30

Цитированная литература

[1] E. Hecke, Über Dirichlet-Reihen mit Funktionalgleichung und ihre Nullstellen auf der Mittelgeraden, Mathematische Werke, Zweite Auflage, Göttingen, 1970, crp. 708-730.

 [2] - Analytische Arithmetik der positiven quadratischen Formen, ibid., crp. 789-918.

- [3] B. W. Jones and G. Pall, Regular and semi-regular positive ternary quadratic forms, Acta Math. 70 (1938), crp. 165-191.
- [4] H. D. Kloosterman, The behaviour of general theta-functions under the modular group and the characters of binary modular congruence groups. I, Ann. of Math. 47 (1946), ctp. 317-375.
- [5] Л. А. Котан, О представлении чисёл некоторыми квадратичными формами с тремя переменными, Известия Академии Наук Узбекской ССР, серия физ.-мат. наук, 4 (1963), стр. 13—22.
- [6] О представлении чисел некоторыми тернарными квадратичными формами, Ученые записки Ташкентского педагогического института 61 (1966), стр. 10-19.
- [7] Г. А. Ломадзе, О числе представлений чисел формами $x^2+3y^2+36z^2$ и $x^2+12y^2+36z^2$, Сообщения Академии Наук Грузинской ССР 51 (1968), стр. 25-30.
- [8] О числе представлений чисел квадратичными формами с четырымя переменными, Труды Тбилисского математического института им. А. М. Размадзе 40 (1971), стр. 106-139.
- [9] О представлении чисел положительными тернарными диагональными квадратичными формами, Acta Arith. 19 (1971), стр. 267-305; 387-407.
- [10] G. Pall, Representation by quadratic forms, Canad. Journ. Math. 1 (1949), crp. 344-364.

Постипило 21. 5. 1976

(851)

On a problem of R. L. Graham

b

R. D. BOYLE (Heslington)

0. Introduction. Let S be a set of distinct positive integers

$$S = \{a_1, a_2, ..., a_n\}$$
 where $a_1 < a_2 < ... < a_n$.

Then Graham [1] has made the following:

CONJECTURE.

$$\max_{1 \leq i,j \leq n} \frac{a_i}{(a_i, a_j)} \geqslant n$$
 for any S , any $n \geqslant 2$.

Supposing the conjecture false, we will call any counter example a yood set for n. If S is good for n, it has been shown that:

- Not all the a_i are square free (Marica and Schönheim [2]).
- (2) a_1 is not a prime (Winterle [3]).
- (3) n is not a prime (Szemerédi [1]).
- (4) n-1 is not a prime (Vélez [4]).
- (5) If $p \mid a_i$ for some i, and p is prime, $p \leqslant n$ (Vélez [4]).

Vélez also considers in [4] the nature of sets with maximum ratio equal to n.

In this paper we shall show:

THEOREM 1. If S is good for n, p is a prime, and $p \mid a_i$ for some i, then

$$p \leqslant (n-1)/2.$$

An immediate corollary to this theorem is Vélez' result that n-1 is not a prime; it further enables us to show that n-2 and n-3 must be composite also.

THEOREM 2. If p is a prime, and S is good for n, where

$$(7) n = qp + t, 1 \leq t \leq p,$$

(8)
$$p \mid a_i$$
 for some i ,

(9) n is sufficiently large depending on q,

then

(10)
$$p \leq (n-1)/3$$
 (i.e. $q \geq 3$).

If
$$(n-1)/4 , so $q = 3$, then$$

$$(11) S = \{6p\} \cup M$$

for some M, where $m \in M$ implies $m \not\equiv 0 \pmod{p}$. If $q \geqslant 4$ and we define

(12)
$$Q = [1, 2, ..., q]$$
, the l.c.m. of the first q natural numbers

and

(13)
$$\psi(q) = \sum_{r|Q} \frac{r^2 \varphi(Q/r)}{Q}$$

then either

(14) there are
$$\langle (2\psi+1)/2 \rangle$$
 multiples of p in S

or

(15) there are
$$> n - (2\psi + 1)/2$$
 multiples of p in S .

Further, if (14) holds, then

$$(16) (a_i, Q) \geqslant 2 when p \mid a_i.$$

THEOREM 3. If $n = p^a$ for p prime, $a \ge 2$, and S is good for n, then

$$(17) S = (p^{\alpha-1}K_{\alpha-1}) \cup (p^{\alpha-2}K_{\alpha-2}) \cup \ldots \cup (pK_1) \cup (K_0)$$

where the (not necessarily non-empty) sets K, are such that

$$k \in K_i \Rightarrow k \not\equiv 0 \pmod p,$$
 $k, l \in K_i \Rightarrow k \not\equiv l \pmod p^a,$ $k \in K_i, \ l \in K_i, \ k \equiv l \pmod p^a \Rightarrow k = l.$

As a corollary to Theorem 3, we can deduce that there are no good S for $n = p^2$, p any prime.

1. Preliminaries. Throughout, the letters S, S^{-1} , K, K_1 , K_2 , ..., L, M will denote sets of positive integers; all other letters will denote nonnegative integers.

Let $s^* = 1.c.m. [a_1, ..., a_n]$, and then define

$$S^{-1} = \left\{ \frac{s^*}{a_n}, \dots, \frac{s^*}{a_1} \right\}.$$

LEMMA 1. The ratios of S^{-1} coincide with those of S, and so S is good for $n \Rightarrow S^{-1}$ is good for n.

Proof. This result is due to Winterle in [3]. We will assume throughout that

(18) h.c.f.
$$(a_1, ..., a_n) = 1$$

which is obviously no restriction.

Lemma 2. Suppose the conjecture is true for n-1, and that S is good for n. Then there are at least 2 multiples of n-1 in S.

Proof. Since S is good for n,

$$\frac{a_i}{(a_i, a_j)} \leqslant n - 1, \quad 1 \leqslant i, j \leqslant n$$

and equality gives $(n-1)|a_i$. Suppose there are no multiples of n-1 in S. Then

$$\frac{a_i}{(a_i, a_j)} \leqslant n-2, \quad 1 \leqslant i, j \leqslant n$$

and so $S \setminus \{a_i\}$ is good for n-1, for any $a_i \in S$, a contradiction.

Now suppose there is just one multiple of n-1 in S, a_r say. Then

$$\frac{a_r}{(a_r, a_i)} \leqslant n-1, \quad 1 \leqslant i \leqslant n$$

and

$$\frac{a_i}{(a_i, a_j)} \leqslant n-2, \quad i \neq r, \quad 1 \leqslant i, j \leqslant n.$$

Hence $S \setminus \{a_r\}$ is good for n-1, a contradiction.

LEMMA 3. Let $K = \{k_1, k_2, ..., k_a\}$, where the k_i are in ascending order. Suppose there is a t such that

$$(k_i, t) = 1, \quad 1 \leqslant i \leqslant a.$$

Then if $k^* = 1.e.m. [k_1, \ldots, k_n]$, we have

$$\frac{k^*}{k_1} > t \left(\frac{\alpha}{\varphi(t)} - 1 \right).$$

Proof. It is easy to see that $(k^*, t) = 1$. Also

$$k_i = rac{k^*}{q_i}$$
 for some $q_i, \quad i = 1, ..., a$.

We have $1 \leqslant q_a < q_{a-1} < \ldots < q_1$ and

$$(q_i, t) = 1, \quad 1 \leqslant i \leqslant a.$$

Suppose $\alpha = \lambda \varphi(t) + \mu$, $1 \leqslant \mu \leqslant \varphi(t)$.

Now in any block of t consecutive integers, there can be at most $\varphi(t)$ q's. Hence

$$q_1 \geqslant \lambda t + \mu > \lambda t \geqslant \left(\frac{\alpha}{\varphi(t)} - 1\right)t.$$

Note that t=1 always satisfies the requirements of the lemma, whence

(20)
$$\frac{k^*}{k_1} = q_1 > \alpha - 1 \Rightarrow \frac{k^*}{k_1} \geqslant \alpha.$$

2. Proof of Theorem 1. Suppose S is good for n, and

$$S = (pK) \cup L$$
, where $l \in L \Rightarrow l \not\equiv 0 \pmod{p}$.

We suppose $K \neq \emptyset$, whence (18) gives $L \neq \emptyset$. We also suppose (6) does not hold, so $\left[\frac{n-1}{p}\right] = 1$ by (3) and (5). Let $k \in K$, $l \in L$; then

$$\frac{kp}{(kp,l)} = \frac{k}{(k,l)} p \leqslant n-1 < 2p \Rightarrow \frac{k}{(k,l)} < 2 \Rightarrow k \mid l \quad \forall k \in K, \ \forall l \in L.$$

So if k^* is the l.c.m. of the elements of K, we have

$$S = (pK) \cup (k^*M)$$
 for some M .

Let |K| = c; then |M| = |L| = n - c.

Let $m_1 = \max(m \in M)$, so $m_1 \geqslant n - c$.

Let $k_0 = \min(k \in K)$; then $k^* \geqslant ck_0$ by (20).

Now we know that

$$\frac{m_1 k^*}{(m_1 k^*, k_0 p)} \leqslant n - 1$$

and so

$$\begin{split} &\frac{m_1 k^*}{k_0} \leqslant n-1 \\ &\Rightarrow (n-c) \, c \leqslant n-1 \\ &\Rightarrow c^2 - nc + n - 1 \geqslant 0 \\ &\Rightarrow c \leqslant 1 \quad \text{or} \quad c \geqslant n-1 \, . \end{split}$$

Hence c=1 or c=n-1. By Lemma 1, if S is good for n with c=n-1, then S^{-1} is good for n with c=1, so it suffices to show that c=1 is impossible. Hence suppose c=1; i.e. $K=\{k_0\}$, $k^*=k_0$. Then $k_0|a_i$ for each i, so from (18) $k_0=1$ and $pK=\{p\}$. Also $m_1 \ge n$ since |M|=n-1,

 $p \le n-1$ and we cannot have $p \in M$. Then

$$\frac{m_1}{(m_1, p)} = m_1 \geqslant n$$

a contradiction, so c = 1 is impossible.

COROLLARY 1. The conjecture is true for n = p + 1, p any prime.

Proof. We know from [1] that it is true for p, so by Lemma 2, any S that is good for p+1 must have at least 2 multiples of p in it, whence n=p+1 contradicts (6).

COROLLARY 2. The conjecture is true for n = p+2, p any prime.

Proof. Suppose S is good for p-2. By Theorem 1 there are no multiples of p in S (provided n-2 > (n-1)/2, which is implied by $p \ge 3$) so we must have 3 distinct elements $a_i, a_j, a_k \in S$ with i > j > k and $a_i \equiv a_j \pmod{p}$; $a_i = a_j + rp$, say, for some r > 0. Then

$$\frac{a_i}{(a_i, a_j)} = \frac{a_j + rp}{(a_j + rp, a_j)} = \frac{a_j}{(r, a_j)} \div \frac{r}{(r, a_j)} p$$

$$\leq p + 1 \quad \text{as S is good for } p + 2.$$

Hence $r = a_i$, so $a_i = a_i(p+1)$. Then

$$\frac{a_i}{(a_i, a_k)} \geqslant \frac{a_i}{a_k} = \frac{a_j}{a_k} (p+1) > p+1$$

which provides a contradiction.

COROLLARY 3. The conjecture is true for n = p+3, p any prime.

Proof. Suppose S is good for n = p+3. We may take $n \ge 6$, so n-3 > (n-1)/2, and hence there are no multiples of p in S. We consider possible congruent pairs (mod p) in S. Suppose

$$a_i \equiv a_j \pmod{p},$$
 $a_i = a_j + rp, \quad r > 0, \quad \text{say}.$

Then

$$\frac{a_i}{(a_i,a_j)}=\frac{a_j}{(a_j,r)}+\frac{r}{(a_j,r)}\,p\leqslant p+2.$$

So $r | a_j$, and either $a_j = r$ or $a_j = 2r$. Thus either

(21)
$$a_i = a_j(p+1)$$
 or $a_i = \frac{a_j}{2}(p+2)$.

We see now that there cannot be as many as 3 elements of S in one residue class, for if there were, then by (21) they would be of the form

$$a_r$$
, $\frac{a_r}{2}(p+2)$, $a_r(p+1)$ for some $a_r \in S$.

But then, writing $a_j = \frac{a_r}{2}(p+2)$ and $a_i = a_r(p+1)$, (21) would not be satisfied.

Case A. Suppose we have a_i , a_j , a_k , $a_l \in S$, j > l and

$$a_i = a_i(p+1), \quad a_k = a_i(p+1).$$

Then

$$\frac{a_i}{(a_i, a_l)} \geqslant \frac{a_i}{a_l} = \frac{a_j}{a_l} (p+1) > p+1.$$

Hence

$$\frac{a_i}{(a_i, a_i)} = p+2$$
 as S is good for $p+3$.

Thus

$$a_j = \frac{p+2}{p+1} a_l.$$

So there are at most 2 congruent pairs of this type, and if there were 2 such, we would have

$$a_l, \frac{p+2}{p+1}a_l, (p+1)a_l, (p+2)a_l \in S.$$

But then

$$\frac{(p+1)a_l}{\left((p+1)a_l,\left(\frac{p+2}{p+1}\right)a_l\right)} = \frac{(p+1)^2}{\left((p+1)^2,p+2\right)} = (p+1)^2 > p+2.$$

Hence we see that there is at most one pair of the first type at (21). Case B. Suppose we have a_s , a_t , a_u , $a_v \in S$, t > v and

$$a_s = \frac{a_t}{2}(p+2), \quad a_n = \frac{a_v}{2}(p+2).$$

Let $d = (a_s, a_r)$, and so

$$\frac{a_s}{(a_s, a_r)} = \frac{a_t}{2d} (p+2) \leqslant p+2$$
 as S is good for $p+3$.

Thus

$$d\geqslant \frac{a_t}{2}>\frac{a_v}{2}\Rightarrow d=a_v, \quad \text{ since } \quad d\,|\,a_v.$$

Hence

$$(22) 2a_v \geqslant a_t.$$

Now suppose $2^x || a_v$; i.e. $a_v = 2^x a_v'$, with a_v' odd. Then $2^{x+1} |a_t|$ since $a_v \left| \frac{a_t}{2} (p+2) \right|$, and p+2 is odd. This gives

(23)
$$d' = \left(\frac{a_v}{2}(p+2), a_t\right) \leqslant \frac{a_t}{4}.$$

Now

$$\frac{a_u}{(a_u, a_t)} = \frac{a_u}{d'} = \frac{a_v}{2d'}(p+2) \leqslant p+2$$
 as S is good for $p+3$.

Thus $d' \geqslant a_v/2$, and so by (23)

$$\frac{a_v}{2} \leqslant \frac{a_t}{4}.$$

(24) and (22) now give

$$a_t = 2a_v$$

so we see that there are at most 2 congruent pairs of this type, and if there were 2 such, we would have

$$a_v, 2a_v, \frac{a_v}{2}(p+2), a_v(p+2) \in S.$$

Now there are p+3 numbers in S, which occupy p-1 residue classes. Thus either one residue class contains at least 3 elements of S, or at least 4 residue classes contain 2 or more elements of S. The argument after (21) rules out the first possibility, and the conclusions of cases A and B do not allow the second. Hence we cannot find an S that is good for n=p+3.

Unfortunately it does not seem immediately possible to extend the above ideas to n = p + h, $h \ge 4$. Obviously, if this could be done for general h < p, Bertrand's postulate would then prove the conjecture.

3. Proof of Theorem 2. We suppose that S is good for n = qp + t, $1 \le t \le p$, and

$$S = (pK) \cup L$$

where $K \neq \emptyset$, $L \neq \emptyset$ and $l \in L \Rightarrow l \not\equiv 0 \pmod{p}$. Q and $\psi(q)$ are as at (12) and (13), and we define

$$\begin{array}{ll} n_1(q) \, = \, q^2 + q + 1 \,, & \text{so} & n \geqslant n_1(q) \, \Rightarrow \, p > q \,, \\ \\ n_2(q) \, = \, 2 \, \big(\psi(q) \big)^2 + 2 Q \psi(q) + Q + 1 \,, & \end{array}$$

 $n_3(q)$ is such that

$$n \geqslant n_3(q) \Rightarrow \pi(n) - \pi\left(\frac{n-1}{2}\right) + q \geqslant \frac{2\psi(q) + 1}{2}$$
.

Then by "sufficiently large depending on q" we shall mean

$$n \geqslant \max(n_1(q), n_2(q), n_3(q)).$$

Suppose $k \in K$ and $l \in L$; then

$$\frac{kp}{(kp,l)} \leqslant n-1$$

SO

$$\frac{k}{(k,l)}p\leqslant qp=\frac{k}{(k,l)}\leqslant q.$$

Let (k, Q) = y and (k, l) = z; then

$$\frac{k}{z} \leqslant q$$
 by (25),

80

(26)
$$\frac{k}{z} \left| Q \Rightarrow \frac{k}{z} \right| y \Rightarrow \frac{k}{y} \left| z \Rightarrow \frac{k}{y} \right| l.$$

Now for each r|Q we define the (possibly empty) set K_r by

$$K_r = \left\{\frac{k}{r}: k \in K, (k, Q) = r\right\}.$$

Also, put

$$k_r^* = egin{cases} 1.\mathrm{c.m.} \left[rac{k}{r} \in K_r
ight] & ext{if} & K_r
eq \emptyset, \ 1 & ext{if} & K_r = \emptyset \end{cases}$$

and

$$k^* = \text{l.c.m.}[k_1^*, ..., k_0^*].$$

Then (26) tells us that $k^* | l$ for each $l \in L$, and so we have

$$S = (pK) \cup (k^*M)$$
 for some M .

Let |K| = c; then |L| = |M| = n - c;

Let $m_1 = \max(m \in M)$, so $m_1 \geqslant n - c$;

Let $k_r^{(0)} = \min(k \in K_r)$.

Now $k \in K_r$ implies (k, Q/r) = 1, and so by Lemma 3,

$$\frac{k^*}{k_r^{(0)}} \geqslant \frac{k_r^*}{k_r^{(0)}} > \frac{Q}{r} \left(\frac{|K_r|}{\varphi(Q/r)} - 1 \right).$$

We know that S is good for n, and so

$$\begin{split} \frac{m_1 k^*}{(m_1 k^*, r k_r^{(0)} p)} & \leq n - 1 \quad \text{(when } K_r \neq \emptyset) \\ & \Rightarrow \frac{m_1 \frac{k^*}{k_r^{(0)}}}{\left(m_1 \frac{k^*}{k_r^{(0)}}, r\right)} \leq n - 1 \\ & \Rightarrow \frac{m_1 k^*}{r k_r^{(0)}} \leq n - 1 \\ & \Rightarrow \frac{(n - c) \frac{Q}{r} \left(\frac{|K_r|}{\varphi(Q/r)} - 1\right)}{r} < n - 1 \\ & \Rightarrow |K_r| < \varphi\left(\frac{Q}{r}\right) \left[\frac{(r^2 + Q)n - (r^2 + cQ)}{Q(n - c)}\right]. \end{split}$$

Now clearly

$$\sum_{r|O}|K_r|=c,$$

hence

(27)
$$c < \sum_{r|Q} \varphi\left(\frac{Q}{r}\right) \left[\frac{(r^2 + Q)n - (r^2 + cQ)}{Q(n - c)}\right]$$

$$= nc - c^2 < (n - c) \sum_{r|Q} \varphi\left(\frac{Q}{r}\right) + (n - 1) \sum_{r|Q} \frac{r^2 \varphi(Q/r)}{Q}$$

$$= nc - c^2 < (n - c)Q + (n - 1) \psi(q)$$

$$= c^2 - c(n + Q) + n(Q + \psi(q)) - \psi(q) > 0.$$

Note that $n \geqslant n_2(q)$ implies

$$(n+Q)^2-4(n(Q+\psi(q))-\psi(q))\geqslant (n-(Q+2\psi(q)+1))^2$$

and so $n \ge n_2(q)$ must imply

(28)
$$c < Q + \psi(q) + \frac{1}{2} < \frac{n}{2} \quad \text{or}$$

$$c > n - \left(\frac{2\psi(q) + 1}{2}\right) > \frac{n}{2}$$

by locating the roots of the expression on the left-hand side of (27). Suppose

$$\frac{2\psi(q)+1}{2} \leqslant c < Q + \frac{2\psi(q)+1}{2},$$

then S^{-1} would contain c' = n - c multiples of p, and c' could not satisfy either of the inequalities at (28). Hence we see

$$(29(i)) c < \frac{2\psi(q) + 1}{2} or$$

$$(29(\mathrm{ii})) \hspace{3.1em} c>n-\frac{2\psi(q)+1}{2}\,.$$

This proves (14) and (15).

Now |M| = n - c; also $m \in M$ implies $m \not\equiv 0 \pmod{p}$, and, by Theorem 1, $m \in M$ implies $m \not\equiv 0 \pmod{p'}$ where p' is any prime greater than (n-1)/2. Hence we see that

$$n \geqslant n_3(q) \Rightarrow m_1 \geqslant n$$
 if $c < (2\psi(q) + 1)/2$.

Now suppose $K_r \neq \emptyset$, $k_r \in K_r$. Then

$$\frac{m_1 k^*}{(m_1 k^*, rk_r p)} \leqslant (n-1) \Rightarrow \frac{nk^*}{rk_r} \leqslant n-1 \Rightarrow \frac{k^*}{k_r} \leqslant r-1$$

$$\Rightarrow |K_r| \leqslant r-1 \quad \text{by} \quad (20).$$

Hence $|K_1| = 0$, so $K_1 = \emptyset$, and (16) is proved. Note that $|K_r| \leqslant r - 1$ gives

$$(31) c \leqslant \sum_{r \mid O} (r-1)$$

$$\Rightarrow \begin{cases} c \leqslant \sigma(Q) - d(Q) & \text{if } (29(\mathrm{i})) \text{ holds or} \\ c \geqslant n - \left(\sigma(Q) - d(Q)\right) & \text{if } (29(\mathrm{ii})) \text{ holds} \end{cases}$$

by considering S^{-1} in the latter case.

To prove (10) we need to show q=2 is impossible. If q=2 then $Q=2,\ \psi(2)=\frac{5}{2},\ \text{so}$

$$n_1(2) = 7, \quad n_2(2) = \frac{51}{2}, \quad n_3(2) = 2.$$

Thus the result will be valid for all $n \ge 26$. We suppose that

$$S = (pK) \cup (k^*M)$$

is good for n = 2p + t $(1 \le t \le p)$, so

$$K = K_1 \cup (2K_2).$$

By (31), we see that, if $n \ge 26$, |K| = 1 or n-1; as in Theorem 1 it is sufficient to show |K| = 1 is impossible. In this case, by (16), we know $K_1 = \emptyset$, and so $K = \{2k\}$ for some number k, and $k^* = k$. By (18), we must have k = 1, and

$$S = \{2p\} \cup M$$
.

Clearly $1 \notin S$, so $2 \notin S$ by (2). But then it is easy to see that

$$(S \setminus \{2p\}) \cup \{2\}$$

will form a good set for n, also contradicting (2). Thus we see q=2 is impossible.

To prove (11) we need to show q=3 is possible only in the stated case

$$S = \{6p\} \cup M.$$

We assume S is good for n = 3p + t $(1 \le t \le p)$, and

$$S = (pK) \cup (k^*M)$$

where $K = K_1 \cup (2K_2) \cup (3K_3) \cup (6K_6) \neq \emptyset$.

We take n large enough to be able to assume, by considering S^{-1} if necessary, that

$$|K| < \frac{2\psi(3)+1}{2} = 9\frac{2}{3}$$
 and $K_1 = \emptyset$.

We consider possible elements of K, remembering, as at (30), that

$$|K_r| \leqslant r - 1$$
.

Case A: $K_2 \neq \emptyset$. By (30), we have $|K_2| = 1$ and so $K_2 = \{k_2\}$ for some k_2 . In fact, by the statement preceding (30), we see $k^* = k_2$. Hence $(k^*, 3) = 1$ by definition of K_2 .

Subcase A(i): $K_3 \neq \emptyset$. Now $k_3 \in K_3 \Rightarrow \left(k_3, \frac{6}{3}\right) = 1$ so k_3 and consequently k_3^* are odd. By (30),

$$2 \geqslant \frac{k^*}{k_3} \geqslant \frac{k_3^*}{k_3}$$

$$\Rightarrow \frac{k_3^*}{k_3} = 1 \quad \text{since } k_3^* \text{ is odd,}$$

$$\Rightarrow K_3 = \{k_3\} \quad \text{where either } k_3 = k_2 \text{ or } 2k_3 = k_2.$$

Suppose $K_6 = \emptyset$. If $k_2 = k_3$, then $k_2 | a_i$ for each i, and so $k_2 = 1$. Thus $2p, 3p \in \mathcal{S}$, and so $(\mathcal{S} \setminus \{2p\}) \cup \{2\}$ would also be good for n, contradicting (2).

If $k_2 = 2k_3$, then similarly, $k_3 = 1$ and so $3p, 4p \in S$. Now $k^* = 2$ and so $a_i \in k^*M$ implies $2 \mid a_i$. Also, $a_i \ge n$ implies $3 \mid a_i$, since $a_i/(a_i, 3p) \le n-1$. Together we see this gives $a_n > 3n$, and so $a_n/(a_n, 3p) > n$, providing a contradiction.

Thus suppose $K_6 \neq \emptyset$. We must have a $k_6 \in K_6$ such that

- (i) If $k_3 = k_2$, then $k_2 \nmid 6k_6$;
- (ii) If $2k_3 = k_2$, then $k_3 \nmid 6k_6$;

or the argument above would apply again, since then in each case $k_3=1$, and in (i), $k_6 \mid k_2$ implies $k_6=1$. Now we know that $k^*/k_6=k_2/k_6\leqslant 5$; also k_3 is odd and $(k_2,3)=1$, so in each case we must have $k_2/5\in K_6$. Then:

if $k_3 = k_2$: $k_2/5 = 1$ by (18), and so $10p, 15p, 6p \in S$ and $k^* = 5$. Since $6p \in S$, and $3p < n \le 4p$, we must have $(m, 6) \ge 2$ for each $m \in M$. Now $|K| \le 4$, so $|M| \ge n - 4$ and hence $M_1 = \max(m \in M)$ must be at least 6(n-7)/4 (by similar reasoning to Lemma 3). Then

$$\frac{5m_1}{(5m_1, 6p)} \geqslant \frac{5m_1}{6} > n-1 \quad \text{whenever} \quad n \geqslant 32,$$

which is true by (9).

Thus we have $2k_3 = k_2$: Then $k_2/10 = 1$ by (18), and 20p, 15p and $12p \in S$. We get a similar contradiction to the above by considering 12p. Thus we must have $K_3 = \emptyset$.

Subcase A(ii): $K_3 = \emptyset$, $K_6 \neq \emptyset$. Now necessarily k_2 is odd, or we have $2 \mid a_i$ for each i. Thus the only possible elements of K_6 are k_2 or $k_2/5$.

If $k_2/5 \notin K_6$ then $k_2 = 1$ by (18), $S = \{2p, 6p\} \cup M$ and $(S \setminus \{2p\}) \cup \{2\}$ is good for n, contradicting (2).

Hence $k_2/5 \in K_6$, and so $k_2 = 5$ by (18). But then $6p \in S$ and $k^* = 5$, giving a contradiction as above. Thus $K_6 = \emptyset$.

Subcase A(iii): $k_3 = k_6 = \emptyset$. Then $k_2 = 1$ by (18), so $S = \{2p\} \cup M$ contradicting (2) as above.

Thus $K_2 = \emptyset$.

Case $B: K_3 \neq \emptyset$. By (30),

$$2\geqslant rac{k^*}{k_3}\geqslant rac{k_3^*}{k_3} \quad ext{ for all } k_3\in K_3.$$

Hence $K_3 = \{k_3\}$ and either $k^* = k_3$ or $k^* = 2k_3$ (since $(k_3, 2) = 1$).

Subcase B(i): $k_6 \neq \emptyset$. Now 3|3 and 3|6, so necessarily $3 \uparrow k^*$ by (18); also k_3 is odd.

If $k_3 = k^*$: Possible elements of K_6 are k_3 or $k_3/5$, and we obtain a contradiction as in A(ii) above.

If $2k_3=k^*$: Possible elements of K_6 are $2k_3$, $2k_3/2$ or $2k_3/5$. If $2k_3/5 \notin K_6$, then $k_3=1$, $k^*=2$ and $3p \in S$, giving a contradiction as in A(i). If $2k_3/5 \in K_6$, then $k_3=5$ by (18). Then $k^*=5$ and $12p \in S$, giving a contradiction as in A(i).

Thus $K_6 = \emptyset$.

Subcase B(ii): $K_6 = \emptyset$, $K_3 = \{k_3\}$. Then $k^* = k_3$ so $k_3 = 1$, which would mean that $(S \setminus \{3p\}) \cup \{3\}$ would be good for n, contradicting (2).

Hence we must have:

Case C: $K_1 = K_2 = K_3 = \emptyset$. We must have $(k^*, 6) = 1$ by (18), so possible elements of K_6 are k^* , $k^*/5$. If $k^*/5 \in K_6$, then $k^* = 5$ and $6p \in S$, providing a contradiction as before. Thus we must have $K_6 = \{k^*\}$, $k^* = 1$, and so

$$S = \{6p\} \cup M, \quad m \in M \Rightarrow m \not\equiv 0 \pmod{p}.$$

[Note that $n_1(3) = 13$, $n_2(3) = 285 \frac{1}{18}$ and $n_3(3)$ is such that $n \ge n_3(3)$ implies $\pi(n) - \pi\left(\frac{n-1}{2}\right) \ge 7$. Evaluation of $n_3(3)$ would give the range of validity of (11).]

4. Proof of Theorem 3. We suppose S is good for $n = p^a$, $a \ge 2$. Suppose there is an a_i in S with $a_i \equiv 0 \pmod{p^a}$; $a_i = Ip^a$ say. By (18) there is an a_i such that $a_i \not\equiv 0 \pmod{p}$, so

$$\frac{a_i}{(a_i,\,a_j)} = \frac{I}{(I,\,a_j)}\,p^a \geqslant p^a.$$

Hence there cannot be such an a_i , and so

$$S = (p^{a-1}K_{a-1}) \cup (p^{a-2}K_{a-2}) \cup \ldots \cup (pK_1) \cup (K_0)$$

for some (possibly empty) sets K_i , where $\hat{k} \in K_i \Rightarrow k \not\equiv 0 \pmod{p}$, $i=0,1,\ldots,\alpha-1$.

Suppose $k \in K_i$, $l \in K_i$ and $k \equiv l \pmod{p^a}$, so

$$k = l + rp^u$$
 with $r > 0$, say.

Then

$$rac{p^i k}{(p^i k,\, p^i l)} = rac{k}{(k,\, l)} = rac{l}{(r,\, l)} + rac{r}{(r,\, l)}\, p^a > p^a.$$

Thus we cannot have $k \equiv l \pmod{p^a}$.

Suppose $k \in K_i$, $l \in K_j$, $i \neq j$ and $k \equiv l \pmod{p^a}$, so

$$k = l + rp^a$$
 with $r \geqslant 0$, say.

Then

$$\frac{p^i k}{(p^i k, p^j l)} \geqslant \frac{k}{(k, l)}.$$

If $r \neq 0$, then as above this is greater than p^a . Hence we must have r = 0, so k = l.

Corollary. The conjecture is true for $n = p^2$, p any prime.

Proof. Suppose S is good for p^2 , so

$$S = pK_1 \cup K_0.$$

Within K_1 and K_0 , all numbers are distinct (mod p^2), and are not divisible by p. Thus there are p^2-p residue classes in which to place p^2 numbers. There are at most 2 in any one class, and so there must be at least p congruent pairs, lying in different sets. By Theorem 3, they are in fact equal, so we can find

$$L = {\lambda_1, \ldots, \lambda_p}$$
 with $\lambda_i \in K_0, \lambda_i \in K_1$.

Take any $\lambda_i \in L$, $\lambda_j \in L$. Then $p\lambda_i \in S$, $\lambda_j \in S$ so

$$rac{p\lambda_i}{(p\lambda_i,\,\lambda_i)} < p^2 \Rightarrow rac{\lambda_i}{(\lambda_i,\,\lambda_i)} < p\,.$$

Similarly $\frac{\lambda_j}{(\lambda_i, \lambda_j)} < p$, as $p\lambda_j \in S$, $\lambda_i \in S$, and so L is good for p, contradicting (3).

- 5. Remark. Suppose n is such that there exists a good S for n. We know that n is not of the form p, p+1, p+2, p+3 or p^2 for any prime p: The first few such n are $27, 28, 35, 36, 51, 52, \ldots$ Using Lemma 2 and (10), we see that if $n \ge 26$ and n = 2p+1, and the conjecture has been proven true for n = 2p, then we can deduce it true for n: Thus the conjecture is true for $n = 27 = 2 \cdot 13 + 1$ and $n = 35 = 2 \cdot 17 + 1$, as for each of these, n-1 is of the form p'+3 for a prime p'. Similarly, using (11) and sufficiently high n, we can deal with n = 3p+1 if the result is known for n-1. So, in general, the conjecture is true for:
- (a) n = 2p+1 = p'+4, p, p' prime, and
- (b) n = 3p+1 = (2p'+1)+1 = (p''+4)+1, p, p', p'' prime, and n sufficiently large.

References

- P. Erdös, Problems and results in Combinatorial Number Theory, in A survey of Combinatorial Theory, North Holland Publishing Co., 1973.
- [2] J. Marica and J. Schönheim, Differences of sets and a problem of Graham, Canad. Math. Bull. 12 (5) (1969), pp. 635-637.
- [3] R. Winterle, A problem of R. L. Graham in Combinatorial Number Theory, Proceedings of the Louisiana Conference on Combinatories, Louisiana State University, Baton Rouge, March 1-5, 1970, pp. 357-361.
- [4] W. Y. Vélez, Some remarks on a number theoretic problem of Graham, Acta Arith. 32 (1977), pp. 233-238.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF YORK Hestington, England

Received on 8.6, 1976

(854)