of Math. 82 (1965), pp. 351-353.
- [11] E. M. Stein and G. Weiss, Introduction to Fourier analysis in Euclidean spaces, Princeton University Press, Princeton 1971.
- [12] H. D. Ursell, Some methods of proving measurability, Fund. Math. 32 (1939), pp. 311-330.

Received August 20, 1975 (1059)

Integrability of seminorms, the 0-1 law and the affine kernel for product measures

by

J. HOFFMANN-JØRGENSEN (Aarhus, Denmark)

Abstract. Let (X_n) be a sequence of random variables taking values in a measurable linear space E, and let q be a quasi-convex subadditive function on E^{∞} . The first part of the paper deals with the problem of finding conditions, which assures that $E(e^{sM})$ is finite for some positive ε , where $M = \sup_{n \in \mathbb{N}} q(X_1, \ldots, X_n, 0, 0, \ldots)$.

In the second and third part of the paper we take E = R, and we show that if X_n has no mass points, then every linear subspace of \mathbf{R}^{\odot} has probability 0 or 1. Finally, we study the affine kernel of (X_n) , i.e. the intersection of all affine subspaces of probability 1, and we give an analytic expression for this.

1. Introduction. If μ is a Gaussian measure on a locally convex space, there are three main results which have proved to be useful.

The first is the result of Fernique stating that, if φ is a measurable a.e. finite seminorm, then $\mathbf{E}(\exp(\varepsilon\varphi^2)) < \infty$ where \mathbf{E} denotes expectation with respect to μ . A similar result has been proved by C. Borel ([1]) for certain other classes of measures. In Section 2 of this paper we shall prove some results in this direction when μ is a product measure on $(\prod_{1}^{\infty} E_n, \bigotimes_{1}^{\infty} B_n)$ and (E_n, B_n) is a measurable linear space. Here we define a measurable linear space, (E, B), to be a linear space E equipped with a σ -algebra E satisfying

(1.1)
$$(x, y) \rightarrow x + y$$
 is measurable: $(E \times E, \mathbf{B} \otimes \mathbf{B}) \rightarrow (E, \mathbf{B}),$

$$(1.2) \hspace{1cm} (\lambda, y) \rightarrow \lambda y \hspace{1cm} \text{is measurable: } \big(E \times \pmb{R}, \, \pmb{B} \otimes \pmb{B}(R) \big) \rightarrow (E, \, \pmb{B}).$$

The methods and the results of that section are closely related to the results of Marcus and Jain in [9] and to the results in [2] and [3].

The second result is the 0-1 law by Kallianpur in [5]. C. Borel has in [1] shown that the same result holds for certain other classes of measure. In Section 3 we show that, if μ is a product measure on \mathbf{R}^{∞} with non-atomic factors, then $\mu(A) = 0$ or 1 for all μ -measurable affine subsets.

The third result on Gaussian measures, which has proved to be a very powerful tool, is the reproducing kernel Hilbert space which, in case μ

has mean 0, can be characterized as the intersection of all μ -measurable linear subsets of measure 1. In Section 4 we shall show that, if μ is a product measure on \mathbf{R}^{∞} with non-degenerated factors, then \mathbf{R}^{∞}_0 (the set of sequences with atmost finitely many non-zero coordinates) is contained in the intersection of all μ -measurable linear sets with measure 1. We shall also give an analytic expression for this intersection under some restrictions on μ .

2. Integrability of quasi-convex functions. Let (E_n, B_n) be a measurable linear space, and (X_n) a sequence of independent random vectors so that X_n takes its values in E_n for all $n \ge 1$. Let φ be a map from E_∞ into $\overline{R}_+ = [0, \infty]$, where

$$E_{\infty} = \prod_{n=1}^{\infty} E_n$$
 and $B_{\infty} = \bigotimes_{n=1}^{\infty} B_n$

and suppose that

(2.1)
$$\varphi$$
 is \boldsymbol{B}_{∞} -measurable,

$$(2.2) \varphi(\frac{1}{2}x + \frac{1}{2}y) \leqslant \max\{\varphi(x), \varphi(y)\} \forall x, y \in E_{\infty},$$

(2.3)
$$\varphi(x+y) \leqslant \varphi(x) + \varphi(y) \quad \forall x, y \in E_{\infty},$$

that is, φ is a measurable quasi-convex subadditive function on E_{∞} . We shall say that φ is symmetric if

$$\varphi(x) = \varphi(-x) \quad \forall x.$$

Let us define the random variables

$$N_j = \varphi(0, ..., 0, X_j, 0, ...), \qquad N = \sup_j N_j,$$
 $M_j = \varphi(X_1, ..., X_j, 0, ...), \qquad M = \sup_j M_j;$

we shall consider their tail probabilities

$$G_I(t) = \mathbf{P}(N_j > t), \qquad G(t) = \mathbf{P}(N > t),$$

 $F_I(t) = \mathbf{P}(M_i > t), \qquad F(t) = \mathbf{P}(M > t).$

We shall use these notations throughout this section.

LEMMA 2.1. Suppose that X_n is symmetric for all $n \ge 1$; then we have

$$(2.1.1) \mathbf{P}(\max_{1 \le i \le n} M_i > t) \le 2\mathbf{P}(M_n > t) \forall t \ge 0,$$

(2.1.2)
$$\mathbf{P}(M > t) \leqslant 2 \liminf_{n \to \infty} \mathbf{P}(M_n > t) \quad \forall t \geqslant 0.$$

Proof. The proof is fairly standard and actually only requires quasiconvexity of φ . Let

$$\begin{split} T &= \inf\{1 \leqslant j \leqslant n| \ M_j > t\} & (\inf(\mathcal{O}) = \infty), \\ Y_n &= (X_1, \dots, X_n, 0, \dots) & \text{for } n \geqslant 1, \\ Y_{ni} &= (X_1, \dots, X_i, -X_{i+1}, \dots, -X_n, 0, \dots) & \text{for } n \geqslant j \geqslant 0; \end{split}$$

then $Y_i = \frac{1}{2} Y_n + \frac{1}{2} Y_{ni}$ and so

$$M_j = \varphi(Y_j) \leqslant \max\{\varphi(Y_n), \varphi(Y_{nj})\}.$$

If T = j, then $M_j > t$, and so either $\varphi(Y_n) > t$ or $\varphi(Y_{nj}) > t$, however, Y_n and Y_{nj} are equidistributed and so

$$\mathbf{P}(T=j) \leqslant \mathbf{P}(T=j, \varphi(Y_n) > t) + \mathbf{P}(T=j, \varphi(Y_{nj}) > t)$$

= 2\mathbf{P}(T=j, M_n > t).

Hence we have

$$\mathbf{P}(\max_{1\leqslant j\leqslant n}M_j>t)=\mathbf{P}(T\leqslant n)\leqslant 2\mathbf{P}(M_n>t).$$

Now let $a > \liminf_{n \to \infty} F_n(t)$; then there exist integers $n_1 < n_2 < \dots$ so that $F_{n_i}(t) \leqslant a$ for all $j \geqslant 1$. From the first part of the lemma we know that

$$\mathbf{P}(\max_{1 \leqslant v \leqslant n_j} M_v > t) \leqslant 2a \quad \forall j \geqslant 1$$

and since $\max_{1\leqslant v\leqslant n_j} M_v$ increases to M, we have $\mathbf{P}(M>t)\leqslant 2a,$ and (2.1.2) follows.

LEMMA 2.2. Let (E,B) be measurable linear space and ψ a B-measurable function from E into \overline{R}_+ , so that ψ is symmetric quasi-convex and subadditive. If Z is an E-valued random vector and $\mathbf{P}(\psi(Z)\leqslant a)\geqslant \frac{1}{2}$ for some $a\geqslant 0$, then

(2.2.1)
$$\mathbf{P}(\psi(Z^*) > 2t) \leqslant 2\mathbf{P}(\psi(Z) > t) \quad \forall t \geqslant 0,$$

$$(2.2.2) \mathbf{P}(\psi(Z) > t + a) \leq 2\mathbf{P}(\psi(Z^*) > t) \forall t \geqslant 0,$$

where Z^* is a symmetrization of Z.

Proof. (2.2.1) is obvious. If μ is the distribution law of Z, then

$$\mathbf{P}\big(\psi(Z^*)>t\big)=\int\limits_{\mathbb{R}}\mathbf{P}\big(\psi(Z-x)>t\big)\mu(dx)\geqslant\int\limits_{\mathbb{R}}\mathbf{P}\big(\psi(Z-x)>t\big)\mu(dx),$$

where $A = \{x \in E \mid \psi(x) \leq a\}$. Then $\mu(A) \geqslant \frac{1}{2}$ and so there exists $x_t \in A$ for all $t \geqslant 0$ so that

$$\mathbf{P}(\psi(Z-x_t) > t) \leqslant 2\mathbf{P}(\psi(Z^*) > t)$$

and since $\psi(Z) \leq \psi(Z - x_t) + a$, (2.2.2) follows.

140

THEOREM 2.3. Suppose that X_n is symmetric for all $n \ge 1$; then we have

J. Hoffmann-Jørgensen

$$(2.3.1) F(2t+s) \leq 2G(s) + 4F(t)^2 \forall t, s \geq 0.$$

If we drop the assumption about symmetry of X_n , but assume that φ is summetric, then we have

$$(2.3.2) F(4t+s+a) \ge 8G(s) + 32F(t)^2 \forall s, t \ge 0$$

where $a \ge 0$ is determined by $\mathbf{P}(M \le a) \ge \frac{1}{2}$.

Proof. Suppose first that (X_n) is symmetric and define

$$T = \inf\{n \geqslant 1 | M_n > t\};$$

then $M_k > 2t + s$ implies that $T \leq k$ and so

$$F_k(2t+s) = \sum_{j=1}^k \mathbf{P}(T=j, M_k > 2t+s).$$

Now let $Z_i = (0, ..., 0, X_i, 0, ...)$ and $Y_i = (X, ..., X_i, 0, ...)$; then we lave

$$Y_k = (Y_k - Y_i) + Y_{i-1} + Z_i$$

and so

$$M_k \leqslant \varphi(Y_k - Y_i) + M_{i-1} + N$$
.

Hence, if T = j, $N \le s$ and $M_k > 2t + s$, then $M_{j-1} \le t$, and $\varphi(Y_k - Y_j) > t$, and so we have

$$\begin{split} \mathbf{P}(T=j,\ M_k>2t+s) \leqslant \mathbf{P}(T=j,\ N>s) + \mathbf{P}\big(T=j,\ \varphi\left(Y_k-Y_j\right)>t\big) \\ = \mathbf{P}(T=j,\ N>s) + \mathbf{P}(T=j)\ \mathbf{P}\big(\varphi(Y_k-Y_j)>t\big) \end{split}$$

since $\{T=j\}$ and Y_k-Y_j are independent. Now we observe that by Lemma 2.1 we have

$$\mathbf{P}(\varphi(Y_k - Y_i) > t) \leq 2\mathbf{P}(\varphi(Y_k) > t) \leq 2\mathbf{P}(M > t).$$

Hence we find

$$F_k(2t+s) \leqslant \sum_{j=1}^k \mathbf{P}(T=j,\,N>s) + 2\sum_{j=1}^n \mathbf{P}(T=j) \ \ \mathbf{P}(M>t) \leqslant G(s) + 2F(t)^2$$

and from Lemma 2.1, we find

$$F(2t+s) \leqslant 2 \liminf_{k \to \infty} F_k(2t+s) \leqslant 2G(s) + 4F(t)^2$$

which proves (2.3.1).

Now suppose that φ is symmetric, and let (X_n^*) be a symmetrization. Define M^* and N^* in the obvious way and let F^* , respectively, G^* be their tail probabilities; then by Lemma 2.2 and (2.3.1) we find

$$F(4t+2s+a) \le 2F^*(4t+2s) \le 4G^*(2s) + 8F^*(2t)^2 \le 8G(s) + 32F(t)^2$$
.

THEOREM 2.4. If (X_n) is symmetric, $M_n < \infty$ a.s. for $n \ge 1$, and $\{M_n\}$ stochastically bounded, then $M < \infty$ a.s.

If φ is symmetric, $M_n < \infty$ a.s. for all $n \ge 1$, and $\{M_n\}$ is stochastically bounded, then $M < \infty$ a.s.

Proof. The first case is an immediate consequence of Lemma 2.1. So suppose that φ is symmetric, and let (X_n^*) be a symmetrization of (X_n) . Let M_n^* and M^* be defined in the obvious way. Then (2.2.2) shows that $\{M_n^*\}$ is stochastically bounded, and so $M^* < \infty$ a.s. Hence we find

$$1 = \mathbf{P}(M^* < \infty) = \int_{E_{\infty}} \mathbf{P}(\varphi_0(X - x) < \infty) \mu(dx),$$

where μ is the distribution of X, and

$$\varphi_0(x) = \sup_n \varphi(x_1, \ldots, x_n, 0, \ldots) \quad \forall x = (x_j) \in E_{\infty}.$$

So for some $x \in E_{\infty}$ we have $\varphi_0(X-x) < \infty$ a.s. Let $y_n = (x_1, \ldots, x_n, 0, \ldots)$ and $Y_n = (X_1, \ldots, X_n, 0, \ldots)$, then we have

$$\varphi(y_n) \leqslant \varphi(Y_n - y_n) + \varphi(Y_n) \leqslant \varphi_0(X - x) + M_n.$$

Now we choose $a\geqslant 0$ so that $\mathbf{P}(M_n\leqslant a)>\frac{1}{2}$ and $\mathbf{P}(\varphi_0(X-x)\leqslant a)>\frac{1}{2}$, then for each $n \ge 1$ we have

$$\{M_n \leqslant a\} \cap \{\varphi_0(X-x) \leqslant a\} \neq \emptyset$$

and so $\varphi(y_n) \leqslant 2a$ for all $n \geqslant 1$. That is

$$M = \sup_{n} \varphi(Y_n) \leqslant \varphi_0(X - x) + 2a < \infty$$
 a.s.

and the theorem is proved.

THEOREM 2.5. Suppose that $M<\infty$ a.s., and let g be an increasing function from $[t_0, \infty)$ into \mathbf{R}_+ so that

$$\lim_{t\to\infty}g(t)=\infty,$$

(2.5.2)
$$G(t) \leqslant K \exp(-g(\varepsilon t)) \quad \forall t \geqslant t_0,$$

for some constants K > 0 and $\varepsilon > 0$. Let c > 1 and put $\lambda = (\log c)/(\log 2)$, and $\nu = \lambda^{-1}$.

(A) If q satisfies:

(2.5.3)
$$\lim_{t\to\infty} (g(ct) - 2g(t)) = -\infty,$$

then there exists $K_1 > 0$, $\delta > 0$ and $t_1 \geqslant t_0$ so that

$$(2.5.4) F(t) \leqslant K_1 \exp\left(-g(\delta t)\right) \forall t \geqslant t_1 if c > 2,$$

$$(2.5.5) F(t) \leqslant K_1 \exp(-g(\delta t^{\lambda})) \forall t \geqslant t_1 if c < 2,$$

$$(2.5.6) F(t) \leqslant K_1 \exp\left(-g\left(\frac{\delta t}{\log t}\right)\right) \; \forall \; t \geqslant t_1 \quad \text{if } \; c=2 \, .$$

(B) If g. satisfies

$$(2.5.7) g(ct) \geqslant 2g(t) \forall t \geqslant t_1,$$

then there exist $K_0 > 0$, $\delta > 0$ and $t_1 \ge t_0$ so that

$$(2.5.8) F(t) \leqslant K_2 \exp(-\delta t) \forall t \geqslant t, if c < 2,$$

$$(2.5.9) F(t) \leq K_2 \exp(-\delta t^r) \forall t \geq t, if c > 2.$$

$$(2.5.10) F(t) \leqslant K_2 \exp\left(-\frac{\delta t}{\log t}\right) \forall t \geqslant t_1 if \ c = 2.$$

(C) If g satisfies

(2.5.11)
$$\int_{t_0}^{\infty} g(t)^{-1} dt < \infty,$$

then there exist $K_3 > 0$ and $\delta > 0$ so that

$$(2.5.12) F(t) \leqslant K_3 \exp(-\delta t) \forall t \geqslant t_1.$$

Proof. Let (X_n^*) be a symmetrization of (X_n) and let M^* and N^* be defined in the obvious way. Let $F^*(t) = \mathbf{P}(M^* > t)$ and $G^*(t) = \mathbf{P}(N^* > t)$, then we have

$$F^*(2t+s) \leqslant 2G^*(s) + 4F^*(t)^2 \quad \forall t, s \geqslant 0,$$
 $G^*(2s) \leqslant 2G(s),$
 $F(t+a) \leqslant 2F^*(t).$

where $a \ge 0$ is determined by $P(M \le a) \ge \frac{1}{2}$. Now let

$$F_0(t) = 8F^*(t-a), \quad G_0(t) = 32G(2t),$$

then we have

(i)
$$F_0(2t+2s+3a) \leq \frac{1}{2}G_0(s) + \frac{1}{2}F_0(t)^2 \leq \max\{G_0(s), F_0(t)^2\}$$

(ii) $F(t) \leq 8F_0(t)$,

(iii)
$$G_0(t) \leqslant \exp\left(-g_0(t)\right) \ \forall t \geqslant t_0 \ \text{where} \ g_0(t) = g\left(\frac{1}{2}\varepsilon t\right) - \log\left(32K\right)$$
.

Now suppose that σ_n $(n \ge 0)$ and τ_0 is given; then we define

$$\tau_n = 2^n \tau_0 + \sum_{j=0}^{n-1} 2^{n-j-1} (2\sigma_j + 3a) = 2\tau_{n-1} + 2\sigma_{n-1} + 3a.$$

Then we have

(iv)
$$\tau_n \leqslant K_1 2^n + 2^n \sum_{j=0}^{n-1} 2^{-j} \sigma_j \ \forall n \geqslant 0$$
,

$$(v) \ F_0(\tau_n) \leqslant \max \{G_0(\sigma_{n-1}), G_0(\sigma_{n-2})^2, \dots, G_0(\sigma_0)^{2^{n-1}}, F_0(\tau_0)^{2^n}\}.$$

Case (A), $c \neq 2$. Now we choose $\sigma_0 \geqslant t_0$ from (2.5.3) so that

$$g(ct) \leq 2g(t) - 3\log(32K)$$
 $\forall t \geq 2\varepsilon^{-1}\sigma_0$

then $g_0(ot) \leqslant 2g_0(t)$ for all $t \geqslant \sigma_0$. Then we put $\sigma_n = c^n \sigma_0$ for $n \geqslant 0$ and choose $\tau_0 \geqslant \sigma_0$, so that $\log F(\tau_0) \leqslant -\frac{1}{2}g_0(\sigma_0)$. Now since $2^{-j}g_0(\sigma_j)$ decreases in j we have

$$G_0(\sigma_i)^{2^{n-j-1}} \leqslant \exp\left(-2^{n-j-1}g_0(\sigma_i)\right) \leqslant \exp\left(-g_0(\sigma_{n-1})\right)$$

for all $0 \le j \le n-1$, and since $g_0(\sigma_{n-1}) \le 2^{n-1}g_0(\sigma_0)$, we have

$$F_0(\tau_0)^{2^n} \leqslant \exp\left(-2^{n-1}g_0(\sigma_0)\right) \leqslant \exp\left(-g_0(\sigma_{n-1})\right).$$

So by (v) we find

$$F_0(\tau_n) \leqslant \exp\left(-g_0(c^{n-1}\sigma_0)\right) \quad \forall n \geqslant 0.$$

And from (iv) we find

$$\tau_n \leqslant 2^n K_1 + 2^n \sigma_0 \sum_{i=0}^{n-1} (\frac{1}{2} c)^j \leqslant K_2 d^n \quad \forall n \geqslant 0,$$

where $d = \max\{2, c\}$.

Now let $t_1 = K_2$, and $t \geqslant t_1$; then there exists an integer $n \geqslant 0$ so that $K_2 d^n \leqslant t \leqslant K_2 d^{n+1}$, and so

$$F_0(t) \leqslant F_0(\tau_n) \leqslant \exp\left(-g_0(e^{n-1}\sigma_0)\right).$$

However, $c = d^{\gamma}$, where $\gamma = \min\{1, \lambda\}$, and so

$$c^{n-1}\sigma_0 = c^{-2}\sigma_0 d^{\gamma(n+1)} \geqslant at^{\gamma}$$

where $\alpha = K_2^{-\gamma} c^{-2} \sigma_0 > 0$, and so

$$F(t) \leqslant 8F_0(t) \leqslant 8\exp(-g_0(\alpha t^{\gamma})) = 256 \cdot K\exp(-g(\delta t^{\gamma}))$$

where $\delta = \frac{1}{6}\epsilon a$. This proves case (A) $c \neq 2$.

Case (A), c=2, σ_0 and τ_0 is chosen as before and we find that

$$F_0(\tau_n) \leqslant \exp\left(-g_0(\sigma_{n-1})\right).$$

However, in this case we have

$$\tau_n \leqslant 2^n K_1 + n\sigma_0 2^n \leqslant n 2^n K_3 \quad \forall n \geqslant 1.$$

Now let $t_1 = 2K_3$, and let $t \ge t_1$; then there exists $n \ge 1$ so that $n2^nK_3 \le t \le (n+1)2^{n+1}K_3$, then

$$F_0(t) \leqslant F(\tau_n) \leqslant \exp\left(-g_0(2^{n-1}\sigma_0)\right)$$

Now we observe that

$$\frac{\beta t}{\log t} \leqslant \frac{\beta (n+1) 2^{n+1} K_3}{(n+1) + \log (n+1) + \log K_3} \leqslant \beta 2^{n+1} K_3 = 2^{n-1} \sigma_0$$

if $\beta = K_3^{-1} 2^{-2} \sigma_0$. Hence,

$$F(t) \leqslant 8F_0(t) \leqslant 8\exp\left(-g_0\left(rac{eta t}{\log t}
ight)
ight) = 256 \cdot K\exp\left(-g\left(rac{\delta t}{\log t}
ight)
ight),$$

where $\delta = \frac{1}{2}\varepsilon\beta$.

Case (B). In this case we choose $\sigma_n = c^n t_0$, and τ_0 so that $\log F(\tau_0) \le \frac{1}{2} g_0(t_0)$. Now $g_0(ct) \ge 2g_0(t)$ for all $t \ge t_0$ by (2.5.7) and the definition of g_0 , hence we have that $2^{-j} g_0(\sigma_j)$ increases with j, and so

$$\begin{split} G_0(\sigma_j)^{2^{n-j-2}} \leqslant \exp\left(-2^{n-j-1}g_0(\sigma_0)\right) \leqslant \exp\left(-2^{n-1}g_0(t_0)\right), \\ F_0(\tau_0)^{2^n} \leqslant \exp\left(-2^{n-1}g_0(t_0)\right). \end{split}$$

From (v) we find that

$$F_0(au_n) \leqslant \exp\left(-2^{n-1}g_0(t_0)\right)^n$$

and as in case (A) we find

$$au_n \leqslant egin{cases} 2^n K_4, & ext{if} & c < 2,' \ n 2^n K_5, & ext{if} & c = 2, \ c^n K_6, & ext{if} & c > 2. \end{cases}$$

Case (B) now follows by an argument similar to the proof of case (A). Case (C). Let σ_n be defined by

$$\sigma_n = \inf\{t \geqslant t_0 | g_0(t) \geqslant 2^n g_0(t_0)\} \quad \forall n \geqslant 0$$
:

then $g_0(\sigma_n) = 2^n g_0(t_0)$, and we have

$$G_0(\sigma_j)^{2^{n-j-1}} \leqslant \exp\left(-2^{n-j-1}g_0(\sigma_j)\right) = \exp\left(-2^{n-1}g_0(t_0)\right).$$

So if τ_0 is chosen so that $\log F(\tau_0) \leqslant -\frac{1}{2}g_0(t_0)$, then we have by (v)

$$F_0(\tau_n) \leqslant \exp(-2^{n-1}g_0(t_0)).$$

Now let $b_j = \sigma_j g_0(\sigma_j)^{-1} = k \sigma_j 2^{-j}$, then we have

$$\begin{split} a_j &= \int\limits_{\sigma_{j-1}}^{\sigma_j} g_0(t)^{-1} dt \geqslant (\sigma_j - \sigma_{j-1}) g_0(\sigma_j)^{-1} = b_j - \frac{1}{2} b_{j-1}, \\ b &\leqslant \frac{1}{2} b_{j-1} + a_j \leqslant (\frac{1}{2})^j b_0 + \sum_{i=1}^j a_i (\frac{1}{2})^{j-i}. \end{split}$$

So using (2.5.11) we find that

$$\begin{split} &\tau_n \leqslant K_1 2^n + 2^n \sum_{j=0}^{n-1} 2^{-j} \sigma_j \leqslant K_1 2^n + 2^n \left(\sigma_0 + \sum_{j=1}^{\infty} k^{-1} b_j \right) \\ &\leqslant K_1 2^n + 2^n \left(\sigma_0 + b_0 + \sum_{j=1}^{\infty} \sum_{i=1}^{j} k^{-1} a_i (\frac{1}{2})^{j-i} \right) \\ &= 2^n \left(K_1 + b_0 + \sigma_0 + k^{-1} \sum_{i=1}^{\infty} a_i \right) \\ &\leqslant 2^n \left(K_1 + b_0 + \sigma_0 + k^{-1} \int_{t_0}^{\infty} g_0(t)^{-1} dt \right) = K_7 2^n \end{split}$$

from which (2.5.11) follows as above

Examples. (a) $G(t) \leq K_1 f(t)^{-1}$, where f satisfies

(2.4)
$$f$$
 is increasing on $[t_0, \infty)$ and $\lim_{t\to\infty} f(t) = \infty$.

$$(2.5) f(2t) \leqslant Mf(t) \; \forall t \geqslant t_0, \quad \text{for some } M > 0,$$

then $g(t) = \log f(t)$ satisfies (2.5.3) for all c > 1, and so we find

$$(2.6) F(t) \leqslant K_2 f(t)^{-1}.$$

Note that $f(t) = t^p$ satisfies (2.4) and (2.5) for all p > 0.

A simple computation, using integration by parts, shows that if f satisfies (2.4) and (2.5), then we have

(2.7)
$$\mathbf{E}f(N) < \infty \quad \text{implies} \quad \mathbf{E}f(M) < \infty.$$

(b) $G(t) \leq K_1 \exp(-\epsilon_1 t^p)$, where p > 0, then $g(t) = t^p$ satisfies (2.5.7) for $c = 2^{1/p}$, hence we have

$$(2.8) F(t) \leqslant K_2 \exp(-\varepsilon_2 t) \text{if} p > 1,$$

(2.9)
$$F(t) \leqslant K_2 \exp(-\varepsilon_2 t^p) \quad \text{if} \quad p < 1,$$

$$(2.10) F(t) \leqslant K_2 \exp\left(-\varepsilon_2 t (\log t)^{-1}\right) \text{if} p = 1.$$

(c) $G(t) \leq K_1 \exp(-\varepsilon_1 t (\log t)^p)$ for some p > 1, then $g(t) = t (\log t)^p$ satisfies (2.5.11), and so we have

(2.11)
$$F(t) \leqslant K_2 \exp(-\varepsilon_2 t).$$

3. The zero-one law for product measures. Let μ_n be a probability measure on (R, B), and let

$$\mathbf{R}^{\infty} = \prod_{n=1}^{\infty} \mathbf{R}, \quad \mathbf{B}^{\infty} = \underset{n=1}{\overset{\infty}{\otimes}} \mathbf{B}, \quad \mu = \prod_{n=1}^{\infty} \mu_n.$$

A set $A \subseteq \mathbb{R}^{\infty}$ is called a tail event if A satisfies

(3.1) If $x \in \mathbb{R}^{\infty}$ and $x_j = y_j$ for all $j \ge n$, for some $y \in A$ and some $n \ge 1$, then $X \in A$.

If \mathbf{R}_0^{∞} is the set of $x = (x_j) \in \mathbf{R}^{\infty}$ with almost finitely many non-zero coordinates, then it is easily checked that (3.1) is equivalent to

$$(3.2) R_0^{\infty} + A \subseteq A.$$

It is well know that $\mu(A)$ is either 0 or 1 if A is a μ -measurable tail event. We shall in this section show that the 0-1 law also holds for linear subspaces of R^{∞} .

THEOREM 3.1. Suppose that μ_n is non-atomic for all $n \ge 1$, and let L be a μ -measurable linear subset of \mathbf{R}^{∞} . Then either $\mu(L) = 0$ or $\mu(L) = 1$ and in the latter case we have $\mathbf{R}^{\infty}_{0} \subseteq L$.

Proof. Since μ is a Radon measure on \mathbf{R}^{∞} , we can find a σ -compact linear subset $L_0 \subseteq L$, so that $\mu(L_0) = \mu(L)$, so we may as well assume that L itself is σ -compact.

Now suppose that $\mu(L) > 0$, and that $R_0^{\infty} \not\equiv L$. Then for some $n \geqslant 1$ we have $e_n \not\in L$, where e_n is the *n*th unit vector in R^{∞} . Let

$$F = L \cap R_0^{\infty}$$

and let G be a linear complement to F in \mathbf{R}_0^{∞} , so that $e_n \in G$. Then G is σ -compact (note that all linear subsets of \mathbf{R}_0^{∞} are σ -compact), and so $L_1 = L + G$ is σ -compact. Moreover, we have

$$L_1 \supseteq F + G = \mathbf{R}_0^{\infty}, \quad \mu(L_1) \geqslant \mu(L) > 0.$$

Since L_1 is linear, we find that L_1 is a tail event, and so $\mu(L_1) = 1$. Now we observe that $L \cap G = (0)$, and so

$$(x, y) \cap x + y$$

is a continuous bijection from $L \times G$ to L+G, hence, by Theorem III.8.4 in [4], we see that there exist linear Borel maps p and q so that

$$p: L+G \rightarrow L, \quad q: L+G \rightarrow G,$$

 $x = p(x) + q(x) \quad \forall x \in L.$

Let π_n be the projection of \mathbf{R}^{∞} onto the *n*th coordinate, and put $p_0 = \pi_n \circ p$ and $q_0 = \pi_n \circ q$. Then p_0 and q_0 are Borel measurable linear functionals which are defined μ -a.e., and we have

$$q_0(x) = 0$$
 for $x \in L$,
 $q_0(e_n) = 1$, $p_0(e_n) = 0$.

Hence we have

$$p_0(x) = p_0(x_1, \ldots, x_{n-1}, 0, x_{n+1}, \ldots) \quad \forall x = (x_i) \in L_1$$

so p_0 and π_n are independent and $p_0 + q_0 = \pi_n$ a.s. Hence if ν is the distribution law of p_0 , we have

$$\begin{split} \mu(L) \leqslant \mu(q_0 = 0) &= \mu(p_0 = \pi_n) \\ &= \int\limits_{-\infty}^{\infty} \mu(\pi_n = x) \nu(dx) = \int\limits_{-\infty}^{\infty} \mu_n(\{x\}) \nu(dx) = 0 \end{split}$$

since μ_n is non-atomic. So we have derived a contradiction, and we must have that $R_0^{\infty} \subseteq L$ whenever $\mu(L) > 0$. However, since L is linear, we have that $R_0^{\infty} \subseteq L$ implies that L is a tail event and so $\mu(L) = 1$.

4. The affine kernel of a product measure. Let $\mu = \prod_{n=1}^{\infty} \mu_n$ be a product probability measure on \mathbb{R}^{∞} , then the affine kernel of μ , $A(\mu)$, is defined by

$$A(\mu) = \bigcap \{A \mid A \text{ μ-measurable affine set with } \mu(A) = 1\}.$$

The measurable affine subsets of \mathbf{R}^{∞} with full measure are often too badly behaved, and we shall mainly restrict ourselves to consider only those affine sets, $\mathbf{A} \subseteq \mathbf{R}^{\infty}$ which satisfy

(4.1) $\forall \varepsilon > 0 \ \exists K \ compact \ convex, \ so \ that \ K \subseteq A \ and \ \mu(K) > 1 - \varepsilon.$

An affine space satisfying (4.1) will be called a μ -Lusin affine space, and we define the Lusin affine kernel of μ , $A_L(\mu)$, by

$$A_L(\mu) = \bigcap \{A \mid A \text{ is a } \mu\text{-Lusin affine space}\}.$$

Let $\Lambda(\mu)$ denote the set of μ -measurable linear functions, $f: \mathbf{R}^{\infty} \to \mathbf{R}$. Again these functions are often too badly behaved, and we shall call $f \in \Lambda(\mu)$ a μ -Lusin functional, if f satisfies

(4.2) $\forall \varepsilon > 0 \ \exists K \ compact \ convex, \ so \ that \ \mu(K) > 1 - \varepsilon \ and \ f | K \ is \ continuous.$

And we denote the set of μ -Lusin functionals by $A_L(\mu)$. The space $A(\mu)$ and $A_L(\mu)$ may be considered as subspaces of $L^0(\mu)$, where $L^0(\mu)$ is the space of all μ -measurable functions, X, equipped with the metric

$$\|X\|_{\mu} = \int\limits_{oldsymbol{R}^{\infty}} arphi(|x|) \, d\mu$$

where $\varphi(x) = x/(1+x)$. It is well known (see Theorem 1 in [10]) that

(4.3) $A(\mu)$ and $A_L(\mu)$ are closed subspaces of $L^0(\mu)$ and $A_L(\mu) = \operatorname{cl}(\mathbf{R}_0^{\infty})$ (closure in $L^0(\mu)$), where \mathbf{R}_0^{∞} is identified with the dual of \mathbf{R}^{∞} .

The main results of this section state under certain conditions on μ that every $f \in A_L(\mu)$ admit a representation of the form

$$f(x) = \sum_{j=1}^{\infty} a_j x_j,$$

where $a = (a_i)$ belongs to the set:

$$C(\mu) = \{(a_j) | \sum_{j=1}^{\infty} a_j x_j \text{ converges } \mu\text{-a.e.} \}$$

and that the Lusin affine kernel $A_L(\mu)$, is equal to the sequence dual, $O^*(\mu)$, of $C(\mu)$, that is

$$C^*(\mu) = \left\{ (b_j) \in \mathbf{R}^{\infty} \mid \sum_{j=1}^{\infty} a_j b_j \text{ converges } \forall a \in C(\mu) \right\}.$$

The condition, which assures the validity of these two results, is that $0 \in A_L(\mu)$, and we shall say that μ is centered at 0, if $0 \in A_L(\mu)$.

If $\alpha \in C(\mu)$, then we define

$$|a|_{\mu} = \sup_{n} \int_{\mathbf{R}^{\infty}} \varphi\left(\left|\sum_{j=1}^{n} a_{j} x_{j}\right|\right) \mu(dx).$$

A slight modification of the proof of Theorem 5.2 in [2] shows that, if μ_n is non-degenerated for all $n \ge 1$, then

(4.4)
$$(C(\mu), |\cdot|_{\mu})$$
 is a Fréchet space (in general non-locally convex).

THEOREM 4.1. If μ_n is non-degenerated for all $n \ge 1$, and A is a μ -measurable affine set with $\mu(A) = 1$, then $A + \mathbf{R}_0^{\infty} \subseteq A$.

Proof. Let μ^* be the symmetrization of μ . Then

$$\mu^*(B) = \int_{\mathbf{R}^{\infty}} \mu(B+x)\mu(dx) \quad \forall B \in \mathbf{B}^{\infty},$$

and, in particular, we have

$$\mu^*(A-x_0) = \int_{\mathbf{R}^{\infty}} \mu(A-x_0+x) \, \mu(dx) = \int_A \mu(A-x_0+x) \, \mu(dx).$$

So if $x_0 \in A$, then $A - x_0 + x = A$ for all $x \in A$, and so

$$\mu^*(A-x_0) = 1 \quad \forall x_0 \in A.$$

Let $L = A - x_0$, where $x_0 \in A$, then L is a linear set and $\mu^*(L) = 1$. Let Σ be the set of linear transformations, $\sigma: \mathbb{R}^{\infty} \to \mathbb{R}^{\infty}$, of the form

$$\sigma x = (\varepsilon_n x_n)$$
 for $x = (x_n) \in \mathbf{R}^{\infty}$

where $\varepsilon_n=\pm 1$ and $\varepsilon_n=1$ for all $n\geqslant N$ for some $N\geqslant 1$. Then Σ is a countable group and

$$\mu^*(\sigma(B)) = \mu^*(B) \quad \forall B \in \mathbf{B}^{\infty} \ \forall \sigma \in \Sigma.$$

So if $L_0 = \bigcap_{\sigma \in \Sigma} \sigma(L)$, then $\mu^*(L_0) = 1$. Let $n \ge 1$, now since μ_n is non-degenerated we can find $y \in L_0$ so that $y_n \ne 0$. Now let σ be defined by

$$\sigma x = (x_1, \ldots, x_{n-1}, -x_n, x_{n+1}, \ldots);$$

then $\sigma \in \Sigma$ and since $\sigma(L_0) = L_0$, we have that $\sigma y \in L_0$. Moreover, since L_0 is linear, we have

$$e_n = (2y_n)^{-1}(y - \sigma y) \in L_0,$$

where e_n is the *n*th unit vector. Hence we have

$$\mathbf{R}_0^{\infty} \subseteq L_0 \subseteq L = A - x_0 \quad \forall x_0 \in A$$

from which we find that $R_0^{\infty} + A \subseteq A$.

THEOREM 4.2. Suppose that μ_n is non-degenerated for all $n \ge 1$ and let μ^* be the symmetrization of μ , that is

$$\mu^*(B) = \int_{\mathbb{R}^\infty} \mu(B+x) \, \mu(dx) \quad \forall B \in \mathbf{B}^\infty.$$

Then μ is centered at 0 if and only if $C(\mu) = C(\mu^*)$.

Proof. Suppose that μ is centered at 0, and let $\alpha \in C(\mu^*)$. Let

$$L = \{(x_j) \in \mathbf{R}^{\infty} | \sum_{i=1}^{\infty} a_i x_i \text{ converges} \};$$

then L is a linear Borel subset of \mathbb{R}^{∞} with $\mu^*(L) = 1$, that is

$$1 = \mu^*(L) = \int_{\mathbf{R}^{\infty}} \mu(L+x) \mu(dx)$$

and so $\mu(M) = 1$, where $M = \{x | \mu(L+x) = 1\}$. Now let $b = (b_j) \in M$, then

$$L+b \ = \left\{ (x_j) \in I\!\!R^\infty | \ \sum_{j=1}^\infty a_j \left(x_j - b_j
ight) \ {
m converges}
ight\},$$

$$\mu(L+b) \ = 1 \, .$$

Let $\varepsilon > 0$ be given, then by Egoroff's theorem there exists $B \in \mathbf{B}^{\infty}$ and $n_1 < n_2 < \dots$ so that

$$\Big|\sum_{j=n+1}^{n+m} a_j(x_j - b_j)\Big| \leqslant 2^{-k} \quad \forall n \geqslant n_k \ \forall m, \ k \geqslant 1 \ \forall x \in B,$$

$$\mu(B) > 1 - \varepsilon.$$

Now let

$$C = \bigcap_{k=1}^{\infty} \bigcap_{n=n_k}^{\infty} \bigcap_{m=1}^{\infty} \{x \mid \left| \sum_{j=n+1}^{n+m} a_j(x_j - b_j) \right| \leqslant 2^{-k} \};$$

then $B \subseteq C \subseteq L+b$, and C is convex and closed. Now we choose a compact set $D \subseteq B$ so that $\mu(D) > 1-\varepsilon$, and put K equal to the closed convex hull of D. Then $D \subseteq K \subseteq C \subseteq L+b$, since C is convex and closed, and $\mu(K) > 1-\varepsilon$. This shows that L+b is a μ -Lusin affine space and so by assumption $0 \in L+b$ for all $b \in M$, or $M \subseteq L$. Hence $\mu(M) = \mu(L) = 1$, and $a \in C(\mu)$ which proves that $C(\mu^*) \subseteq C(\mu)$, the other inclusion is trivial.

Now suppose that $C(\mu^*) = C(\mu)$, then $|\cdot|_{\mu}$ and $|\cdot|_{\mu^*}$ are Fréchet metrics on $C(\mu)$, so that

$$|a|_{\mu^*} \leqslant 2 |a|_{\mu} \quad \forall a \in C(\mu).$$

Hence the two metrics are equivalent, and so we have

(i) $\forall \varepsilon > 0 \ \exists \delta > 0 \ \text{so that} \ |a|_{\mu^*} \leqslant \delta \ \text{implies} \ |a|_{\mu} \leqslant \varepsilon$.

Now we consider the linear operator, $T: C(\mu) \to L^0(\mu)$, defined by

$$Ta = \sum_{j=1}^{\infty} a_j x_j,$$

then $\|Ta\|_{\mu} \leq |a|_{\mu}$, so T is continuous. Let $\varepsilon > 0$ be given and choose $\delta > 0$ according to (i), if $a \in C(\mu)$ and $\|2Ta\|_{\mu} < \delta$, then by Theorem 2.6 in [3], we have

$$\int\limits_{{\bf R}^\infty} \varphi\left(\left|\sum_{j=1}^n |a_j x_j|\right|\right) \mu^*(dx) \leqslant \tfrac{1}{2} \|2Ta\|_{\mu^*} \leqslant \|2Ta\|_{\mu} \leqslant \delta$$

for all $n \ge 1$. Hence $|a|_{\mu} \le \delta$ and so $|a|_{\mu} \le \epsilon$, that is $||2Ta||_{\mu} \le \delta$ implies that $|a|_{\mu} \le \epsilon$. This shows that T is an isomorphism and $T(C(\mu))$ is a closed subspace of $L^0(\mu)$. So by (4.3) we have

(ii)
$$A_L(\mu) \subseteq T(C(\mu))$$
.

Let A be a μ -Lusin affine space, and suppose that $0 \notin A$, then there exists a linear functional, f, so that f(x) = 1 for $x \in A$. Obviously, we have that $f \in A_L(\mu)$, and so by (ii) we have f = Ta for some $a \in C(\mu)$. That is

$$\sum_{j=1}^{\infty} x_j a_j = 1 \quad \mu\text{-a.e.}$$

and so $a \neq 0$. Let $n \geq 1$ be chosen, so that $a_n \neq 0$, then the random variables (defined on $(\mathbf{R}^{\infty}, \mathbf{B}^{\infty}, \mu)$)

$$X_n(x) = a_n x_n, \quad Y_n = \sum_{j \neq n} a_j x_j,$$

are independent and $X_n + Y_n = 1$ a.s., but this implies that X_n is degenerated contrary to the assumption that μ_n is non-degenerated. Hence $0 \in A$ and μ is centered at 0.

THEOREM 4.3. Suppose that μ is centered at 0, and μ_n is non-degenerated for all $n \ge 1$. Then there exists a linear functional, λ : $\Lambda(\mu) \to \mathbf{R}$, so that

$$(4.2.1) \qquad \lambda(f) = \lim_{n \to \infty} f(0, \ldots, 0, x_n, x_{n+1}, \ldots) \quad \text{ for a.a. } x \in \mathbf{R}^{\infty};$$

$$(4.2.2) \qquad \big(f(e_j)\big) \in C(\mu) \quad \text{ and } \quad f(x) = \lambda(f) + \sum_{j=1}^{\infty} x_j f(e_j) \text{ a.e.};$$

$$\lambda(f) = 0 \quad \forall f \in \Lambda_L(\mu);$$

(4.2.4)
$$\lambda \equiv 0$$
 if μ_n is symmetric for all $n \geqslant 1$.

Proof. Let $f \in \Lambda(\mu)$ and define $a_i = f(e_i)$ and

$$X_j(x) = a_j x_j,$$

$$Y_n(x) = f(0, \ldots, 0, x_{n+1}, x_{n+2}, \ldots),$$

$$Z_n(x) = \sum_{j=1}^n x_j f(e_j) = \sum_{j=1}^n X_j(x) = f(x) - Y_n(x),$$

for $x = (x_j) \in \mathbf{R}^{\infty}$. Then X_1, \ldots, X_n , Y_n are independent as random variables on $(\mathbf{R}^{\infty}, \mathbf{B}^{\infty}, \mu)$ so if φ, φ_n and ψ_n denote the characteristic functions of f, X_n and Y_n , we have

$$\varphi(t) = \psi_n(t) \prod_{j=1}^n \varphi_j(t)$$

and so

$$|\varphi(t)| \leqslant \lim_{n \to \infty} \prod_{i=1}^{n} |\varphi_{i}(t)|.$$

Hence by Corollary 2, p. 251, and Theorem b, p. 250 in [7], we find that $(f(e_i)) = a \in C(\mu^*)$, and so by Theorem 4.2 we have $a \in C(\mu)$. That is,

$$\lambda_0(f) = \lim_{n \to \infty} Y_n$$

exists a.e., and $\lambda_0(f)$ is measurable with respect to the tail σ -algebra, that is $\lambda_0(f)$ is constant a.s. Hence there exists $\lambda(f) \in \mathbf{R}$ so that

$$\lambda(f) = \lim_{n \to \infty} f(0, \dots, 0, x_n, x_{n+1}, \dots)$$
 a.e.

and, clearly, λ is linear on $\Lambda(\mu)$, and we have

$$f(x) = \lambda(f) + \sum_{i=1}^{\infty} x_i f(e_i)$$
 a.e.

Now suppose that $f \in \Lambda_L(\mu)$, and let

$$\begin{split} L &= \big\{x | \sum_{j=1}^\infty x_j f(\mathring{e_j}) \text{ converges} \big\}, \\ L_0 &= \big\{x \in L | \ f(x) - \sum_{\ell=1}^\infty x_j f(e_\ell) \ = \ \lambda(f) \big\}; \end{split}$$

then an argument similar to the first part of the proof of Theorem 4.2 shows that L_0 is a μ -Lusin affine space and so by assumption we have $0 \in L$. That is $\lambda(f) = 0$.

Now suppose that μ_n is symmetric for all n > 1, and let $f \in \Lambda(\mu)$. If we define

$$g(x) = f(x) - \sum_{j=1}^{\infty} x_j f(e_j),$$

then g and -g has the same distribution law, and $g = \lambda(f)$ a.e. Hence $\lambda(f) = 0$.

THEOREM 4.4. Suppose that μ is centered at 0, and μ_n is non-degenerated for all $n \ge 1$. Then we have that $C^*(\mu) = A_L(\mu)$.

Proof. Let $b \in C^*(\mu)$ and let A be a μ -Lusin affine space. Then A is linear, since μ is centered at 0, and we can find compact convex symmetric sets, K_n , so that

$$K_n \subseteq A$$
, $K_n + K_n \subseteq K_{n+1}$, $\mu(K_n) > 1 - 2^{-n}$.

Let $L = \bigcup_{n=1}^{\infty} K_n$; then L is a linear space $L \subseteq A$ and $\mu(L) = 1$. Now let

$$F = \{f | f \text{ linear: } L \rightarrow R, f | K_n \text{ is continuous } \forall n \},$$

$$||f||_n = \sup_{x \in K_n} |f(x)| \quad \forall f \in F,$$

$$\varrho(f,g) = \sum_{n=1}^{\infty} 2^{-n} \|f - g\|_n \quad \forall f, g \in F;$$

then it is easily seen that (F, ϱ) is a locally convex Fréchet space. Moreover, it is clear that the ϱ -topology is stronger than the $\sigma(F, L)$ -topology (note that (F, L) is a dual pair).

If $y \notin K_n$, then there exists $f \in (R^{\infty})'$, so that f(y) > 1 and $|f(x)| \le 1$ for all $x \in K_n$, that is $f \in K_n^0$, where K_n^0 is the polar of K_n in F. Since f(y) > 1, this shows that $y \notin K_n^{00}$, where K_n^{00} is the polar of K_n^0 in L. Hence $K_n^{00} \subseteq K_n$, and since the converse inclusion is obvious, we have $K_n = K_n^{00}$. So K_n is $\sigma(L, F)$ -compact and convex.

Since the ϱ -topology is the topology of uniform convergence on each K_n , we find that the ϱ -topology is weaker than the Mackey topology: $\tau(F, L)$. Hence we have

$$(i) (F,\varrho)' = L.$$

Now let $f \in F$ and define

$$S_n f = \sum_{j=1}^n b_j f(e_j);$$

then S_n is a linear functional on F, and S_n is continuous since $e_j \in L$ for all $j \ge 1$ by Theorem 4.1. Moreover, we have

$$\lim_{n\to\infty} S_n f = Sf = \sum_{j=1}^{\infty} b_j f(e_j)$$

since $(f(e_j)) \in C(\mu)$ by Theorem 4.3 and $b \in C^*(\mu)$. But (F, ϱ) is a Fréchet space and so $S \in F'$. So by (i) there exist $x \in L$ with

$$\sum_{j=1}^{\infty} b_j f(e_j) = f(x) \quad \forall f \in F.$$

Now the functional $f_j(x) = x_j$ for $x \in L$ belongs to F and so $b_j = x_j$ for all $j \ge 1$. Hence $b = x \in L \subseteq A$ and so $C^*(\mu) \subseteq A_L(\mu)$.

Now suppose that $b \notin C^*(\mu)$, then there exists $a \in C(\mu)$ so that $\sum_{1}^{\infty} a_j b_j$ diverges. Let

$$L = \left\{ x \in \mathbf{R}^{\infty} | \sum_{1}^{\infty} a_{j} x_{j} \text{ converges} \right\};$$

then as in the proof of Theorem 4.2 one finds that L is a μ -Lusin affine space, and since $b \notin L$, we have $b \notin A_L(\mu)$, and so $C^*(\mu) \supseteq A_L(\mu)$.

THEOREM 4.5. If μ_n is symmetric for all $n \ge 1$, then μ is centered at 0, and actually we have $0 \in A(\mu)$.

Proof. Let A be a μ -measurable affine set, then $\mu(A) = \mu(-A)$, so if $\mu(A) = 1$, then $A \cap (-A) \neq \emptyset$ and so $0 \in A$.

LEMMA 4.6. Let μ_n^* be the symmetrization of μ_n ; then the following five statements are equivalent:

(4.6.1)
$$\exists a > 0$$
, so that $\sup_{x \in R} \mu_n([x-a, x+a]) < 1$;

$$(4.6.2) \hspace{3.1em} \exists a>0 \,,\; \exists m_n \ a \ median \ for \ \mu_n, \ so \ that \\ \sup \mu_n([m_n-a\,,\,m_n+a])<1 \,;$$

(4.6.3)
$$\exists a > 0, \text{ so that } \sup \mu_n^*([-a, a]) < 1;$$

(4.6.4)
$$\delta_0$$
 is not a weak limit point of $\{\mu_n^*\}$;

(4.6.5)
$$\inf_{n} \int_{-\infty}^{\infty} \frac{|x|}{1+|x|} \, \mu_{n}^{*}(dx) > 0.$$

Remark. If $\{\mu_n\}$ satisfies one of the five statements above, we shall say that μ is totally non-degenerated. Note that μ is totally non-degenerated if and only if μ^* is totally non-degenerated. Condition (4.6.3) appears in [8] as condition (4.2).

Proof. From Theorem A, p. 245 in [7], we have

$$\mu_n(x|\ |x-m_n|>a)\leqslant 2\mu_n^*(x|\ |x|>a)\leqslant 4\mu_n(x|\ |x-b|>\tfrac{1}{2}a)$$

if m_n is a median of μ_n . Hence it follows that (4.6.1), (4.6.2) and (4.6.3) are equivalent. It is obvious that (4.6.3) implies (4.6.4), and (4.6.4) implies (4.6.5).

Now suppose that (4.6.5) holds, then we have

$$b = \inf_{n} \int_{-\infty}^{\infty} \frac{|x|}{1+|x|} \, \mu_{n}^{*}(dx) > 0$$

and if $a = b(2-b)^{-1}$, then a > 0 and

$$b \le \mu_n^*(x| |x| > a) + \frac{a}{1+a} = \frac{1}{2}b + \mu_n^*(x| |x| > a)$$

and so $\mu_n^*([-a,a]) \leq 1 - \frac{1}{2}b$. Hence (4.6.5) implies (4.6.3) and the lemma is proved.

LEMMA 4.7. Suppose that μ_n satisfies

$$(4.7.1) \qquad \qquad \int_{-\infty}^{\infty} x \mu_n(dx) = 0 \quad \forall n,$$

(4.7.2)
$$\inf_{n} \int_{-\infty}^{\infty} |x| \, \mu_n(dx) > 0,$$

$$\sup_{n} \int_{-\infty}^{\infty} |x|^{p} \mu_{n}(dx) < \infty,$$

for some p > 1, then μ is totally non-degenerated.

Proof. Let $1 < q < \infty$ be taken so that 1/p + 1/q = 1, then a slight modification of the proof of Inequality II, p. 6, in [6], shows that

(i) $\mathbf{P}(X \ge \lambda \mathbf{E} X) \ge (1 - \lambda)^q (\mathbf{E} X)^q (\mathbf{E} X^p)^{-q/p}$ whenever X is a nonnegative random variable with finite pth moment and $0 \le \lambda \le 1$.

Let X_n be a random variable with distribution law μ_n , and let $X_n^* = X_n' - X_n''$ be a symmetrization of X_n . Then by Theorem 2.6 in [3], we have

$$\mathbf{E}|X_n| \leqslant \mathbf{E}|X_n^*|,$$
 $\mathbf{E}|X_n^*|^p \leqslant 2^p \mathbf{E}|X_n|.$

Now let $a=\inf_n \mathbb{E}|X_n|$ and $A=\sup_n \mathbb{E}|X_n|^p$, then a>0 and $A<\infty$ by (4.7.2) and (4.7.3), hence by (i) we have

$$\mathbf{P}(|X_n^*| > \frac{1}{2}a) \geqslant \mathbf{P}(|X_n^*| \geqslant \frac{1}{2}\mathbf{E}|X_n^*|)
\geqslant 2^{-a}(\mathbf{E}|X_n^*|)^{q}(\mathbf{E}|X_n^*|^{p})^{-a/p} \geqslant 2^{-2q}a^{q}A^{-a/p}.$$

and so (4.6.3) is satisfied.

THEOREM 4.8. If μ is totally non-degenerated, then $C(\mu) \subseteq l^2$ (here l^2 is the space of square-summable sequences).

Proof. We have $C(\mu) \subseteq C(\mu^*)$, where μ^* is a symmetrization of μ . Let $\varepsilon > 0$ be chosen so that $\mu_n^*([-\varepsilon, \varepsilon]) \leq 1 - \varepsilon$. Now we can find Borel functions f_n from I = [0, 1] into R so that

$$\lambda(f_n^{-1}(A)) = \mu_n^*(A) \quad \forall n \geqslant 1 \quad \forall A \in B(\mathbf{R}),$$

where λ is the Lebesgue measure on I. Let $\Omega = I^{\infty}$ and $\mathbf{P} = \prod_{i=1}^{\infty} \lambda_i$, and let

$$X_n(\omega) = f_n(\omega_n)$$
 for $\omega = (\omega_n) \in \Omega$.

Then X_1, X_2, \ldots are independent random variables and X_n has distribution law μ_n^* . Since we have that

$$\lambda(|f_n| > \varepsilon) \geqslant \varepsilon$$

we can find $a_n \geqslant \varepsilon$ so that

$$\lambda(|f_n| > a_n) \leqslant \varepsilon \leqslant \lambda(|f_n| \geqslant a_n)$$

and so there exist a Borel set A_n so that $\lambda(A_n) = \varepsilon$ and

$$\{|f_n| > a_n\} \subseteq A_n \subseteq \{|f_n| \geqslant a_n\}.$$

Now let

$$Y_n(\omega) = egin{cases} 1 & ext{if } \omega_n \in A_n, \ 0 & ext{if } \omega_n \notin A_n; \end{cases}$$

then Y_1, Y_2, \ldots are independent identically distributed random variables, so that

$$\mathbf{P}(Y_n = 1) = \varepsilon, \quad \mathbf{P}(Y_n = 0) = 1 - \varepsilon.$$

Moreover, we have $0 \leqslant Y_n \leqslant a_n^{-1}|X_n| \leqslant \varepsilon^{-1}|X_n|$.

Now let $b = (b_j) \in C(\mu^*)$; then by Proposition 2.8 in [3] we have that

$$\sum_{j=1}^{\infty} b_j^2 X_j(\omega)^2 < \infty \text{ a.s.}$$

157

and so

$$\sum_{j=1}^{\infty} b_j^2 Y_j^2 < \infty \text{ a.s.}$$

Since $b_j X_j \rightarrow 0$ a.s. and μ is totally non-degenerated, we must have that $\{b_j\}$ is bounded. Hence

$$\sup_{j} |b_j^2 Y_j|^2 \leqslant \sup_{j} |b_j|^2 < \infty.$$

So from Corollary 3.3 in [3] we find that

$$\mathbb{E}\left(\sum_{j=1}^{\infty}b_{j}^{2}\,Y_{j}^{2}\right)=\varepsilon\sum_{j=1}^{\infty}b_{j}^{2}<\infty$$

and so $b \in l^2$. Hence $C(\mu) \subseteq C(\mu^*) \subseteq l^2$.

THEOREM 4.9. Suppose that u satisfies

$$\int_{-\infty}^{\infty} x \, \mu_n(dx) = 0 \qquad \forall n \geqslant 1,$$

$$\sup_{n} \int_{-\infty}^{\infty} x^{2} \mu_{n}(dx) < \infty;$$

then $l^2 \subseteq C(\mu)$ and $A_L(\mu) \subseteq l^2$.

Proof. Let $a = (a_j) \in l^2$, then

$$\mathbf{E} \Big| \sum_{j=n+1}^{n+m} a_j X_j \Big|^2 \le \sup_j \mathbf{E} |X_j|^2 \sum_{j=n+1}^{n+m} |a_j|^2$$

if X_1, X_2, \ldots are independent and X_j has distribution law μ_j . Hence $\sum_{i=1}^{\infty} a_i X_j$ converges in L^2 and so $a \in C(\mu)$. That is $l^2 \subseteq C(\mu)$.

It is easily seen that $A_L(\mu) \subseteq C^*(\mu)$, and since $l^2 \subseteq C(\mu)$ we have $C^*(\mu) \subseteq l^2$, and so the theorem is proved.

THEOREM 4.10. Suppose that μ satisfies

$$(4.10.1) \qquad \int_{-\infty}^{\infty} x \mu_n(dx) = 0 \quad \forall n,$$

$$\sup_{n} \int_{-\infty}^{\infty} x^{2} \mu_{n}(dx) < \infty,$$

(4.10.3) μ is totally non-degenerated,

then μ is centered at 0 and we have

$$(4.10.4) \Lambda(\mu) \subseteq L^2(\mu).$$

(4.10.5)
$$C(\mu) = C(\mu^*) = C^*(\mu) = A_L(\mu) = l^2.$$

Remark. Note that under (4.10.1) and (4.10.2) we have that

$$(4.10.3)^*$$
 $\inf \int_{-\infty}^{\infty} |x| \mu_n(dx) > 0$

implies (4.10.3) by Lemma 4.7.

Proof. By Theorem 4.8 and Theorem 4.10, we have $C(\mu) = C(\mu^*) = l^2$ and so μ is centered at 0. Moreover, it is clear that

$$\sum_{j=1}^{\infty} a_j x_j \in L^2(\mu) \quad \forall a = (a_j) \in l^2.$$

Hence by Theorem 4.3 we have that $A(\mu) \subseteq L^2(\mu)$, and from Theorem 4.4 it follows that $A_L(\mu) = O^*(\mu) = l^2$.

THEOREM 4.11. Let g be a non-negative function on \mathbf{R}_+ and $p\geqslant 1$. If we have

$$(4.11.1) \qquad \qquad \int_{-\infty}^{\infty} x \, \mu_n(dx) = 0 \quad \forall n,$$

$$(4.11.2) R_n(ts) \leqslant g(t)R_n(s) \forall t, s \geqslant a \; \forall n \geqslant 1,$$

(4.11.3)
$$\mu$$
 is totally non-degenerated,

$$(4.11.4) \qquad \qquad \int\limits_{-\infty}^{\infty} t^{p-1} g(t) \, dt < \infty,$$

where $R_n(t) = \mu_n(x \in \mathbf{R}|\ |x| > t)$ and a is a positive number, then μ is centered at 0, and we have

$$\Lambda(\mu) \subseteq L^p(\mu)$$

Remark. From Lemma 4.7 it follows easily (4.11.1), (4.11.2), (4.11.4) and

$$(4.11.3)^* \inf \int_{-\infty}^{\infty} |x| \, \mu_j(dx) > 0$$

implies (4.11.3), whenever p > 1.

Proof. Let $X_1, X_2, ...$ be independent random variables with distributions $\mu_1, \mu_2, ...$ If $a \in C(\mu)$, then $\sum_{j=1}^{\infty} a_j X_j$ converges a.s., and so $\sup_{j} |a_j X_j| < \infty$ a.s. Hence by Lemma 3.1 in [9] we have that

$$\sum_{j=1}^{\infty} R_j(a_j^{-1}t_0) < \infty$$

for some $t_0 > 0$, moreover, since $a \in l^2$ by Theorem 4.8, we have that $b = \inf\{t_0 a_j^{-1}\} > 0$, and we may assume that t_0 is taken so large that $t_0 a_j^{-1} \ge a$ for all $j \ge 1$. Then we have

$$\mathbf{P}(\sup_{j}|a_{j}X_{j}|>t)\leqslant \sum_{j=1}^{\infty}R_{j}(ta_{j}^{-1})\leqslant g(tt_{0}^{-1})\sum_{j=1}^{\infty}R_{j}(t_{0}a_{j}^{-1})$$

for $t \geqslant at_0$, and so $\sup_j |a_j X_j| \in L^p$ by (4.11.4). Hence from Corollary 3.3 in [3] we have that

(i)
$$\sum_{j=1}^{\infty} a_j x_j \in L^p(\mu) \quad \forall a = (a_j) \in C(\mu).$$

Now we may define

$$|a|_{p} = \sup_{n} \left\{ \int \left| \sum_{j=1}^{n} a_{j} x_{j} \right|^{p} \mu(dx) \right\}^{1/p} \quad \forall a \in C(\mu),$$

$$Ta = \sum_{j=0}^{\infty} a_{j} x_{j} \quad \forall a \in C(\mu).$$

Then by Theorem 2.6 in [3] we have

$$\text{(ii) } \left\| \left. Ta \right\|_p = \left\{ \int \left| \sum_{j=1}^\infty a_j x_j \right|^p \mu \left(dx \right) \right\}^{1/p} = |a|_p \ \, \forall a \in C(\mu).$$

Moreover, a slight modification of the proof of Theorem 5.2 in [2] shows that

(iii) $(C(\mu), |\cdot|_p)$ is a Banach space.

Since the identity map, $I: (C(\mu), |\cdot|_p) \to (C(\mu), |\cdot|_\mu)$, obviously is continuous, we have that $|\cdot|_p$ and $|\cdot|_\mu$ give the same topology on $C(\mu)$ by the closed graph theorem. Hence by (ii) we find that T is an isomorphism of $(C(\mu), |\cdot|_\mu)$ onto a closed subspace of $L^p(\mu)$. Then $T(C(\mu))$ is certainly also closed in $L^0(\mu)$ and by (4.3) we have

(iv)
$$\Lambda_L(\mu) \subseteq T(C(\mu))$$
.

Now let A be a μ -Lusin affine space. If $0 \notin A$, then there exists a linear functional, f, so that f(x) = 1 for all $x \in A$. Then $f \in A_L(\mu)$ and so we can find $\alpha \in C(\mu)$, such that

$$\sum_{j=1}^{\infty} a_j x_j = 1 \text{ a.e.}$$

But the sum converges in $L^p(\mu)$ and $p \ge 1$, and so

$$1 = \int d\mu = \sum_{j=1}^{\infty} a_j \int_{-\infty}^{\infty} x \, \mu_j(dx) = 0.$$

Hence the assumption of $0 \notin A$ leads to a contradiction, and so we must have that μ is centered at 0. Finally, (4.11.5) follows from (iv) and Theorem 4.3.

References

- [1] C. Borel, Convex measures on locally convex spaces, Institut Mittag-Leffler, 10 (1973).
- [2] J. Hoffmann-Jørgensen, Sums of independent Banach space valued random variables, Mat. Inst. Aarhus Univ., Preprint Series 15 (1972).
- [3] Sums of independent Banach space valued random variables, Studia Math. 52 (1974), pp. 159-186.
- 74] The theory of analytic spaces, Mat. Inst. Aarhus Univ., Var. Publ. Ser. 10 (1970).
- [5] G. Kallianpur, Zero-one laws for Gaussian processes, Trans. Amer. Math. Soc. 149 (1970), pp. 199-211.
- [6] J. P. Kahane, Some random series of function, D. C. Heath and Co., Lexington Mass. 1968.
- [7] M. Loéve, Probability theory, 3rd ed., D. van Nostrand, Toronto-New York-London 1963.
- [8] M. Marcus, Uniform convergence of random Fourier series, Preprint from North Western Univ. Evanston Ill.
- [9] M. Marcus and C. Jain, Integrability of infinite sums of independent random variables, North Western Univ. and Univ. of Minnesota.
- [10] K. Urbanik, Random linear functionals and random integrals, Wrocław Univ.

Received November 24, 1975 (1095)