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Homology with equationally compact coeffcients
by

Steven Garavaglia * (Berkeley, Cal.)

Abstract. In this paper it is proved that an abelian group G is equationally compact if and only
if the Cech homology theory with coefficients in G satisfies the exactness axiom for all compact
Hausdorff pairs. This result is used to show that the McCord homology theory defined by an ultra-
power coincides with Cech homology for all compact metric pairs. Examples are given to show that
this theorem cannot be improved.

1. In this paper I first prove a new characterization of equationally compact
groups in terms of Cech homology. In subsequent sections I use this result to answer
some questions raised by McCord about the relation between Cech homology and
his nonstandard homology theory. These theorems were announced in [2].

DEFINITION. An abelian group G is equationally compact if and only if for
every set T of linear equations with parameters from G, if every finite subset of T"has
a solution in G then T has a solution in G.

Many equivalent formulations of this concept are known. I will need the fol-
lowing one, which is due to Balcerzyk [5, p. 293].

THEOREM. An abelian group G is equationally compact if and only if, for every
set of equations

T = {xy—a, = nlx,| a,€ G,n>1},
if every finite subset of T has a solution in G then T has a solution in G.

I can use this result to prove the following equivalence:

THEOREM 1. An abelian group G is equationally compact if and only if the Cech
homology theory with coefficients G satisfies the exactness axiom on the category of
compact Hausdor)f pairs.

Proof. Suppose G is equationally compact and (X, 4) is a compact Hausdorff
pair. T will prove exactness of the following segment of the homology sequence:

A5

(The coefficient group G has been omitted to simplify the notation.) The proofs of
exactness for the other parts of the sequence are exactly the same.

* The author was supported during the preparation of this paper by an NSF Graduate Fel-
lowship.
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It is always true that ij = O [1, p. 248]. So suppose x € H,(X) and i(x) = 0.
Let Cov(X, 4) be the finite open coverings of (X, A) ordered by refinement, and for
all ¢, f e Cov(X, 4), f>a,let (X, 4,) be the nerve of a; let i,: H(X)—H,(X,, 4,),
' Jui H(A)—H(X,) be the homomorphisms induced by inclusion; and let IT%: H,(X, )
—H(X,), ot: H(A)—H,(4,) be the homomorphisms inguced by any projection
(Xp, 4p)—(X,, 4. Then * H,(X) = ImH,(X,) and H,(4) = limH,(4,). Let
x = (x)oue Cov(X, A). Then i,(x,) = 0 and IT%(x;) = x, for all «, f & Cov(X, 4),
p>a. In order to prove exactness we must solve the following set of equations:

T = {jy) = %a 02(yp) = ¥l &, B Cov(X, A), p>a}.

"The classical algorithm. for computing the homelogy groups of a finite simplicial
complex [1, Chapter 3] allows us to find integers n,, m,, and matrices P,, Q, with
integral entries such that

{£eG™| P5 = 0}

A= =0 37 e 67

Similar integers and matrices. can be found for each H,(X,). Furthermore, the
homomorphisms 7,, j,, IT5, 6% can all be regarded as homomorphisms defined by
matrices with integer entries. Consequently, one can construct in an obvious way
a set T" of linear equations over G which is solvable in G if and only if 7 is solvable.
Now if §'is a finite subset of T"let u & Cov(X, 4) be a refinement of any & appearing
in §. Since ,(x,) = 0 and ...—-»H,,(A,,)ﬁ‘rﬂ,,(X A b s exact, there is some b, € H,(d,)
such that j,(b,) = x,. Then it follows easily that {o5(b,)| «<u} is a solution for all
the equations in S. So each. finite subset of T is solvable, and so each finite subset
of T is solvable in G. Since G'is equationally compact, this implies that 7" is solv-
able in G. Consequently, T is solvable.

Conversely, suppose G is such that the homology sequence is exact for all com-
pact Hausdorff pairs. For each n>1 let X, be the space obtained from the closed
unit disc in the complex plane by identifying x and y if and only if |x] = 1 = ||
and x = ye?™™ for some k € N. Each X, is a compact metric space and the image
of §*in X, under the prescribed identifications is again homeomorphic to S*. Let
fut XX, -4 be the map induced by the function z—z". Then f, is continuous,
surjective, and maps the image of $* in X, homeomorphically onto the image of §* in
X, _;. Consider the array

---**1?1(51)‘“*}71(1\’1)—*}21@’1 s Sl)

(S2)k (fa)x (f2)n
i Hy(SH—H (X,)— Hi(X,, 8%
T(fs)n' f3dw 3k

W H (SN B, (X5)—Hy (X5, SY)
1 ? 4
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where the horizontal arrows represent homomorphisms induced by inclusions. An
elementary calculation shows that this array is equal to the following one:

oG 0—0
fra

W —G3GJ216—0
1\‘\15 T“

W GBG/31G—0

Tlo Ta

where P,(g) = g+nlG for all n and g,(g+n!®) = g+(n—1)!G for all n.

Now take the inverse limit of this array, and apply the continuity theorem for
Cech homology to obtain the following segment of the homology sequence for
lim (X, §*):

(*) . oGS (UM G/n! G)—0 .

1t is exact, by hypothesis. Let T = {x,~a, = n!x,| a, € G,n>1} be finitely golvable.
Then for each n there are x,, X,_;, Xp such that Xo—a, =nlx,, Xo—@-1
= (n—1)!x,..,. Therefore,
dn’"‘%-l = (n—1)!x,-1 —nlx,
= (n=D10xt,—,—nx) e (n—1G

50 o
ga,+nl@) = a,_+@—-DG. ‘
Consequently, (a,+n!G)yxy is an element of lim G/n! G. By the exactness of (x) there

is some element x, € G such that g(xo) = (@, +n! Gz 1, ie. xp—a, e_n!G fo¥ all m,
which means that T'is solvable. Therefore, by Balcerzyk’s theorem, G is equationally
compact. .
CoROLLARY 1. The Cech homology theory with coefficients. G is fxact_ for all
compact Hausdorff pairs if and only if it is exact for all compact }Tleirzc paz:s.
Proof. This follows immediately from the fact that the pair lim (X, S*) used
in Theorem 1 is a compact metric pair.
| tructed a homology theory using the techniques of non-
‘stanc?a.trgnﬁﬂls/\:iz.c Iollt;dlgfc;nzpen the problem of how h{s theory‘ was relat.ed to Cech
homology. In this section and the next I give a_pama‘l solution to tlgs p{'ob?emi
Tn the following, H denotes McCord homology, C,(X) is the group of infinitesima
n-chains on X, d is the differential,

Z,(X) = {xe C,(X)| du =0},
“ By(X) = {do] 2 Cpus(X)} -
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See [3] for the definitions. In the proof of Theorem 2 I omit the star from the names
of standard objects to simplify the notation. The ¥* which occurs below is defined
in [4, p. 316].

One final remark: in [3] McCord actually defines his theory only for enlarge-
ments, but his proofs of the axioms remain valid in-an arbitrary nonstandard model.
Therefore the statement of the following theorem makes sense even when the ultra-
power involved does not yield an enlargement.

THEOREM 2. If G is an abelian group and *G is an ultrapower of G with respect
fo an w-incomplete ultrafilter on an infinite index set, then the MecCord homology
theory H( ; *G) is isomorphic to the Cech theory H( ; *G) on the category of pairs
of compact metric spaces.

Proof. The proof essentially follows Spanier’s proof of the continuity theorem
for Alexander—Spanier cohomology in [4, pp. 316-319]. Embed X in [0, 11°. Then
you can find a sequence of compact pairs (X, 4,) for ne w such that X oX,.1,
A,>A4,.q Tor all n, N (X, 4,) = (X, 4), and each (X,, 4,) has the homotopy type

hew
of a compact polyhedral pair. There are natural maps

ir H(X, S (X, 4,) 5 lim F(X,, 4,)5 (X, 4) ,
7t B0 im B, (X,) 3 lim H,(X,) S H.(X0),
k: H(d)S tim H,(4,) > lim (4,5 7, (4)

where Iy, j;, k; are induced by inclusion and the other maps are the natural iso-
morphisms provided by the uniqueness theorem for homology on compact poly-
hedra and the continuity theorem for Cech homology. I want to prove that i, j, &
are isomorphisms. It is sufficient to prove this for j because the proof for k is exactly
the same, and the result for i then follows from the Five Lemma applied to the
following diagram: '

H () H X~ H X, Ay B, _y(4)—H,_,(X)
‘Lk e ij i k J

H(A)~H(X)~H, X, A)—~H,-(4)~H,_(X)
The bottom sequence is exact because H satisfies the exactness axiom for all pairs
and coefficient groups [3]. The top sequence is exact by Theorem 1 since *G is
@y-saturated and hence, by Balcerzyk’s theorem, equationally compact.

So it is sufficient to show that j, : H,(X)—limH,(X,) is an isomorphism. Let r be
some metric on [0, 1] which induces the product topology, and let
=3 gi(xXb, o.r, Xp)

be any (internal) n-chain on [0, 1]°. Define

diam (o) = max[ max r(x}, x1.
i 0gjk<n
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For any standard real >0 and any standard Y'<[0, 1]° let C,(Y, ) be the set of
internal n-chains o on Y with diam(e)<e, Z(Y, &) = {a € C,(Y, ¢)| du = 0}, and
BAY, &) = {du| aeC,.((Y, &)}. These are all internal sets.

Now T first prove that j, is surjective. Suppose

(mmeo € IMHL(X,) .

Let a,,; e Z,(X,) be a representative of the homology class «,,. Consider the set P of

formulas
seN
meof’

] 1
{XEZ"(X, 5) SGN} v {(ay)(yecn-(-l(xms ;)Ady = x—(l,,,)

T will show P is finitely satisfiable. Take any finite subset T of P, and let X,,,f, ..._,X,,,,‘
be the sets occurring in T, and let 1/sy, ..., 1/s, be the diameters occurilng in T.
Pick s>max(sy, ..., 8). Let U be a standard finite open cover of' [0, 1]° by balls
of diameter <1/s. By Lemma 1 of [4, p. 316] there is a standard ﬁmte open cover W
of [0, 11° such that W* is a refinement of U, and a standard function f and a standard
open neighborhood M of X such that

1 fM)eX,
(@) f) =xfor xeX, -
(3) if Ve W then f(V'n M)=V* (and so f(V'n M) has diameter <1/s).

Pick m>max(my, ..., m,) large enough so that X,, =M. Such an m exists ‘t.>y

compactness since () X,, " CM = X n CM = @. Then (1), (2), and (3) are still
mew : : . ~
valid with M replaced by X,. Let a, = Z g,xh, ..., xi). diam(g,)=0 so for
' i . 3

each i there is some Ve W such that x5 e ¥, ..., xi € ¥ since W is standard. So bg
condition (3) diam(fxh, v Jx)<1s. Define f4(¥os s ) = (fFos s V) Oan
extend f, linearly. Then we have diam(fy a,)<1/s and d(fya,) = feda, =0, 50
fua,€Z,(X,1/s). Define

D(J’o, "wyn) =—§E0(-1)](y0’ "':yj’fyj, :fyn)

and extend D linearly. An easy computation proves that
d(Dam) +D(da,) = S 0n—Cn,s

in II VeW, each
i = fy@,—0ay. Since VoV* f(Vn X)cV* for a g
1ne+ lg)l-(tﬁgi'g (xf,ff..: x},}x:-, .., i) is contained in some J7* and hence has dlan}eter
<1/s. Consequently, Da, € C,+1(X,,, 1/s). Then it is clear that x = f4 a, satisfies

the formulas in T. Since the ultrapower is w,-saturated, P can be simultaneously

satisfied by some a. Then clearly a € Z(X) (sincE diam (&) <1/s for all s € N) fmfi
for each m € @, a—dy € B,(X,,). Therefore j; («+B,(X_ )) = (ty)mea- Therefore, j; is

surjective.
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Proving that j, is injective is very similar. Suppose «, B & H,(X) and j,(z) = J1(B).
Let a, beZ,(X) be representatives of the homology classes o and f respectively,
Then for each m € o there is some 4,, € C, (X, such that d(a,) = a—b. Consider
the set P of formulas: ‘

{xeC,sy (X, 1/s)] se N} U {dx = a~b} .

Let T be a finite subset of P and let s be larger than any my, such that C,, (X, 1 [my)
occurs in T. Let U be a finite cover of [0, 1]° by balls of diameter < | /s, and choose
J> M, W as before, and take m large enough so that X, M. Then since d(a,) = a—p
we obtain

d(foaw) = fyd(a,) = fya—fub = a—b
since /' is the identity on X. As before, diam (fy a,)<1/s, so fya, e C,. (X, 1/s).
Therefore x = f,, a,, satisfies the formulas in T By w-saturation there is some ¢ sat-
isfying P. Clearly ce Cy+1(X) and d(c) = a—b. This means that ¢ = B, ie. j, is
injective. i .
In [1, p. 288] it is proved that there is a unique functorial homomorphism
h: H-H extending the identity on *G. The definition of % given there coincides
exactly with the definition of j given here, so it follows that j is a functorial iso-
morphism. Q.E.D.

3. Itis natural to ask whether Theorem 2 can be extended in any way. It is clear,
for example, that if & is a cardinal and we consider an «*-gsaturated ultrapower
then the proof of Theorem 2 will work for all compact spaces with a base of cardi-
nality <o, Consequently, the question arises whether there is some ultrapower for
which H(X, 4) = H(X, 4) holds for all compact spaces. The following trivial
theorem shows that this is never true. o

THEOREM 3. If G is any nonzero abelian group and *G is an ultrapower of G with
respect 1o an w-incomplete ultrafilter on an infinite index set J, then there is a compact
Hausdorff space X such that Hy(X; *G) # Hy(X: *G). ‘

Proof. Let « = card(J), f = card (G), 6 = max(a, B). Let X be the one-point
compactification of a discrete space of cardinality 2°. Then

card (H,(X; *G)) = card (*G*")
22%, but card (Ho(X; *G))
<card (*(Cy(X; G’)))
’ <@ =27 '
On the other hand, we might try to prove T11e61'01n 2 for arbitrary n,onstandﬂfd

models rather than yltrapowers. The following result shows that this cannot.be done
even for enlargements.

. THEOREM, 4. There is an. abelian group G and an enlargement *G of G such that

H( 5 *G) is not isomorphic to‘I\-'[( $*G) on the calegory of compact pairs of metric
spaces. | o
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Proof. H is always exact; consequently, it follows f.rom Corolla}ry 1 that I need
only find some G and some enlargement *G such that *G is not equationally c.:ompl;c;.
Let G = Z® where Z is the group of integers. Constru?t an enlargement in w ;\r
*N—N has a countable coinitial sequence {a,‘,},,:sN, ie. a;>a;.q for all.z €N,
a; € *N—N for all i, and if x € *N— N then there is some i such that a;<x. It is easy
to construct enlargements of this type using the compaciness thefrem; ot

It b e *(Z%) let b(i) be its ith coordinate, for iey*m: Peﬁnfe VL Z.x N-—) il :{
F(x,y) = the smallest element n of *N such that 2 ;hvindes ;x—i? f I.S an in
function. Now define a sequence ¢, of elements of *(Z%) as follows:

(1)) e(@)y=1 foral ie*w,
3 if i<,
2 o) =43 if i>ay,

1 if 2<igay,

for n>2 define
(i) if i<n or i>a,-q,

(3) Cpaild) = <2"+1 if i =n or a,<i<a, 4,
1 if n+i<i<a,.

n 3 1_
Consider the set of equations {xo—c, = 2"x,| n>1}. Any finite ts.,ubszté 1111:(51 e; 221-
ution in *(Z®) since for all i and all j<i 2J| ¢;—c¢;. Suppose the en 1r3 set e
ution with x, = ¢ in *(Z®). Then ¢—¢, € 2"[*(Z%)] for allne N, s0 2 ]c(.z) *c,, ) for
all ne N, ie*o. But 0<c,()<2" so f(e(i),n) = c,,(t)‘ for all nen]\(,<z.eb$.if s
clear from the definition of ¢; that if i is finite then, ¢i() = 1 for all j<i,
infinite and a4, <i then ¢y44()>1. Consequently

{ie*w| f(c@),f) =1 for all j<i,je *N}=o.

is i i i so we
But 4 set with this kind of definition is internal, whereas c: 1smnever mt‘e;nzl;d e
have reached a contradiction. Consequently, no such ¢ € (Z%) can exist,
means that *(Z°) is not equationally compact.
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