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An infinite family of joint spectra
by
ZBIGNIEW SLODKOWSKI

Absteact. Tt is constructed an infinite family of uppersemicontinuous joint
spectra having tho spectral mapping property-
s

Introduction.

DrprNiTroN 0.1. Let X be a complex Banach space. We denote by
¢, (X) the family of all finite subsets 8§ of L(X), the algebra of all bounded
linear operators from X into X. A spectral system ¢* on ¢o(X) (short:
spectrum on X) is a map S->0*(8), where 8 = (4;,...,4,) belongs to
¢o(X) and o*(8) is a subset of C” satistying the following conditions.

(a) For each S the set ¢*(8) is & compact subset of c".

(b) If § consists of a single operator 4, then o*(4) = o*(8) is a non-
void subset of the usual spectrum o{d).

The definition as well as Definition 1.4(i), (i), of spectral mapping
property and projection property were for the tirst fime explicitly intro-
duced in [4]; and there the reader can find some background of these
concepts.

~ The most important and natural spectral systems, e.g. the usual
joint spectrum, the Taylor spectrum, o, and some others which are investi-
gated in [4], satisty the following additional conditions.

(i) o™ possesses the spectral mapping property (Def. 1.4(i)).

(i) o* is uppersemicontinuous (Def. 2.3).

PrrrNroioN 0.2, In this paper any joint spectrum which fulfils
(i) and (i) will be called a joint spectrum. ‘

Up to now only finite number of so-defined joint spectra was known.
The main object of this paper is to construct an infinite family of joint
spectra. All construected spectra are parts of Taylor spectrum. This result
is a partial confribution to the problem of describing the family of all
joint spectra in given Banach or, especially, Iilbert space.

In §1 we shall construct spectral systems o, and o,; and show that
the latter have the projection property. As a by-product we obtain a new,
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relatively simple, proof that the Taylor spectrum has the projection prop-
erty. )

yIn § 2 the spectra of adjoint operators are expressed by some spectra
of given operators. We apply these formulas in proving that the spectra
are uppersemicontinuous and that o,;, have the projection property.
At the end we show that all spectra o, , 05, have the spectral mapping
property and draw a conclusion that o, .U 0,; as well o, ;, 0,; and Taylor’s
spectrum are joint spectra. .

In §3 we show that all introduced spectra are different in case of

infinite-dimensional Hilbert “space.

§ 1. The projection property. Let us recall that chain complex con-
sists of linear spaces and endomorphisms

(1.1) 0>0>X,5 X, % Xy .. >

(finite or not) such that all compositions dd = 0. As a rule, we shall assume
that spaces are Banach and coboundary maps are bounded linear operators.

Only for convenience, we will assume that X, are left s/-modules,
and for all A e the operator z—Ax: XX belongs to L(X), but we
do not assume that there is any topology in .

Z (o) will denote the center of 7.

Chain complex (1.1) is exact at X if Im (X,_,-> X,) = ker (X;-3 X,,).

All spectra which we shall define will be subspectra of Taylor’s spec-
trum. Thus we have to recall the definition of Koszul complex. This will
the cohomeological version (cf. § 1, [2]), but we shall introduce the complex
in the inductive way. This will make proofs easier because it does not
involve the machinery of homological algebra.

Derinrrron 1.1. We use induction on #, the number of operators,
and assume that 4, ..., 4,, belong to Z (=) (for example, o7 = [4y, ..., 4,
it will be easy to see that Definition 1.1 does not depend on the choice
of «7 and Definition 1.3 does not depend on it either). For # = 1 by Koszul
complez we mean the following chain complex:

Ay
ver >0 X - X50-...

Let us assﬁme that we have already defined the Koszul complex for any
n-tuple from ¢,(X). Let (4,, ..., 4,.,) € (X), 4, cZ(«). Lot

—>0—>X0£> X ...‘—‘Z>Xn—>0»—> .

denote the Koszul complex of (4,, ..., 4,). Then by the Koseul complex
of (44y...,4,,,) Wwe mean )

& o & @
>0->Y—> Y= Yy uo. > ¥, 0> ...,

©
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where
Y.zz = Xp @Xp—l

and the coboundary maps d': Y)Y, =X, ,®X, are given by the
formule .

@ (g By} 2 = (A Ay, g +-( —1)P4,,X,), w,eX, @y 6X, .

It appears again that {¥,} is a chain complex, ie. d’s are «/-module
homomorphisms and all compositions @'d’ are zero. We omit the simple
proof which vses the inductive assumption that dd = 0 and that d is an
s/-module homomorphism (henee d4,,, = Ay qd).

DmrrNrrron 1.2, Let A = (4,, ..., 4,) ¢ 6 (X), (X —s7-module, 4, ¢
eZ()). We say that a tuple of complexes ¢ — (Cry--ey0,) € Z,(4) iff
the Koszul complex induced by the tuple 4 — eI — (A,—el,...,4,~¢,)
ig not exact at X,,.

Now we are ready to define spectral systems Oty Osty 204 o,

DErNITION 1.3.

(i) Let % be a non-negative integer and 4 = (4, ..., 4,) e 6,(X)-
Then .
To(d) = U
n—k<p<n
(i) Let %> 0. We say that a tuple o = (¢, ..., ¢;) of complemes

belongs to 0,,5(A) iff ¢ belongs to the sum |J Zy(4) or Im(in Xyp1)
I<p<sh
is not closed, where d is the coboundary map in the Koszul complex indu-

ced by the tuple 4 —ol := (4, —¢,I,..., A, —c,I).
(iii) The Taylor spectrum oy(4) is equal to the sum

Zp(4).

o0

op(d):= U Z,(4).

p=—c0

For & = 0 these spectra have already been known; o,, is the point
approximate point spectrum (denoted by o, in [4]) and 0,0 18 the defec-
tive gpectrum, as it is called by Chandler Davis (denoted by o, in [4]).

Dmpzroron 1.4 ([4]). :

(i) Let 8 be a complex Banach gpace and §->c*(8) a spectral system
on it. Wo say that o* has o spectral mapping property with respect to poly-
nomial mappings if for cach S belonging to ¢,(X), 8 = (4,, ..., A,,() and
for each polynomial mapping p = (py, -.., p,,) from €™ into C™

o*(p8) = pa*(8).
Here pf is a member of ¢,(X) given by

P8 = (pl(A17 vy dy), :"7.'pm;(A-1! sy A”)).

4 — Studla Mathematica LXI3
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(i) 'We say that a spectral system o has a projection property if it
has a speetral mapping property with respect to special polynomial
mappings, namely the projections

DBy ey ) = (B1y -5 %)y mz=n.

Of course, the projection property is a necessary condition for having
the spectral mapping property, so we shall first prove that o, op, have
a projection property. We need some preparations for that. Next lemma
is & slight modification of Temmas 1 and 2 in [3], or 2.6 and 2.7 in [4].

Tmyvma 1.5, Let X be a Banach space and A belong to L(X). Let [4]

denote the subalgebra of L(X) algebraically generated by A and I. Let p be

a seminorm on [A] such that _
(1.2) p(BO)< p(B)lel, B,Celdl,
(1.3) VeeCde, >0V Beld] p((4'—cl)B)> &, p(B).
Then p =0 on [A].
Proof. Suppose that p == 0. Let ¥ denote a complex Banach space

which is the completion of non-zero quotient space [4]/kerp endowed
with the norm

B+kerp—>p(B).
This norm induces in ¥ the norm which we denote by || ||. Let ¢ denote
the canonical injection [A]/kerp—Y. The operator
Bikerp—~AB-+kerp: [A]/kerp—[A]/kerp:
is continuous from (1.2). Let T e L(Y) denote its continuous extension.
Then by (1.3) it holds that
(T — eI)g(B +kerp)|| > &lp(B)|  for every c€C and Be[A].
As Img i8 dense in ¥, we bhave
L (-l elyl, 60, ye¥,

thus o,(T) = @ but this is impossible in non-zero Banach space because
o (T) = 8o(T) (cf. e.g. [B]).
LeMMA 1.6, Let
%,-257
lﬁ l_i
a

Zy—Z

be a commutative diagram consisting of comples Banach spaces and commut-

ing operators. Let d(%,) # Z. Then there exists a complew number ¢ suoh
that

(1:4) d(Zo)+(A—cl)(Z) # Z.
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J?'roof. Put 4, = A —ol. Suppose that the conclusion does not
hold, i.e. for every complex ¢ there is

A(Zy)+4,(2) = Z.
This means that the operator

(2, 20)>A2+dey: ZDZ,—~Z
is an epimorphism, hence the adjoint operator
Wes(Abw, d*w): 2*->7* < Z¥
- ig an igomorphical embedding, ie. there is ¢, > 0 such that
(1.5) 4wl -+ [1d"wl > e, Jwl  for all w eZ*.

From the assumption d(Z,) # Z, so that d* is not an isomorphical embedding.
Hence there exists a sequence (w,)5, = Z* such that

(1.6) i =1, k=1,2,...,
(1.7) ' limd*w;, = 0.
Ix3

Let [A*] denote the subalgebra of L(Z*) algebraically generated by A*
and I. Put

(1.8) p(b) = limsup ||[Bw,|] for all B in [4*].
" Ie

From inequality (1.5) we see that

(1.9) 47 Bwgl+ | Bwy| = &, |Bwyll, Be[d"].

Bvery B in A* is of the form B = »(4*), where v is 'a polynomial. So the
following holds

(1.10) li;nd*B'w,c = likmd*v(A*)w,c = Ii}]caw(A:)d*wk =0
because of (1.7) and A¥d* ; d@* A*. Relation (1.9) implies

1im].nsup 45 B +limhsup (" Buwyli > acliml Sup |l Bwl.
So using (1.10) we obtain
(1.11) " p((4*~cI)B)= &p(B).

The geminorm p iy defined on [4*] and satisfies (1.2), (1.3), hence from
Lemma 1.5 p == 0. Bub p(I) = limsup ||[Iw] = 1 (see (1.6)). The contra-
I

o
diction shows that for some complex number ¢ (1.4) holds.
The following theorem is essentially new result of the paper. It is
the main tool used in proving the projection property.
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TEEOREM 1.7. Let X be a complew Banach space, A’ = (4,, 4,, ...

Ay, Ay) e (X), 4 = (44, .. ). If P: C""'—C" is the canonical
projecf'mn, then for every integer the followmg hold:

(i) Zp1(A)VZ,(4) o PZ,(4"),

(i) Z,(4) = PZ,(4).

Proof. (i) Let

. —>O—>X,,—d> Xi—... 4 X,—~0—...

and

a d .
eee 0> Y= Y. ~+Y”+1——>D—->...

denote Koszul complexes of 4 and 4’, respeciively. Then it is sufficient
to show: if

(L12) Im(X, _2—2 X, ) = 7ker(Xg,1—”-z> x,),
In (X, .~ X,) = ker(X,—~ X, 1),

then ; )

(1.13) m(Y, % ¥,) = ker(¥,3Y,.,).

As dd = 0, we only have to prove the inclusion o in (1.13).

T (2,9)e¥Y,=X,0X,, and d(»y) =0, then (of. Def.
1.1, 1.2)
do =0,
dy+(—1P 4,10 = 0.
There exists 2" € X,,_, such that #= da’ (from (1.12)j. Thendy+(—1° 4, &

= d(y+(—1)P4,,,4) = 0 and from (1.12) theére is 2" e X, , satisfy-
ing y+(—1)P4,,,0" = do'. The pair (s, ")
(', a"") = (@,¥).

(ii) Let (X;) denote the Koszul complex of (Al,
ficient to show: if

(1.14)

belonging to ¥,_,; fulfils

oA, It iy guf-

I (X, > X,) #ker(X,%X,..),

then there exists a complex number ¢ such that

(1.15) m (Y5 V) # ker(Tpp> Ty,

where (Y,) denotes the Koszul complex of the tuple (4, ..., 4,, 4y —ol).
If ¢ does not fulfil (1.15), then for every eker(Xz,i X,.1) we have
(0, %) eker( Y, 1% Ypie) (cf. Def. 1.1) and there exists (2, 2") e ¥,

icm
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=X, ®X,_, satisfying (0, ) = d(2’, »"’). Hence da’ = 0 and & = dz" -+
4+ (=1 (App—el)@’, what means that

(1.16) (AJG—H_GI)(ker(Xp”iXp+1))+1m(Xp~1_d’Xp) =ker(X1,i> Xy
Since d’s are «/-module homomorphisms, the diagram

- 7,57
Apsrt tpsa
Z —~Z

(where Z == ker(Xpi Xy) and Z, = X,,_,) commutes and from (1.16)
agsumptions of Lemma 1.6 are fulfilled. Applying the lemma we obtain
a complex number ¢, such that equality (1.16) does not hold and hence
(1.18) is true.

COROLLARY 1.8. ATl spectral sysiems o5, k2 0, as well as the Taylor
spectrum an, have the projection property.

The corollary follows immediately from Theorem 1.7 and Definition
1.3(i) and (iii). To obtain the projection property for o, ; we need some
information on, spectra of adjoint operators. ‘

§ 2. Application of spectra of adjeint operators. In this section we
shall prove the following

TuEoREM 2.0. Let X be a Banach space and Ay, ..
Then for every imteger % the following hold:

(i) ”u.k(A?: AERE] A:) = 0y, Ic('A]’ ™ An)y
(ii) oy, (45, sy An) = Onie(Aas o oey Ag)e
Though the theorem is not difficult, we need some lemmas to prove it.

., A, belong to L(X).

Levma 2.1. Let X Y5 Z be a chain complex (of Banach spaces and
linear operators, as usual). Then the following conditions are equwalem

(1) Ima = kerp and Imp is closed;

(ii) Tmp* = kera and Imd* is closed.

This lemma belongs to so-called mathematical folllore, but as we
cannot point out the place where it is proved, we shall prove it ourselves..

Proof., (i)=(ii) Tma is closed, hence from the well- known prop-
erty of adjoint operators, Ima* is closed too Let 4* ekera®, i.e. y*(Ima)
= 0. Let us clefine the functional 2{ & (Im pB)* by the formula

(2.1) 2 (By) =y ().

As y*(y) = 0 if (y) =0, i.e. y e Ima, this function is well defmed. and
seeing that y—fy: Y——>ﬁ( Y) is open we may conclude that & 15 conti-
nuous. From the Hahn-Banach ’nheorem we may extend it to 2* on the.
whole space Z. Hence and from. (2.1) y* = 2"
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(i) = (i) From the implication we have just proved it follows that
Ima™ = kerg* and Imp** is closed. Let uy identify ¥,Z in the eca-
nonical way with subspaces of ¥**, Z**, respectively. Then :

(Ine*)nY =Ima,
(ker **)NY = kerp,
Imp™NZ = Im§p,

and the . implication is evident.
Levma 2.2. Let X be an o/-module, Ay, ..., A, € Z() and let

s XA X A X, S X0
denote their Koszul complex. Let
037,52, % L7, 50 ...

denote the Koszul complex of (AT, ..., Ay). Then this complex is isomorphic
with the complex adjoint to the previous one, i.c. there emists a linear of-
module isomorphism p,,: Zp—>XZ_1, such that the following diagram commutes

...—>0—->Z0~§> Z, L - 7,0 ...
(2.2) W()‘I, WI\L ‘l‘%”'
+ 0% ok a* @ o

: i 20X X, = X0

Proof. We ghall prove the lemma by induction on n.
For » = 1 both complexes are

*

A B
L0 X 3 X0 ...

So the statement is trivial. Let us. assume that we have proved it for n.
Let

a a
cor > O0>W— Wy . =W, >0 ...

[

denote the Koszul complex of the f;uple (Ayy ooty Apyy)-

Now Wfo shall construct required isomorphisms g, ..., 4,,,, Where
Yyt YVP—-> Y, 1-p- By Definition 1.1, W, = Z,®Z,_, and ¥y, _, = Xn 1
®X;_,- We put ‘

Yo(%) Zp1) 1= (Pp18p1y (= 1)y 2y

It is obvious that y, is an »/-module isomorphism if Pp-1, a0d @, are.

Form Definition 1.1 themap ¥, _, (=X, ,®X Y, (= X,
- . o 1 (= Xy i@
@X,_,) is given by the formula " " :o ' i e

d(wﬂ—lﬂ wﬂ—:o—l) = (dwn—pi dmn—p—-l + ( - 1)n_p-An+l‘”n—1z) "
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An eagy computation shows that
a* (m;-p-ny w:—p) = (d*mZ—p+1'|‘(“1)7L_DAZ+19”:—1” d*w:—p)'
Let us remember that d: W,—W, (= Z,,,®Z,) i8 defined by
) d(zp? Rp_1) = (dzp’ dzpv1+(—1)pAn+lzp)
and

Vi1 By Bp) = ((szpz (‘“1)”+1‘7’11+1zp+1)7

and disgram (2.2) commutes. Now checking that diagram

a
W, =Wy
g . o y o+l
Yu-«p~l—l'—>' Yﬂ,-—p

commutes is only a matter of a plain computation which we omit.

Proof of Theorem 2.0. As proofs of identities (i) and (ii) are almost
the same, we will prove only one, for instance (ii). For that it is* suﬁicieim
to show that (0, ..., 0) # Opr(Ayy ...y 4,) i (0,...,0) ¢ 05 5(ATy oy A7)
The firgt condition holds by Definition 1.3(ii) if and only if the Koszul
complex of 4,,..., 4,, denoted by

IS S S AL A A S
is exact at X,,..., X and Im(Xk—d» X;1) is closed. This by Lemma 2.1
is equivalent to the condition that the complex

a ar L
e 0> XS Xy > X0

is exact at X%, ..., X¥ and this by Lemma 2.2 is equivalent to the condi-
tion that the Koszul complex of A, ..., Ay, denoted by

o 0Ty Ty on LDy =0 oy

i8 oxact in Zy_ps Zptq1s +++1 Ly, What means exactly that (0, ..., 0) does
not belong t0 oy(As, ..., 4n)- ‘

Now we consider uppersemicontinuity of our spectra.

DayNrrion 2.3. Let X be a Banach space and let o* be a spectral
systemn. on it. We shall say that o is uppersemicontinuous if for every
integer n > 1 the seb

2.8)  {(Bay -ves Inj Ay ooy An) € CT X [L(X)" e X)]:
(Agy ovoy ) ¢ “*(A;U vy A}

is open in C"x [L(X)*Ne(X)]:
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This definition means exactly that for every m > 1 the set-valued
function :
(A1, ey Ay)=0" A1y eny A): G(X)NL(X)">F (CY)

(where & (€™) is the space of all compact subsets of C") is uppersemicon-
tinuous. The definition says that the graph of the function is closed.
If one looks at the proof ot Lemoma 2.1 in [1], one can see that what
Taylor has really proved may be stated ag follows.
LEMMA 2.4, Let
3788w

be an exact chain complen of Banach spaces and operators, Then there emists
&> 0.such that if
a8 LYAY

is @ chain complex satisfying max ([la— ooll, 18— Boll, lly —»oll) < &, then it
18 exact at ¥ (i.6. Ima = kerp).
Let

(A3, .0y 42), (A ooy A) € 00 (X)NL(X),

.(7’?7 ceos Vi) E0s(4Y, ..., 4))  and (Vay-eesvn) € C™.

Let
0

a0 ad a
— )—> — — — — . e
.._>0_>X0_d,X17X2H*_.._Z w0 ...

denote Koszul complexes with d° for (A3—941I, ..., A%—yi1) and & for
(Ady—y I, ..., A;—y,I), respectively. From Lemma 2.4 it follows that if
“d-complex” is exact in X, , ..., X,, then 3¢ > 0 such that if |d— do|
<s, then d-complex is exact in X, 4, ..., X,. As boundary operators d
depend in continuous way on (yy, ..., ¥n, 4y, ..., 4,), there exists a neigh-
bourhood of (3}, ..., 5, 4], ..., 43) such that for (y1, ..., yp, Az, ..., 4,)
in it we have (yy; ..., ¥a) ¢ 055(4y, ..., 4,); thus oy, is uppersemiconti-
nuous. :
From Theorem 2.0

{15 ees Pas Aay ooy Ai)t (V1) ooy 7) E 00 0(dyy ooey Ay)}
=y vy Ary ooy An) (V1) oy ) # 00 (AT, .00, AN}

Tfle latter set is open from uppersemicontinuity of 0y, and eontinuity of
@ L(X)»L(X"), and so such i8 the former; thus 05 18 Uppersemicon-
tinuous. Such is oy because for every n

GT(AH ree A ) = Gb,n(-Alv An)'

CorOLLARY 2.5. All spectral systems Oy Os,; WNA op are. uppersemi-
continuous.

icm®
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COROLLARY 2.6.' AU #peciral systems o, possess the projection prop-
erty.

Proof. We apply Theorem 2.0(ii). Let P: C*t'—>C" denote the
canonical projection. Let 4,,..., 4,,; commute. Then

P(Gn,k(-AJ.? AR -A"m Aﬂ«]—l)) = P(Ud,k(A’ry -A-* A*+1))
= Ud,k(Ar, seey A::) = O'n,k(Aly ey An)
(from. Corollary 1.8).
We need one more lemma.

Levma 2.7, Let (Ay, Ay, Ay) commute. If [A,, 4y, 4,] denotes the
subalgebra of L(X) algebraically generated by I, A,, A,, A,, then
(2.4) op(dy, Aqy dg) < Oy, dg, ) (A1y Asy As),
where oy denoles the usual joint spectrum computed with respect to the
commutative algebra [A;, 4., 4,].

This lemma is a special case of Lemma 1.1 in [1].

Now we apply Theorem. 3.3 from [4] which states that if a speetra.l
system hag the projection property and. satisfies the condition of Lemma 2.7
than it has the spectral mapping property. All spectra g, y, 0y 1, aTe parts
of o, 80 they satisfy condition (2.4) and from the mentioned theorem all
these spectra have the spectral mapping property (cf. Ooro]lary 2.6 and
Corollary 1.8).

.E’ROP()»SII‘ION 2.8, If o* and & are joint spectm (Def. 0.2), then the
spectral system o*U G defined by

(*U8) (A1, ey Ap) 1= 0*(dyy oy A)UF( Ay, .., A,)

is @ joint spectrum.

Proof. We omit a trivial proof that ¢*U & possesses a spectral map-
ping property if o* and & do. As to uppersemicontinuity -notice that
seb (2.3) considered for ¢*U & is an interesection of such sets taken for o*
and ¢; thus it is open.

We will sum up the above remarks in
TemoreMm 2.9. Al speciral systems in the family
“{oan B 0 U ot B2 03U {0, Yos,t Ky 1 Ky 12 0}U {og}
are joint specira.
§ 8. All introduced spectra are different. All spaces in this paragra.ph '
are Hilbert and separable.
Norarronsg 3.0. If X is a Hilbert space, then
(i) LX) = {(®)o: %€ X, 3 la,|® < 400} is a Hilbert space with
usual norm and olyeraxtlons;
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(ii) if A4 e L(X), then by A we mean the operator I,(X)—>1y(X)
defined by the formula

(A#);, = Aw;, where >0 and & = (%;)z0}
(iii) by V € L{ly(X)) and D e L(l,(X)) we denote the operators
~ 0, i=0,
(Vib); = .
@iy, >0,
(D#) = @;y;, Where & = (%;)iz0-
Lmyma 8.1, Let X be a Hilbert space amd (4, ..., 4,) €0 (X); if
. —+0~+XOE>X1—-> iX,,,—M)-—»

denotes the Koseul complen of (Ay, ..., A,), then the Koszul complen of the
commartative tuple (4, ..., 4,) € ¢, (1(X)) is isomorphic with the following
compler .
o 0 L (X)) S (XS L S LX) 0
Proof. We shall prove it by induction. For # = 1 both eomplexes

A
are of the form 0— 1,(X)= 1, (X)~ 0 so this case is trivial. Let us assume
that the lemma holds for some n, i.e. there exist @, @1y .- ) Pp; ¥p: 4,
—1(X,) such that the diagram

ver =>0— Zo——> ZI—-> Zy— ...-+Zn_1i Z, =0 ...
(8.1) wl o ow o my _ nl
e 0 1 (X)) S 1, (X)) S 1 (Xy)~> .. LX) 0 ...

commutes, where higher line denotes the Koszul complex of the oper-
ators A;,...,A,.Let 4,,...,4,,, ¢ Z(«) and let

a
0> ¥ S Y. B Y, 0— ..
and !

0w Ew4 ... 2
> 0=>Wy—W,— ... > W, =0 ...

denote Koszul complexes of A, ..., A,., and A, ..., 4,.,, vespect-
ively. We shall now define an isomorphism of these complexes congisting
of the operatory

Vp: Wp>l(Y,), »=0,...,n4+1.
By Definition 1.1, Y, =X,0X, ,and W, =7, ®Z,._,. We putb

Pp (W) = ’Pp(zpw Bpoy) 1= ((‘szp)i®(’l’p—1a zp-l)’l};io € lz(Yp)~

icm®
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.
Wy>Wyi
¥p N ¥p+1
d
ZZ(Yz))——>lz( Yp+1)
commutes. It is only an easy computation in which one must use com-
mutativity of diagram (3.1) and the formulas
@ (wy) = @' (2, 2p_y) = (A2, d'2p_y+(—1)7 4, 12p)
and
d((0f @aP~)20) = (), dal_y +(— 1)+ 4, 2820
We omit the details. ‘
Lmmuva 3.2. Let .
(3.2) xsybziw
be a chain complew of Bamach sf-modules. Then

(3.3) L(Y) ®L(X) > 14(2) Bl (X) > L,(W) ©L(2)
is a chain complew if .
. 8(F, &) =1fy, @+ (—~1 A7),
e(@,§) =74, F7+(—1y"H148),
where p is an arbitrary integer and operators A acting on 1y(¥) and 1,(Z)

are either both of the V<form, or both of the D-form (see Notations 3.0 (iii)).
In addition

i) if A is of the V-form, then the mapping ¢ such that
(%, §) +Imé—y,+Ima: kera/Ima—”» kerf/Ima
is a linear tsomorphism ;
(i) if A is of the D-form, the mapping v such that
(2, ) - Im 8—- 2+ ImG: kers/Im6—+ker5/Imﬂ

i8 a linear isomorphism.
Proof. We omit the proof that (3. 3) is a chain complex.
(i) It v ekerp and § = (y,0,0,...), Z = 0, then

o(5,7) =0 and g(# §+Imd) =y+Ima;

henee ¢ is an epimorphism. Why ¢ is a monomorphism? Let ¢ (2, 7)+TIm 8)
=0, i.e. ‘
"(3.4) Yo = oty
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where# = (2,)%0, ¥ = (¥,)i2,- As (Z,7) ekers, we have
(3.5) p2 =0, i>0,
(3.6) Byi+ (=112 =0,

We have to show that (£, 7) eImé. Let us pub ¢ = (yi)m,, ye
= (=141, 420, and & = (5;)20, @ = z (ef. (3.4)) and w; = 0 for
4 > 0. Then

i>0.

, - (BYo; a), i =0
(@ a)=1, . , :
BYy O+ (—1)Yy, ¢21
:I(zoyfyo)a 7’=0’_(é 7
(7, 94), >0 U
(i) If #ekery and & = (2,0,0,...), § = 0, then (£, %) c kers and
p((Z, ) +Im ) = 2+TIm§B; thus v is an ep1morphlsm Let p((#, #)+Im)

= 0, ie.
(8.7) = By

To prove that ¢ is a monomorphlsm we should prove tha.t (Z,9) e Imd
As (2,7) ekere, we have

for some y.

(3.8) yo; =0, 120,
(3.9) Byt (— ’?"zm =0, i=0.
Let us put & =0 and ¥’ = (¥i)ise, Where y; = (—1y,_,, 4 >0,

Yo =9 (see (3.7)). Then

- (By, 0+(=1%y), i=0
5( ) ) = ! cy
(0@ &) (By: 0+(—1)%yzpy), > 0}

=((z&n%)) ";=0]__l(z0?('/o) ]
>0 {25y Yidimo

(( —=1)"BYys, .%')’
(see (3.9)).

LevmA 3.3. Let n and & be integers such that n > 1, 0< k<< n. Then

there ewist a separable Hilbert space X and nm commuting linear operators

A =(44,... An) on b such that
() (0, ..., 0) ¢ 2,(4) for p #70,
(i) (0, .. 7O)EEI¢<A)

and moreover if
0> XX > . X, >0 ...

denotes the ILoszul complex of the tuple A, then

icm
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(iii) the cohomology space
ke (X3 X ) Im (X, > Xy)

is ewactly one-dimensional;

(iv) every coboundary operator has closed image.

Proof. We shall prove the lemmma by induction on n. For n =1,
% =0, we put 4; = V: l3—1,, namely

0, i=0,

V@), =
(vex Xiay  12>0,

where & = ()%, (pure isometry),

~and for k =1 (n still one) 4, = D: l,—1,,

(D&); = 35,  (unilateral shift).

All statements of the lemma are easy to see. We omit the details.
Let us assume that we have proved the lemma for a given # (and all
0<k<n). Lot n+1> k> 0. We must consider two cases.

1° %> 1. We use the inductive hypothesis for the pair (n,k—1).
Let (44,...,4,) satisfy (i)-(iii). We shall prove that (n-+1, k) hjfpo-
thesis is satisfied by the space ¥ =1;(X) and the tuple By,..
where B, = 4, (¢f. Notations (3.0) (ii)) for 1 <4< n and

n+l’

(3.10) V(®) (see Notations 3.0 (ii)), & = (a"ai);?:,D:

Bn-i-l(ﬁ) =

We omit an easy checking that (B, ..., B,y;) i8 a commuting tuple of
bounded linear operators.

Let

dp
(3.11) —->0—>Xofg- X1 X, X -0

denote the Koszul complex of (4, --.5 4,). By Lemma 3.1, the Koszul
complex of (By,...,B,) = (Al,...,fin) is isomorphic to the complex

i 4 4.
0l (X 2 (XS L I (X0

Now, by Definition 1.1, the Koszul complex of (Byy -y Byyy) is isomorphic
to the complex

’ ’

4 4.
(812) >0-1y(Xg) @01, (1) Bla(To) > ... >0 Dy (Lyya) >0 -,
‘where
&: (X, OL(X,

)l (Xp ) @l (Xp)
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is defined by the formula
Y

D

(8, 871) = (@8, Bpy By, +(— 1P VEPY).

b

Now we come to the situation of Lemma 3.2 (i) and hence
dim (kerd,, ., /Imd,) = dim (kerd, /Imd,_,).

We have obtained it applying the lemmafor X =X, ,, ¥ =X,,, 7 = D, S
W = X,,.,. Ag the second number is equal to 1 for p = %k—1 and 0 other-
- 'wise, the hypothesis is proved for the pair (n+1, k), & > 1.
2° k< n. We shall use the inductive hypothesis for the pair (n, k).
Almost whole previous construction remains valid but for the definition
of B, (see (3.10)) we put

B, (@) = D(#) (see Notations 3.0 (iii)).

We are once more in the situation of Lemma 3.2, but as it is (ii) case this
time, we get (applying the lemma o X =X, 5, ¥Y=X,,, Z=1X,

W =1X,,,) that

dim (ker d, kerd, ) = dim (kerd,, fkerd,_,).
COROLLARY 3.4, BEvery two spectra from the family

Omies B 20 U {050 k> 03U {0, V050 T, 13> 03U {og}
. ore different in case of infinite-dimensional Hilbert space.

Proot. o,; Uo,, iv different from o, U 0y a8 Well as from o,
and o;, when k, > k. To see this take a tuple (4, ..., 4,,) satisfying Lemma
3.3 with the pair (n, k), where n >%-max(l, I,). Then only ey (Agye.

-y 4,) 2 (0,...,0); hence (0,...,0)e (%IalU%,zl)(Au .., 4,) and
(0, --'aO)EUn.kl(Alw",-An) but  (0,...,0) # (04,9 05,) (Ay, oy Ag)y
(0y...,0) ¢ 0, 4(Adyg, ..., 4,) and (0,...,0) ¢051(4y, ..., 4,), either.

The same example of operators shows that Onz, 18 different from
Oy 0oy @04 0, U0y, When % >% and I arbitrary. Similarly, but
using a tuple (4,,..., 4,) satisfying Lemma 8.3 with the pair (n, n—1,)
% > max (k, ky)+1;, one may obtain that if I, > I than each of Oty Oty
and sy, is different from o, U Oo,1y Ony 800 057, S0 'we have covered
all the possibilities. ‘

To see that every such gpectrum is different from Taylor’s one it
suffices to notice that Ony Os,15 A0A 0, 1V 0y, are included in, and differ-
ent from, o, ;,,\Uo,; which in turn is ineluded in Taylor's spectrum so
it is different from every spectrum in question.

Remark. We cannot prove this corollary in case of an arbitrary
Banach gpace.

)

icm

)
[2]
(3]
[4]
[51

An infinite family of joint specira 255

References

J. L. Taylor, 4 joint spectrum for several commuting operators, J. Funot. Analysis
6 (1970), pp. 172-191.

— The analytic funciional caloulus for several commuting operators, Acta. Math.
125 (1070), pp. 1~38. S .
Z. Slodko’wski, On ideals consisting of joint topological divisors of zero, Sftudia
Math. 48 (1973), pp. 83-88. ] »

7. 8lodkowski and W. Zelazko, On joint spectra of commuting families of oper-
ators, ibid. B0 (1974), pp. 127-148.

W. %olazko, Banach algebras, Amsterdam 1973

Received December 22, 1975 (1107)


GUEST




