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ACTA ARITHMETICA
XXXIV (1978)

On a problem of R. L. Graham
by
R. D. Bovre (Heslington)

0. Introduction. Let § be a set of distinet positive integers
8 = {a;, @y ..., 1} where a,<a,<..<a,.
Then Graham [1] hag made the following:
‘CONJECTURE.
ﬂ;i ) ’
max ———z=n for any S, any » = 2.

1=zi,dn (g &)

Supposing the conjeeture false, we will call any ecomnter exaniple
@ good set for n. I § i good for #, it has been shown that:

(1) Not all the a, are square free (Marica and Schénheim [21-
{2) ¢; 18 mot & prime (Winterle [37).
\ {(3) 7 is not a prime (Bzemerédi [17).
{4 n—1 i§ not a prime (Vélez [47).
(9) If pla, for some {, aﬁd P is prime, p<n (Vélez [4])..

Vélez also eonsiders in {47 the nature of sets with maximum ratio equzbi
to .

In this paper we shall show:

Tarorear 1. If 8 45 good for », p is a prime, and p|a; for some i, then
(6) ‘ L ps(n—1)2.

o An immediate corollary to this theorem is Vélez’ result that n—1
Is not a prime; it forther enables ns to show that #—2 and » —3 must
be composite also.

TIIEQREM 2. If » is o prime, and § is good for n, where
(1) ' n=gp+t, lsi<p,
8 ' : pia; . for some i,

9 : - n s sufficiently Zm'ge depending on. 4,
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then . 7

(10) p<n—1)3 (e g3>3).

If (n—1)jd<<p< (n—1)/8, so g =3, then
(11) , 8 = {6p}ud
for some A, where m & M implies m

(12) Q=[1;37-'-1

= 0 (mod p). If g = ¢ and we define

ql, the Le.m. of the first q natural nwmbers

and’
(13) | M gL
. e
then either _
(14) there are << (29 +1)[3 mulliples of p in §
or
{15} | there are > n—{2p-+1}/2 multiples of p in 8.
Further, 4f (14) holds, then
(16) _ (a:,Q)>2 when pla,.

TEROREM 3. If n = p* for p prime, a>2, and § is good for n, then
(17) § = (p" T E )V (P T E )V s V{DE L)V ()
“where the (not necessarily non-emply) sets ;Ki are such that
keK;=>k == 0 (modp),
kyle K;=Fk = I (mod p),
keK;, leK; k =1(modp*)=k =1.

As a corollary to 'l‘heorenl 3, we can deduce that there are no good 8
for # = p%, p any prime.

1. Prelininaries. Throughout, the letters &, 8%, K, Ky, Ky, ..., [, M
will denote sets of positive integers; all other letters will denofe non-
negabive integers.

Tiet * = Le.[ay, ..., ,], and then define

e L S*l
s,
Leasma 1. The ratios of 871 coincide with these of 8, ond so

8 is good for n=8"" is good for n.
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Proof. This resnlt is due to Winterle in [3].
We will assume throughout that

(13) h.ed. {aq, ...,
which is obviously no restrietion.

Leanna 2. Suppose the conjecture is true for a—1. and that S Is good
Jor n. Then there are af least 2 multiples of v —1 in 5.

Proof. Since 8 is good for =,

a,) =1

@
] -1,

1<i,j<sn
(a5 a5)

and e"qua.lity gives (n—1) a;. Supposc there are mo multiples of # —1
in S. Then

; 2 e
—— -2, 1<i,j<n
(a” aj) )

and so 8{a;} is good for n —1, for any «; € §, a contradiction.
Now suppose there Is just onme wultiple of #—1 in §, a, say. Then

and

tEr, 1l jgn.

Hence S8~{a,; is good for a—1, a confradiekion.

CLevma 3. LTet K = {ky, kyy ..., b}, where the k; are in ascending
order. Suppose there is a t such that
(kpt) =1, 1<i<a.
Then if k* = Lem. ks ..., kJ, we have
SO Ll >t( a 1)
Fey @(t)
Proof. It is easy to see that (k%) = 1. Also
i
f; = —  for some ¢;, & =1,...,0a.
We have 1< g < ga<...< and
{ginf) =1, 1<Ki<a.

Suppose @ = Ap(t) -+, 1< u < o(t).
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Now in any block of ¢ consecutive infegers, there can be at most
¢{t) ¢’s. Henee :

23
= M Mz |—— —1)t.
> Hie= /(r.n(t) )
Note that ¢ — 1 always satisfies the requirements of the lemma,
whence
E* i

(20} -E=Q1> a—1 3‘—};;2 Q.

2. Proof of Theorem 1. Suppose § is good for =, and

where [IeL=1 30 (modp).

We suppose K = O, whence (18) gives L > @. We also suppose (6) does

—1

not hold, so [” ] —1 by (3) and (5). Let k e K, T e I; then

— = B LR — 27 =
Gp D) (DT (%, 1)

S0 if &* i5 the lLem. of the elem_em;s of K, we have

< 9=kl VkeE, VieL.

8 = (pE)U(F*HM) for some M. -

Let LK) =¢; then | M| = L] =n—¢

Let m, = max{m e M), 50 m; = n—¢.

Let ky = min(k & K); then & = ¢k, by (20).
Now we know that

. &
mf sn—1
(mi k" Fyp)
and so '
my kY
z <n—1
k

=n—cleLn—1
> —ne+n—-1>=0 °

>gLl orezn—1.

Henee ¢ =1 or ¢ = n—1. By Lemma 1, if § is good for # with ¢ = n—1,

then §7* is good for » with ¢ = 1, so it suffices to show that ¢ =1 is

- impossible. Henee suppose ¢ =1; l.e. K = {ky}, ¥* = k. Then ke, fox
each 4, go from (18) k, = 1 and pK = {p}. Also m, = n since | M| =n—1,

icm
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p=<n—1 and we cannot have pe M. Then

My
(mq,; p)

= Wy .= N

2 contradiction, so ¢ = 1 is impossible. )
Cororrary 1. The conjecture is true for n = p-+-1, p any prime.
Proof. We kmow from [1] that it is true for p, so by Lemma 2, any &

that is good for p +1 must have at least 2 multiples of » in it, whenee

# = p -1 contradicts (6).

Cororrary 2. The conjecture is true for n = p+2, p any prime.
Proof. Suppose 8§ is good for p--2. By Theorem 1 there are no

mulfiples of » in § (provided @~ 2 > {n-—1)/2, which is implied by p = 3)

s0 we must have 3 distinet elements a;, 4, a8 with i>j> & and

a; = a; (mod p); a; == a;+7rp, say, for some r > 0. Then

&; . -+rp g , 7 »
(@5 &5) {6;+7D, &) {r, a) L, ;)
<p+1 as §is good for p-2.

Hence r = a;, 50 &; = a;{p+1). Then

By

S> = By 1) p .
(a5 o) & Oy
which. provides a contradiction.
CoroLLARY 3. The conjecture is frue for n =p+3, p any prime.
Proof. Suppose 8 is good for n = p--3. We may take n> 6, so
n—3> (n—1)/2, and hence there are no multiples of p in 8. We consider
possible congrnent pairs (mod p) in 8. Suppose

h; = avj (m(}d_’p),
a; = a;+rp, r>0, say.

Then _
a; 7 ' T

(a4, 0) (o

-+ r<p+2.
iy 7) (“j:”) N

S0 ra;, and either a; = 7 .or a; = 2r. Thus ejther

%(p+2)-

a; =

@1 4 =glp+l) or
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We see now that thore cannot be a8 many as 3 elements of § in one residue
clags, for if there were, then by (21) they would be of the form

a.(p+1) for some a,c8.

Gy (p+9)

But then, writing @, = — (p-+2) and & = a,(p+1), (21} would not be

Lo [3

gatisfied.
Case A. Suppose we have a;, @, &, ¢; €8, j>1 and

a; = a;{p+1), @ = a{p+1).

Then
a. Q& &
P e =L(pdd 1.
(@, a) @ o @+>p+
Henee
@ .
@ iaz) =p+2 a3 8 is good for p+3.
i '
Thus
ol

Ho there are at most 2
2 such, we wonld have

congruent pairs of this type, and if thcfe were

. a’la ﬁ"r'l l) (19“‘1)5”1!’ (p-{-‘?)a;eS
But- then
(p+1)a (p+1 o
A - 1; r = (pH1)2 > p 2.
(<300, (2] ) e
p+1

Hence we see that there is at most one pair of the first type at (21).
Casge B. Suppose we have a,, @, a,, 8,68, i > and

e
as”?(pT“)a @y

) |,_§

(P+2)

Let d = (a,, a,), and so

(0, 0 2d as § is good for p+3.

icm
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Thus ’
@ ] .
d>?>~;‘:¢»d =a,, since  dla,.
Hence
29
(22) Sa,> a.

Now suppose 2°[la,; ie. a, = 27a,, with e, odd. Then 2°7ig, since

| a
au!__{-(p +2), and p+2 is odd. This gives

. . ; ., ) a
(23) R R
Now

@, @, a, .

P ﬁT) = :W(p+2)gp+2 a8 S is good for p-+3.

3 = :
Thus 4 = a,/2, and so by (23)
9 G
(24) 5 ST
(24) and (22) now give

@ = 3a,,

50 we fee that there are at most 2 congrnent pairs of this tf_vpe, and if
there were 2 such, we would have

(Pmé): ty(p+2} e 8.

‘l.’ 2“’1.)

Now there are p -3 numbers in 8, which occupy p—1 residue classes.
Thus either one residue class contains at least 3 clements of S, or at
leagt 4 residue classes contain 2 or more elements of 8. The argument
after (21) rules out the first possibility, and the conelusions of cases A
and B do not allow the second. Fence we cannot find an § that is good

for # o= p+3.

TInfortunately it does not seem Jmmedlajtelv possible o extend the
above ideas to 1 = p+h, k= 4. Obviously, if this could be done for
general h< p, Bertrand’s postulate would then prove the conjecture.

3. Proof of Theorem 2. We suppose that S is good for n = gp+1,
1<t<p, and o '

8 = (pE)uL
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Whére H =@ L #£0 and leL=1 2 0(modp). 9 and plg) are as ;nt
{12) and (13), and we define

mig) = ¢*-+¢+1, 80 wzn(g) = p>yg,
y(q) = 2(p(Q)f +2Qu(9) +@ +1,
ny(g) is such that

2

=1 2 -+
22 N () = m(w)—= (—i;-'—) + il -

Then by “sufficiently. ]arge depending on ¢” we shall mean

722 max ("‘31(@7 fa(g), ﬂ‘a(Q‘)) .

Buppose & = B and Te L; then

kp | '
Ty ="
BO
(25) Cep<ap =<y
(&, 1 0

Let (k, @) =y and (k,1) = 2; then

k .
~<q by @),

50 :
] k kl k T |
26 — = —|2 —il.

(26) il z-iy:y =3

Now for each r]Q we define the (possibly empty) set K, by

k .
K}?EﬁkEthQ)=4-
Algo, put
 _ ll.c.m. -;EK,. it K, #d,
1 i K. =0
and '

B = lem R, ..., K3
Then (26) tells us that &* |7 for each 1e I, and so we have

§ = (pE)U(*HM)  for some M.

Onr a problem of E. L. Graham

Let |K| = ¢; then |L] = |M] = n—e¢;
Let my = max(m e M), 30 m; = n—s;
Let Y = min(k.e K,).

Now ke K, implies (%, Q/r) =1, and so by Lemma 3,

E . QK
___>_L> __(__L_.“ —
07 5 (@

“We know that 8 i good for u, and so

Mok _
s T OB Y e § hen K 5]
e, o) <" (vhen £ £ 0)

1)

E*
"
= ———Mi*i— <n—1
F o]
M
= p S
- 5;(_3311 “_1)
_ My Gem T
- r .
@A\l (P +Q)n—(#2 +-¢Q) ]
= << ‘P(?)[ Q(n—e) -
Now clearly
D =0,
rie
hence R
o) e ¥ (ﬂ)[ (r - Q)n —{r4-¢@) ]
(‘)7) (3<‘;'IT'J“(P-T - Q(n—o6)

rig

= e — et << (n—e)Q +(n—1)p{g)
= o*—e(n+Q)+n (@ +p(@) —y(g) > 0.

Note that o = n.(g) implies

£l

6 — Acta Arithmetica XXXIV,2

(@ +2p(g) +1)P

Q

151

= e — 02 << (n—a) Zgg(h?w) +{n—1) .Z P2 (@) /7)
‘ v
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icm

and 50 %2> n,(g) must imply

"1 #
e< Qiple)+5 <5 or

2 1 T
g > 0— ( VJ(Q)L)> e

by locating the roots of the expression on the lefs-hand side of (27). Suppose

2u(g) =1 p(g) +1
plg) + <ocOr w(g) 5
2 2
then 8~ would, contain ¢ = n—e¢ multiples of p, and ¢ could not satisfy
either of the inequalities at (28). Hence we see '

29(i)) o< Z’w(z‘z))%-l o
{29(i1)) ¢>n _E‘ﬂﬁg}i

Thiz proves (14) and (15).

Now (M| = n-—o; also m e M implies m £ 0 (mod p), and, by The-
orem 1, me M implies m = 0 (mod p') where p’ is any prime greater
than (r--1}/2. Hence we gee thab '

Bz >my=n i
Now suppose K, =&, k, c K,. Then

mE nk* "
gy Sl = S - s
il Thy ” T

< (2p{g) +1)/2.

{30) =K j<r—1 Dby (20).
Henee (K| =0, 50 K, =@, and (16) is proved. Note that |K,}<r—1
gives _ : . : ‘
(81} e X r-1)
710
¢ < o(@)—d(Q)  if (29(i)) holds or
—2 .
lezn—(o(@)-d(@)) if (29(¢ii)) holds
by considering 8! in the latter case.
To prove (10) we need to show ¢ =2 is impossible. If ¢ =2
then @ =2, p{2) =5 so '

51.
my(2) =T,  mg(2) = =

o ' g (2) =2,
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Thus the result will be valid for all 72z 26. We suppose thab
8 = (pE)U{E" M)

is good for m = 2p -1 (L <1< p), 50

K =K, U(2K,).

By (31), we see that, if %> 26, (K} = 1 or —1; as in Theorem 1 it is
sufficient to show |K| =1 is impossible. Tn this case, by (16), we know
K, =@, and so K = {2k} for some number k, and ¥* = & By (18), we
mugt have k& =1, and

8 = {2plu M.
Cleaxly 1 ¢85, 80 2¢ 8 by {2). But then It is easy to see thab
(8Naphuf2}

will form a good set for u, algo confradicting (2). Thus we see ¢ =2 is
impossible. : : . '

To prove (11) we need to show g = 3 is possible only in the stated
cise

S = {6p}ul.
We assume S is good for n =3p+t (1 <i<< p), and
8 = (pE)u(F* M)

where B = K1U(2K2)U(3K3)U(BK6) =3,

We take n large enough to be able to assume, by considering 8 if
necessary, that

2p(3)+1
}K]<_jpm(2)

5
95 and K, =@.

We consider possible elements of K, remembering, as at (30), that
K< r—1.

Case A: K, + @. By (30), we have |K,| =1 and so K, = {k.} for
some k,. In fact, by the statement preceding (30), we see k¥ = k,. Henee

(#*, 3) = 1 by definition of K,.

: ' ] B
Subease A(i): Hy = 0. Now ksng:a(ks,g) =1.80 k& and con-
sequently & are odd. By (30),
AR
Ty~ Ky

7*
LB

2z

sinee %y is odd,

&

- Ka = [k} where either %, = &, OT 2:7.:3 = Jg.
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Buppose Ky =@. If &, = &, then k,|a; for each 4, and so &, = 1,

Thus 2p, 3p € 8, and 80 (N{2p}) U{Z} would also be good for n, econ-’

tradicting (2).

Ik = Jha, then similarly, &, — 1 and so 3p,4dpeS. Now k" =3

and so a, € F" M implies 21a;. Also, ¢, n implies 3la;, since a;/{«;, 3p)
st n~—1. Together we see -this pives a,> 3w, and 5o a,/(a,, 3p) =
providing a confradiction.

Thus suppose H; == 0. We mnust have a %k, € K, such that

(i) If &y = ko, then &yt 6k '

(i) If 2k, == k,, then k.1 6k; _
or the argument above wonld apply again, sinee then in each case &y = 1,
and in (i), ke|k, implies &y = 1. Now we know that &*/k, = ky/k; < 5;
also ‘&, 15 odd and {k;, 3) =1, so in each case we must have k,/5 e ;.
Then: .

H Ry ==Fo: Ba/B =1 by (18), and so 10p, 1bp, Gp € 8 and &* = 3,
Since 6p € 8, and 3p < » < 4p, wo must have {m, 6) = 2 for each m e M,
Now {H| <4, so {Hizn—~4 and hence M, = max{m e M) must be at
leagt 6(n —T}/4 (by similar reagoning to Lenuna 3). Then

Jm, - 5m, o i
= *—L
(5my, 6p) © 6

which 1y troue by (9).

Thus we have 2k = ky: Then k,/10 = 1 by (18), and 20p, 15p and
12p e 8. We get a similar contradiction to the above by congidering 12p.

Thus we must have K, = @.

Subecase A(i): K, =0, K, = @. Now necessarily &, is odd, or we
have 2|a, for each <. Thus the only possible elements of K, are &, or ky/5.

If£k3/6 ¢ K then &y, =1 by (18 8 = {‘)p, 6ptLM and (SN {2p}ju {2}
is good for =, coniradicting (2).

Hence k,/5 € K¢, and so k, = 5 by (18). But then 6p e S and ¥ =
giving a econtradietion as above. Thus K, = @. :

Subease Afiil): &k, = = ks == @. Then &, = 1 by (18), 50 8§ = {.‘Zp}uﬂf
contradieting (2) as above.

Thus K, = @.

Case B: K, # 0. By (30},

whenever =~ # = 32,

95 A e
T>k_3 for all ke K.

Hence K, = {k} and either 5* =k, or &* = 2k, (since (k,2) == 1).

Subease B(i): % = @. Now 3(3 and 3|6, so necessarily 344" by
(18); also %, ig odd. o

icm

- “providing a contradietion as before. Thus we must have K,

" Hence there cannot be such an &, and so

".'lmﬂl
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IE ks = &': Possible elements of K, are k, or k,/5, and we ohtain a
contradiction as in A(i) above.

T 2kg = k*: Possible elements of Ky are 2k, _lg,’z or 25, If
i ¢ Ky, then &y =1, £* =2 and 3p e 8, giving 2 wntradmtmn a8
in A(l). If 28/ e K, then ks =5 by (18). Then k¥ =5 and 12p & §,
giving a confradietion as in A(i).

Thus K, = @. -

Subease B(ii): &, =0, K, = {k}. Then &* =k s0 ks = 1, which

~wonld mean that (SN\{3p}}u {3} would be good for @, confradicting. (2).

Hence we must have:

Case C: K, = K, = K, = 0. We must have (£, 6) = 1 by (18), so
possible elemonts of K, ave &%, k*/5. If k™[5 € K, then " = 5 and 6p €5,
={FY, ¥ =1,
and so

8 = {6p}Ull, meM=m s 0(modp).

1 .
[Note that n,(3) = 13, n,(3) = 285 T and n,(3) is such that n = ns(3)

-t

implies J?:('n)—~:'z(--~—m) > 7. Tvaluation of n,(3) would give the range
of validity of {11}.]

4. Proof of Theorem 3. We suppose § is good for = =% ¢ = 2.
Suppose there is an a; in § with a; = 0 (mod p%); & = Ip® sav. By (18)
there is an a; such that a; = 0 (modp), so

-

o a) (L)

| e

8= (?nblKa—z)U(Pa_—ﬁKu—-i)U - U(?Kl)U(Ku)

for some (possibly empty) sets K, where keK =% 7.0 (mod p),
L a—L. '

"%uppose heKy, lcK,; and k = 1 (mod p°), 80

5= I-{-'rp" with 7> 0, say. '

. "l‘hen

. pi]ﬁ _ k _-' 1 + r Pﬂ>’:pa'
Pk, P (K, w0 (D)

Thus we cannot have k =1 (mod ).
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Suppose ke K;, teK;, i #j and %k =1 (mod p"), so

i.; =1-+rp"  with 20, say.
Then
i v
p k -~ -}u

'k, 2°1) T (k, 0y

If r £ 0, then as above this is greater than p”. Hence we must have r = 0,
g0 k=1

CoroLLARY. The eonjecture is true for'n = p% p any prime..

Prooi. Suppose & i3 good for p2, so

8§ = pK,UK,.

Within A; and K, all numbers are distinet {mod p?), snd are not divigible .
by p. Thus there are p2—p residue classes in which to place P* numbers.
There are at most 2 in any one class, and so there must be at least P
congruent pairs, lying in different sets. By Theorem 3, they are in faet
equal, 80 we can find

L={h,.sdy} with XeK,, i ek,.

Take any 4, ¢ [, ﬁ,-éL. Then pi; e8, Led s0 | '

hr
Ph oo

- . ) < .
(932, %) Gy 4y T

o A :
Similarly -—2— < p, as pAc 8§, 4, €8, and so L is good for p, con-
13 fy

tradicting (3).

5. Remark. Suppose » is such that there exists a good 8 for n. We
know that » is not of the form p, » +1, p-+2, p43 or p? for any prime p:
The first few such are 27, 28, 35, 36, 51, 52, .., Using Lemma 2 and (10),
we see that if 2 > 26 and » = 2p +1, and the conjecture has been proven
tree for » = 2p, then we can deduce it true for »: Thus the conjeature
is true for n =27 = 21341 and # = 35 = 2-17 +1, as for each of
these, n—1 is of the form p’ +3 for a prime p’. Similarly, using (11) and

-sufficiently high #, we can deal with n = 3p--1 if the result is known for
% —1. So, in general, the conjecture is true for:

(@) » =2p+1 = p"+4, p,p’ prime,
and .

(b) m =3p+1 = (2p" +1)+1 = (p” +-4) +1, p, 'y p"” prime,
and = sufficiently large. : '
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