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Stable graphs
by

Klaus-Peter Podewski (Hannover) and Martin Ziegler (Berlin)

Abstract. We show for a simple class of graphs that there is no definable ordering of an infinite
set of n-tupels of vertices. This class contains all planar graphs and all graphs of finite valency.
A major step is the proof of the equivalence of two graph-theoretical notions.

Introduction. A graph has a definable ordering if there is a graph-theoretical
formula @, an infinite set A of k-tupels of vertices and a linear ordering < of 4 s.t.
two elements @, b e 4 satisfy ¢ iff a<b.

In[1]is shown that no tree, no n-separated graph and no graph of finite valency
has an ordering of 1-tupels. By a refinement of the method in [1] we prove that
no graph has a definable ordering which satisfies the following property:

(%)  For every infinite set U of vertices and every natural number m there is a finite
set .S of vertices and an infinite U'< U s.t. all pathes connecting two elements
of U’ of length smaller m contain an element of S.

We do not see any reasonable weakening of () from which we can derive the same
result. So it is surprising that () holds exactly in those graphs which contain no
bounded subdivision of edges of a complete infinite graph, which is a simple and easy
to handle property. We call such graphs flat. Since every subdivision of an infinite
complete graph is neither a tree nor of finite valency, n-separated, planar or em-
beddable in a surface of finite genus, all such graphs are flat. It seems difficult to
find a reasonable graph-theoretical property which extends flatness and implies the
nonexistence of a definable ordering.

A model-theoretic property which is connected with definable orderings is stab-
ility [3]. The following sharpening of flatness implies stability. For each natural
number m there is a natural number # s.t. no subdivision — by fewer than m many
points on each edge — of the complete graph with n vertices is contained in the
graph. This graphs are called superflat. Since every tree, every graph with bounded
valency, every n-separated graph, every planar graph and every graph which is
embeddable in a surface of finite genus is superflat, they are all stable.

Flat graphs. A graph is a structure (E, K), where K is a binary irreflexive and
symmetric relation on E. A graph (F,L) is called a subgraph of (E, K) if F<E
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and K<L, If S<E, we denote by (E, K)-S the largest subgraph of (E, K) which
contains no elements of S. )

Let # be a natural number, then "4 is the set of all sequences of length 7 of
elements of 4. Such a sequence is a function from {0, 1, ...,z—1} to 4. A sub-
graph (Q, W) of (E, K) is said so be a path of length n from a to b (in (E, K)) if
there is an injective sequence @ of length n+15.t.d(0) = a,a(n) = b, Q = {a(?)| i <n}
and

W= iU {@®,a@+n), @GE+1),a0) .
<n
Two different paths (Q;, W), i = 1,2 from a; to b, are called disjoint if

Q0 0y = {ay, b} n{ay, by} .

Let S be a subset of E and let a, b € E. We define dya, b) to be the minimum
of the lengths of paths from a to b in (, K)-S, if there is such a path, d,(a, B) = oo
otherwise. Note that d,(a, ) = 0 if ae S or be S. For &, 5 e"E we define

aa, b): = min{d,(a (i), b (X)) i, k<n}.

Let m be a natural number and 4 a cardinal, then KJ is the subdivision of the com-
plete graph with A many vertices obtained by inserting m new vertices on each edge.

Fig. 1

The following property () of graphs will be important for lafer discussions.

(¥)  For every infinite U< E and every natural number m there is a finite S cf
and an infinite U’ U s.t. for all different a,be U':
dfa,D)>m.

This will be equivalent to the following property.

1. DeFNITION. A graph (E, K) is called fat if no subgraph is isomorphic
to Kj, for any mnatural number m.

(E, K)‘is called superflat if for every natural number s there is a natural
number 7 such that no subgraph of (E, K) is isomorphic to K7,

2. THEOREM. A graph has the property (x) iff it is flat.

Proof. Since no X, has the property (*), we have that (x) implies flatness.

To prove the other direction assume that there is an infinite U< E and a natural
number m s.t.:

icm

Stable graphs 103

For every infinite U’'< U and finite S E there are two distinct @, b e U’ with
dfa, b)y<m. )

We first observe:

LEMMA. For every infinite U'cU and finite ScE there is ce E\S, an infinite
U" < U’ and for every ae U" a path (Q,, W,) from ¢ to a of length <m such that
(Q,, W,) and (Q,, W) are disjoint for a#b.

Proof. Since there is no infinite U*< U’ such that d(a, b)>m for all distinct
a,be U*, Ramsey’s theorem yields an infinite U*< U’ s.t.:

da,b)<m for all a,be U*.

Let ae U* and let F' = {be E| dfa, B)<m}. For every beF', bs#a, we choose
an ¢, e F' s.t. dfa, ¢;)<dfa, b) and (c;, @) e K. Let

. L'= U {(c,0),,e)}-
a#beF’

Then (F', L") is a tree. Let (F, L) the largest subtree whose endpoints are elements
of U*.

Since the distance in (F, L) of two vertices is smaller than 2m+1 there must
exist a ce F s.t. x:= {d] ¢ = ¢;} is infinjte. For every dex we choose a path
(Q4ys Wap) in (F, L) from c to an endpoint a, s.t. de Qa;. Let U" = {a,] de x}.
Then ¢ and U” have the desired properties.

Now we can continue with the proof of the theorem. Using the preceding lemma
we choose vertices ¢, € EN{cg, ..., C,—1} infinite set U,<U,_; (Uy=U) and for
every ae U, a path (QF, W) of length <m,s.t. (Q%, WD), (Qh, W) are disjoint
for a#be U,. Then we construct subgraphs (F,, L,) s.t.

a) (F,,L,) is a subdivision of the complete graph with the vertices c;,, ..., ¢;,
by fewer than 2m+1 vertices.

b) (F,,L,) is a subgraph of (F,.y,L,+1) as follows:

Let Fy = @, Ly = . Suppose (F,_,, L,—,) is already choosen. Let i, be greater
then all / with ¢;e F,_;. To connect c; with ¢;, k<n, we choose subgraphs
(FE, L), k<n, in the following manner:

Let F = F,_,; U {¢,} and let LY = L, ,. Assume (F¥™', LE™%) is choosen.
Then there exists a,be U;, s.t.

A FEt = {¢,}  and AR = (e}
Let (Q, W) the path from ¢; to ¢;, s.t. WaWi U W and define
[Fi=Ftuve Li=Li'uw.
Let F, = Fi~! and L, = L)~*. Then the graph (F,, L,) has properties a) and b).

To finish the construction define

o]

F=\F, ad L' = UL,.
. n=1
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An easy application of Ramsey’s theorem shows that there is an e< 2m and a sub-
graph (F,L) of (F',L') which is isomorphic to X¢. This proves the theorem,

3. CorROLLARY. Let (E, K) be a flat graph, m a natural number and A="E infinite.
Then there is an infinite Be A and a finite S E s.1. for all distinct a,beB:

4@, b)>m.

Proof. By recursion on e<n we choose infinite A,cd and finite S,cE as

follows:
Let 4y = 4 and S, = &. Suppose that A4, and S, are choosen. If

U={a(e)l ae i)}

is finite, let S,4; = S, U U and A4,,, = 4,. Otherwise, since (E, K) is flat, there
is an_inﬁnite U’ Uand afinite S, , = E, s.t. for all distinct a,belU',d,, (a, b)>2m.
Let 4, be an infinite subset of 4, s.t. for all distinct @, b e A1, 8(0)#b(e) e U
If S= L<) S. we have for all distinct @, b e 4, and for all k<rn:

esn

dyak), 5(k)) >2m.

By induction we choose elements a;e 4, as follows:
Letd, € 4,. Suppose that a;, j<1, is already choosen. Then we choosé @ i+1 € 4,
such that

“ df@iyy, a)<m  for  jgi.

If such an element does not exist, the infinite A, must contain @, § s.t. for some
J<i; I,k<n we have: '

dfak), ae))sm, dy(@;(k), b(e))<m .
This implies d,(@(e), b(e))<2m, which is a contradiction to the construction of A4,.

Graphs with definable orderings. The (first order) language % of the theory of
graphs contains besides the logical symbols a binary relation symbol P. Let X be
a set, then %y denotes the language & extended by using the elements of X" as con-
stant symbols. Let ¥ be the set of variables, let ¢ bé a formula from Zy and
let ¥, € "V s.t. Vi(m) s V(l) for all i #J (ms£0). If every free variable of ¢ is equal to
some Vi(l), i<k, I<n;; we write (¥, ..., V). This notion indicates how to substi-
tute constants:

Let d; e ™X then ¢ (@, ..., 4,) denotes the sentenice from %, which is obtained
from ¢(V,, ..., V;) by substituting Vi(h by d 0.

If (E, K) is a graph and fa function from X to E, then (E, K, f (%))xex is 2 struc-
ture for &,. For @ (7, , ) from 2y and d;e™E let

(E’ K’f(x))xex F (P[ala veey ak]

'fexpress that ¢ holdsin (E, K, f (%)), x if V() is interpreted by d,(!). Th(E, K, f ())xex
1s the set of all sentences of %, which hold in (B, K, f (%))sex- k
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For example let S be a finite set, V;, ¥, two n-tupels of variables. Define
@an(vlz VZ) .
= AA Vo Vou(Wo = V(DA NP W) Aw; = To(®)= \/ \/ x = w)).
j<i

I, k<n i<m xes j<i
Then
(E’ K:f(x))xes E (P;"[az E]

Similarly we find for all natural numbers , m a sentence Y™, s.t. (E, K) F Y7 iff (E, K)
contains no isomorphic copy of K.

From this we can derive

4. LeMMA. (E, K) is superflat iff all graphs (F, L) which are elementary equivalent
to (E, K) (i.e. Th(E, K) = Th(F, L)) are flat.

Proof. If (E, K) is superflat there is for every m an n s.t. (£, K) k™ This
holds also in every (F, L) elementary equivalent to (E, K). So clearly for every m
K is not embeddable in (F, L).

The other direction is shown by an easy application of the compactness theorem.

The following notion is important in model theory [3].

5. DEFINITION. A formula ¢ (V, U) is said to define an ordering of the graph (E, K)
if there are an infinite A<="E and a linear ordering < on A4 s.t. for all d,be 4

(B,K)Fola,b] iff

iff  dpsy@, by>m-in (E, X).

a<b

(E, K) is called stable if there is no definable ordering in any (F, L) elementary
equivalent to (%, K). -

It is quite useful to make the following definition:

6. DErINITION. A formula y(V, W) is called large in a graph (E, K) if there
is an infinite 4 = "E s.t. for every infinite B 4 there are @, b e B s.t. (E, K) F y/[4, b].
For example, if ¢(V, W) defines an ordering in (E, K), then o(V, W) and
o(V, WYyA 19 (W, V) are large. A major step to prove that every flat graph has
no definable ordering, is the following theorem.

7. THEOREM. Let Y (V, W) be a large formula in a flat graph (E, K). Then there
are an extension (F,L) of (E, K), an automorphism k of (F,L) and @,be"E s.t.

. hed =b and hoidg, .

2. dy(@, b) = o,

3. (F,LYEyla,b].

Proof. If there is an @e"E s.t. (E,K)ky[ad,dl, then let 5 =3 and
(F,L) = (E, K). Otherwise, since y(V, W) is large in (&, K) there is an infinite
Ac"E s.t. every infinite BeA contains two different elements @,5 such that
(£, K) k y[a, b]. Since (E, K) is flat, we have by Corollary 3 that for every natural
number m there is a finite S,,=F and an infinite 4, <4 s.t. ds (a, B)>m for all
distinct @,b e 4,,. Clearly we can assume that S, =S, and 4,54, .
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Now we extend £ to &y by 2n new constant symbols which we can arrange
in two sequences d, & of length n. We define sets Ty, Ty, T,, T of sentences of Zy:

o= Th(E’ K, x)er:

T, = {¢§.(d, & m a natural number},

where ¢f (V, W) is the formula defined above, which expresses “'dsm(V, Wy>m”
T, = {o(@+0o(@)| o) from £z},
Iy = {‘ﬁ_(a: &y . N

Finally let T= T, v T, U T, U T5. First we prove, that T" is consistent:
Let 4 be a finite set of formulas o (W) from £ and let m be a natural number.
Define

Ty = {¢5,(d, 8| r<m},
Ts = {oc(d) (e a(@®ed}.

By compactness it suffices to show that T = T, uT, T, U T; has a model.
Since 4,, is infinite, we get by an easy application of Ramsey’s theorem an infinite
Bcd,cA s.t.

(E’ K: e)stFa[a] iff (E’ K7 e)deEl: G[E]

for-all @,beB and all e 4. Choose two different sequences a,5 e B such that
(E, K)Ey[a, b] and let f be the map from X to E which satisfies idz=f, fod = a
and fo & = b. Then (E, K, f(x))zcx is a model of T and therefore T is consistent.

Let (F’, L', g (x))xex be @ model of T. Since T, =T we can assume that (E, K)
is an (elementary) subgraph of (F/,L') and goidy. Let @ =god and b = g oz
Since T,<T, @ and b satisfy the same formulas of %5 in (F’, L', €),. . Therefore
using a result of [2, p. 49] we find an elementary extension (F, L) of (F, L) and
an automorphism # of (F, L) s.t. k>idg and hod = b. Since T; =T, dg(@, b) = w0
in (F,L). Finally Ty<T implies (F, L) k 4 [a, B].

E‘ By a similar argument as in [1, p. 178] one can show:

8. LemMmA. Let (F, L) be a graph, EcF and h an automorphism of (F, L) with
hoidg. If @, b €"F such that d(@,b) = oo and ho G = b, then there is an automor-
Phism fs.t. fe@ = b, fob =a and f>idy. .

9. CorOLLARY. No flat graph has a definable ordering.

Proof. If (¥, W) defines an ordering in (E, K), then

!ﬁ(V, W) = ({)(7, W)A _I(/)(W’ V)

is large. If (E, K) is flat, by Theorem 7 and Lemma 8 there are a graph (F, L) extend-
ing (E, K), ae"F, b € "F and an automorphism % of (F,L) s.t. hod = b, hob =a
and (F,L)Ey[a,bl. This implies (F, L)k y[B, a], which is impossible by the
special form o'f V.
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A immediate consequence of Corollary 9 and Lemma 4 is
10. COROLLARY. Every superflat graph is stable.
Remark. Let A = (4, U, R;, fier, jer, vex be a structure, where U;, i1,

are unary relations, R;, j € J, are binary relations and f;, k € K, are unary functions.
We define :

Ka=(U®RURM U U (fiufiH)Nidy.
jeJ kekK

Then (4, Ky) is a graph and by a similar argument as before one can show:

a) If (4, Ky) is flat, then 9 has no definable ordering.

b) If (4, Ky) is superflat, then 9 is stable. For example, if J = @, then U is
stable.

Moreover we can extend a) as in [1]:

©) If (4, Ky) is flat, then any (in ) definable e-ary relation of "4 is almost
symmetric.
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