VOL. XXXVIII

1977

FASC. 1

THE DOMAIN OF ATTRACTION OF NON-GAUSSIAN STABLE DISTRIBUTION IN A HILBERT SPACE, II

BY

M. KŁOSOWSKA (ŁÓDŹ)

The full characterization of measures attracted by non-Gaussian stable distributions in a separable real Hilbert space can be found in papers [3] and [5]. In [5] the problem is investigated for full stable measures. However, a weaker assumption, namely the assumption of infinite dimension of the stable measure, enables a simpler description of its domain of attraction. The aim of this paper is to prove the above fact.

Let H be an infinite-dimensional, separable, real Hilbert space and let B(H) be the family of Borel subsets of H. Denote by \mathfrak{M} the set of all probability distributions in H with the weak convergence topology.

The least set closed in H such that the measure of its complement equals zero is said to be the *support* of the finite measure μ defined on B(H). The dimension of the closed linear hull of the support of μ is called the *dimension of* μ .

The distribution concentrated at a point $x \in H$ will be denoted by δ_x and the *n*-th convolution power of the distribution p by $p^{n \cdot \bullet}$.

The symbol $T_a p$, where a > 0 and $p \in \mathfrak{M}$, will stand for the following distribution:

$$T_a p(A) = p\{x \in H : ax \in A\}$$
 for every $A \in B(H)$.

A distribution $q \in \mathfrak{M}$ is said to be *stable* if for any positive numbers a and b there exist both a positive number c and an element $x \in H$ such that

$$T_a q * T_b q = T_c q * \delta_x.$$

It can be shown that a distribution is stable if and only if it is the limit distribution for a sequence of distributions of the form $T_{a_n}p^{n*}*\delta_{x_n}$, where $a_n > 0$, $x_n \in H$, and $p \in \mathfrak{M}$ (cf. [2]).

The set of all distributions $p \in \mathfrak{M}$ for which there exist sequences $\{a_n\}$ and $\{x_n\}$ such that the sequence of distributions $T_{a_n}p^{n*}*\delta_{x_n}$ is weakly convergent to a stable distribution q is called the domain of attraction of the distribution q.

In [2] it has been shown that the distribution q is a stable measure in H if and only if

- (a) q is a Gaussian distribution in H, or
- (b) the characteristic functional of q is of the form

$$\hat{q}(y) = \exp \left\{ i(x_0, y) + \int_{H - \{\theta\}} \left[e^{i(x,y)} - 1 - \frac{i(x, y)}{1 + ||x||^2} \right] M(dx) \right\},$$

where $x_0 \in H$, and M is a σ -finite measure in H which is finite on the complement of every neighbourhood of zero in H and satisfies the following conditions:

$$\int_{\|x\| \leqslant 1} \|x\|^2 M(dx) < +\infty$$

and there exists a $\lambda \in (0, 2)$ such that

$$(2) T_a M = a^{\lambda} M \text{for every } a > 0.$$

The number λ is called the type of the non-Gaussian stable distribution q.

LEMMA. A non-Gaussian stable distribution q is infinite dimensional if and only if its corresponding measure M satisfies

(3)
$$M\{x \in H: ||\pi_N x|| \geqslant 1\} > 0 \text{ for any natural } N,$$

where
$$\pi_N x = \sum_{i=N}^{\infty} (x, e_i) e_i$$
 and $\{e_i\}$ is a basis in H .

Proof. We may assume that $x_0 = 0$ in (b). Suppose that, for some natural N_0 ,

$$M\{x \in H \colon ||\pi_{N_0}x|| \geqslant 1\} = 0.$$

By (2), $M\{x\in H\colon \|\pi_{N_0}x\|\geqslant \varepsilon\}=0$ for every $\varepsilon>0$, i. e. $\hat{q}(\pi_{N_0}y)=1$ for every $y\in H$. Hence

$$q\{x\in H\colon (x,\,\pi_{N_0}y)\,=\,0\}\,=\,1\qquad\text{for every }y\in H\,,$$

and since H is separable, we have

$$q\{x \in H \colon \pi_{N_0}x = \theta\} = 1,$$

that is, the dimension of q is less than or equal to N_0-1 .

Let us assign to a distribution $p \in \mathfrak{M}$ satisfying

$$\int\limits_{H}\|x\|^{2}p(dx) = +\infty$$

a family of measures M_X defined on B(H) by

(5)
$$M_X(B) = \frac{p\{XB\}}{p\{x \in H : ||x|| \geqslant X\}} \quad \text{for every } B \in B(H).$$

Let M^{\bullet} stand for a measure M reduced to the set $\{x \in H : ||x|| > \varepsilon\}$. THEOREM 1. A distribution $p \in \mathfrak{M}$ lies in the attraction domain of some infinite-dimensional stable distribution of the type $\lambda \in (0, 2)$ if and only if

$$(\mathrm{I}) \qquad \lim_{X\to +\infty} \frac{p\left\{x\in H\colon \|x\|\geqslant X\right\}}{p\left\{x\in H\colon \|x\|\geqslant kX\right\}} = k^{\lambda} \ \ \textit{for every} \ \ k>0\,,$$

(II) for any $\varepsilon > 0$, measures $(M_X)^{\varepsilon}$ are, as $X \to +\infty$, weakly convergent to M^{ε} , where M is a measure in H satisfying (3).

Proof. Note that (I) implies (4) and thus measures M_X can be defined. Conditions (I) and (II) are necessary by the Theorem in [3] and by the Lemma.

Suppose now that (I) and (II) are satisfied. It is proved in [3] that M has property (2). It also has property (1). Indeed, (I) implies (cf. [5], p. 157)

(6)
$$\lim_{X\to+\infty}\frac{\int\limits_{\|x\|\leqslant X}\|x\|^2p(dx)}{X^2p\{x\in H\colon \|x\|\geqslant X\}}=\frac{\lambda}{2-\lambda}.$$

Therefore, by (II), (5), and (6),

$$\int\limits_{\|x\|^2} \|x\|^2 M(dx) = \lim_{X \to +\infty} \frac{\int\limits_{\|x\| \le X} \|x\|^2 p(dx)}{X^2 p\{x \in H \colon \|x\| \geqslant X\}} \leqslant \frac{\lambda}{2 - \lambda}$$

for any $\varepsilon > 0$.

We prove condition (iii) of the Theorem in [3]. The condition may be written in the form

(iii)
$$\lim_{N\to\infty} \overline{\lim_{X\to+\infty}} \frac{\int\limits_{\|x\|\leqslant X} \|\pi_N \, x\|^2 p \, (dx)}{\int\limits_{\|x\|\leqslant X} \|x\|^2 p \, (dx)} = 0.$$

Consider the set $B_N = \{x \in H : ||\pi_N x|| \geqslant 1\}$. By (2), B_N is the continuity set of M. Thus

(7)
$$\lim_{X\to +\infty} M_X(B_N) = \lim_{X\to +\infty} \frac{p\{x\in H\colon ||\pi_N x||\geqslant X\}}{p\{x\in H\colon ||x||\geqslant X\}} = M(B_N) > 0.$$

Then, by (I) and (7), we have

(8)
$$\lim_{X\to+\infty}\frac{p\left\{x\in H\colon \|\pi_N x\|\geqslant X\right\}}{p\left\{x\in H\colon \|\pi_N x\|\geqslant kX\right\}}=k^{\lambda}$$

for any k > 0 and any natural N. Condition (8) obviously implies

(9)
$$\lim_{X \to +\infty} \frac{\int\limits_{\|\pi_N x\| \leqslant X} \|\pi_N x\|^2 p(dx)}{X^2 p\{x \in H : \|\pi_N x\| \geqslant X\}} = \frac{\lambda}{2 - \lambda}.$$

Condition (iii) follows now from (6), (9), (7), and from the fact that

$$\lim_{N\to\infty}M(B_N)=0.$$

Therefore, it suffices to apply the Theorem in [3].

The characteristic functional of the stable measure of the type $\lambda \in (0, 2)$ in H may be rewritten in the form

$$(\mathbf{b}_1) \qquad \hat{q}\left(y\right) = \exp\left\{i\left(x_0, y\right) + \int\limits_{S} \int\limits_{0}^{\infty} \left[e^{ir(s,y)} - 1 - \frac{ir(s,y)}{1+r^2}\right] \cdot \frac{dr}{r^{1+\lambda}} \Gamma(ds)\right\},$$

where $x_0 \in H$, $S = \{x \in H : ||x|| = 1\}$, and Γ is a finite Borel measure in S (see [4]).

Define a measure γ on the positive half-line as follows:

(10)
$$\gamma(A) = \int_A \frac{dr}{r^{1+\lambda}} \quad \text{for any } A \in B(R_+).$$

If M is a measure in H corresponding to the stable distribution q according to (b) and Γ is a measure in S associated with the form (b₁) of the distribution q, then

(11)
$$M(A) = \gamma \times \Gamma\left\{(r, s) \colon r = ||x||, s = \frac{x}{||x||}, x \in A\right\}$$
 for every $A \in B(H)$.

This follows from the fact that the least σ -field containing all sets of the form

$$\left\{x\in H\colon \|x\|\in B,\, \frac{x}{\|x\|}\in W\right\},\quad \text{ where }\, B\in B(R_+),\, W\in B(S),$$

contains B(H).

By (11) we have

$$M\left\{x\in H\colon \|\pi_N\,x\|\geqslant 1
ight\}=\int\limits_1^\infty \Gamma\left\{s\in S\colon \|\pi_Ns\|\geqslant rac{1}{r}
ight\}rac{1}{r^{1+\lambda}}\,dr,$$

and thus the following condition is equivalent to (3):

(3₁) for any natural N there exists a number $\varepsilon \in (0, 1)$ such that $\Gamma\{s \in S : ||\pi_N s|| \ge \varepsilon\} > 0$.

Let us assign to a distribution $p \in \mathfrak{M}$ satisfying (4) the family of measures Γ_X defined on $\boldsymbol{B}(S)$ by

(12)
$$\Gamma_X(W) = \lambda \frac{p\{x \in H \colon ||x|| \geqslant X, x/||x|| \in W\}}{p\{x \in H \colon ||x|| \geqslant X\}} \quad \text{for every } W \in B(S).$$

We shall characterize distributions attracted by the infinite-dimensional stable distribution of the type $\lambda \in (0, 2)$ in terms of the measures Γ_X .

THEOREM 2. The distribution $p \in \mathbb{M}$ lies in the attraction domain of some infinite-dimensional stable distribution of the type $\lambda \in (0, 2)$ if and only if condition (I) of Theorem 1 is satisfied and, moreover,

(II₁) the measures Γ_X are, as $X \to +\infty$, weakly convergent to a finite measure Γ in S satisfying condition (3₁).

Proof. By (5) and (12) we have

$$(13) \quad M_X \left\{ x \in H \colon ||x|| \geqslant r, \ \frac{x}{||x||} \in W \right\} = \frac{1}{\lambda} \Gamma_{rX}(W) \frac{p \left\{ x \in H \colon ||x|| \geqslant rX \right\}}{p \left\{ x \in H \colon ||x|| \geqslant X \right\}}$$

for every set $W \in B(S)$. Putting r = 1 in (13) and applying Theorem 1 we show the necessity of the conditions.

To prove the sufficiency we shall show that condition (II) of Theorem 1 with the limit measure M defined by (11) is satisfied. Let $\varepsilon > 0$. Relation (13) implies

(14)
$$\lim_{X\to +\infty} (M_X)^{\varepsilon}(A) = M^{\varepsilon}(A)$$

for any set

$$A = \{x \in H : ||x|| \in B, x/||x|| \in W\},$$

where $B \in \boldsymbol{B}(R_+)$, $W \in \boldsymbol{B}(S)$, and W is the continuity set of Γ .

Thus, to prove (II) we shall show weak compactness of the $(M_X)^{\bullet}$. Consider the measures on the plane defined as follows:

$$egin{aligned} Q_{N,X}^{arepsilon}(B) &= M_Xigg\{x\in H\colon \|x\|>arepsilon, igg[\|x\|,rac{\|\pi_N\,x\|}{\|x\|}igg]\in Bigg\} & ext{ for any } B\in oldsymbol{B}(R_+^2), \ Q_N^{arepsilon}(B) &= Migg\{x\in H\colon \|x\|>arepsilon, igg[\|x\|,rac{\|\pi_N\,x\|}{\|x\|}igg]\in Bigg\} & ext{ for any } B\in oldsymbol{B}(R_+^2). \end{aligned}$$

By (14) we have

(15)
$$\lim_{X \to +\infty} Q_{N,X}^{\mathfrak{s}}(B) = Q_N^{\mathfrak{s}}(B)$$

for any set $B = B_1 \times B_2$, where $B_1, B_2 \in B(R_+)$, and $\{s \in S : ||\pi_N s|| \in B_2\}$ is the continuity set of Γ . Hence (15) is satisfied for every $B \in B(R_+^2)$ provided that it is the continuity set of measure Q_N^s . Replace in (15) the set B by the set $\{(u, v) \in R_+^2 : u \cdot v \ge 1\}$ and let $s \in (0, 1)$. We get

$$\lim_{X\to +\infty} \boldsymbol{M}_X\{x\in H\colon \|\pi_N x\|\geqslant 1\} \ = \ \boldsymbol{M}\left\{x\in H\colon \|\pi_N x\|\geqslant 1\right\}.$$

Therefore, using (3₁) we obtain the condition identical with (7), i.e.

$$\lim_{X\to +\infty} \frac{p\left\{x\in H\colon \|\pi_N x\|\geqslant X\right\}}{p\left\{x\in H\colon \|x\|\geqslant X\right\}} \ = M\left\{x\in H\colon \|\pi_N x\|\geqslant 1\right\}>0.$$

Similarly as in the proof of Theorem 1, condition (7) implies (iii) of Theorem in [3].

To show now that the measures $(M_X)^{\epsilon}$ are weakly compact for any $\epsilon > 0$ it suffices to use the conditions for weak compactness of measures in H given, for example, in [1], p. 448. Those conditions can be derived from (I) and (iii).

REFERENCES

- [1] И. И. Гихман и А. В. Скороход, Теория случайных процессов, т. 1. Москва 1971.
- [2] R. Jajte, On stable distributions in a Hilbert space, Studia Mathematica 30 (1968), p. 63-71.
- [3] M. Kłosowska, The domain of attraction of a non-Gaussian stable distribution in a Hilbert space, Colloquium Mathematicum 32 (1974), 127-136.
- [4] J. Kuelbs, A representation theorem for symmetric stable processes and stable measures on H, Zeitschrift für Wahrscheinlichkeitstheorie 26 (1973), p. 259-271.
- [5] and V. Mandrekar, Domains of attraction of stable measures on a Hilbert space, Studia Mathematica 50 (1974), p. 149-162.

INSTITUTE OF MATHEMATICS UNIVERSITY OF ŁÓDŹ

Reçu par la Rédaction le 25. 7. 1975