

Stable graphs

by

Klaus-Peter Podewski (Hannover) and Martin Ziegler (Berlin)

Abstract. We show for a simple class of graphs that there is no definable ordering of an infinite set of *n*-tupels of vertices. This class contains all planar graphs and all graphs of finite valency. A major step is the proof of the equivalence of two graph-theoretical notions.

Introduction. A graph has a definable ordering if there is a graph-theoretical formula φ , an infinite set \overline{A} of k-tupels of vertices and a linear ordering < of \overline{A} s.t. two elements \overline{a} , $\overline{b} \in \overline{A}$ satisfy φ iff $\overline{a} < \overline{b}$.

In [1] is shown that no tree, no n-separated graph and no graph of finite valency has an ordering of 1-tupels. By a refinement of the method in [1] we prove that no graph has a definable ordering which satisfies the following property:

(*) For every infinite set U of vertices and every natural number m there is a finite set S of vertices and an infinite $U' \subset U$ s.t. all pathes connecting two elements of U' of length smaller m contain an element of S.

We do not see any reasonable weakening of (*) from which we can derive the same result. So it is surprising that (*) holds exactly in those graphs which contain no bounded subdivision of edges of a complete infinite graph, which is a simple and easy to handle property. We call such graphs flat. Since every subdivision of an infinite complete graph is neither a tree nor of finite valency, *n*-separated, planar or embeddable in a surface of finite genus, all such graphs are flat. It seems difficult to find a reasonable graph-theoretical property which extends flatness and implies the nonexistence of a definable ordering.

A model-theoretic property which is connected with definable orderings is stability [3]. The following sharpening of flatness implies stability. For each natural number m there is a natural number n s.t. no subdivision — by fewer than m many points on each edge — of the complete graph with n vertices is contained in the graph. This graphs are called superflat. Since every tree, every graph with bounded valency, every n-separated graph, every planar graph and every graph which is embeddable in a surface of finite genus is superflat, they are all stable.

Flat graphs. A graph is a structure (E, K), where K is a binary irreflexive and symmetric relation on E. A graph (F, L) is called a subgraph of (E, K) if $F \subset E$

and $K \subset L$. If $S \subset E$, we denote by (E, K) - S the largest subgraph of (E, K) which contains no elements of S.

Let n be a natural number, then "A is the set of all sequences of length n of elements of A. Such a sequence is a function from $\{0, 1, ..., n-1\}$ to A. A subgraph (O, W) of (E, K) is said so be a path of length n from a to b (in (E, K)) if there is an injective sequence \bar{a} of length n+1 s.t. $\bar{a}(0) = a$, $\bar{a}(n) = b$, $O = \{\bar{a}(i) | i \le n\}$ and

$$W = \bigcup_{i \in \mathbb{Z}} \{ (\bar{a}(i), \bar{a}(i+1)), (\bar{a}(i+1), \bar{a}(i)) \}.$$

Two different paths $(Q_i, W_i)_i$, i = 1, 2 from a_i to b_i are called disjoint if

$$Q_1 \cap Q_2 = \{a_1, b_1\} \cap \{a_2, b_2\}$$
.

Let S be a subset of E and let $a, b \in E$. We define d(a, b) to be the minimum of the lengths of paths from a to b in (E, K)-S, if there is such a path, $d(a, b) = \infty$ otherwise. Note that $d(a, b) = \infty$ if $a \in S$ or $b \in S$. For $\bar{a}, \bar{b} \in {}^{n}E$ we define

$$d_s(\bar{a}, \bar{b}) := \min\{d_s(a(i), b(k)) | i, k < n\}.$$

Let m be a natural number and λ a cardinal, then K_1^m is the subdivision of the complete graph with λ many vertices obtained by inserting m new vertices on each edge.

Fig. 1

The following property (*) of graphs will be important for later discussions.

(*) For every infinite $U \subset E$ and every natural number m there is a finite $S \subset E$ and an infinite $U' \subset U$ s.t. for all different $a, b \in U'$:

$$d_s(a,b) > m$$
.

This will be equivalent to the following property.

1. Definition. A graph (E, K) is called flat if no subgraph is isomorphic to K_{∞}^{m} for any natural number m.

(E, K) is called superflat if for every natural number m there is a natural number n such that no subgraph of (E, K) is isomorphic to K_n^m .

2. THEOREM. A graph has the property (*) iff it is flat.

Proof. Since no K_{α}^{n} has the property (*), we have that (*) implies flatness. To prove the other direction assume that there is an infinite $U \subset E$ and a natural number m s.t.:

For every infinite $U' \subset U$ and finite $S \subset E$ there are two distinct $a, b \in U'$ with $d(a,b) \leq m$

We first observe:

LEMMA. For every infinite $U' \subset U$ and finite $S \subset E$ there is $c \in E \setminus S$, an infinite $U'' \subset U'$ and for every $a \in U''$ a path (O_*, W_*) from c to a of length $\leq m$ such that (O_a, W_a) and (O_b, W_b) are disjoint for $a \neq b$.

Proof. Since there is no infinite $U^* \subset U'$ such that d(a,b) > m for all distinct $a, b \in U^*$. Ramsev's theorem yields an infinite $U^* \subset U'$ s.t.:

$$d_s(a,b) \le m$$
 for all $a,b \in U^*$.

Let $a \in U^*$ and let $F' = \{b \in E \mid d(a, b) \le m\}$. For every $b \in F'$, $b \ne a$, we choose an $c_h \in F'$ s.t. $d_s(a, c_h) < d_s(a, b)$ and $(c_h, a) \in K$. Let

$$L' = \bigcup_{a \neq b \in F'} \{(c_b, b), (b, c_b)\}.$$

Then (F', L') is a tree. Let (F, L) the largest subtree whose endpoints are elements of 1/1*

Since the distance in (F, L) of two vertices is smaller than 2m+1 there must exist a $c \in F$ s.t. $x := \{d \mid c = c_d\}$ is infinite. For every $d \in x$ we choose a path (Q_{a_d}, W_{a_d}) in (F, L) from c to an endpoint a_d s.t. $d \in Qa_d$. Let $U'' = \{a_d | d \in x\}$. Then c and U'' have the desired properties.

Now we can continue with the proof of the theorem. Using the preceding lemma we choose vertices $c_n \in E \setminus \{c_0, ..., c_{n-1}\}$ infinite set $U_n \subset U_{n-1}$ $(U_0 \subset U)$ and for every $a \in U_n$ a path (Q_a^n, W_a^n) of length $\leq m$, s.t. (Q_a^n, W_a^n) , (Q_b^n, W_b^n) are disjoint for $a \neq b \in U_n$. Then we construct subgraphs (F_n, L_n) s.t.

a) (F_n, L_n) is a subdivision of the complete graph with the vertices c_1, \ldots, c_n by fewer than 2m+1 vertices.

b) (F_n, L_n) is a subgraph of (F_{n+1}, L_{n+1}) as follows:

Let $F_0 = \emptyset$, $L_0 = \emptyset$. Suppose (F_{n-1}, L_{n-1}) is already choosen. Let i_n be greater then all i with $c_i \in F_{n-1}$. To connect c_{in} with c_{in} , k < n, we choose subgraphs (F_n^k, L_n^k) , k < n, in the following manner:

Let $F_n^0 = F_{n-1} \cup \{c_{i_n}\}$ and let $L_n^0 = L_{n-1}$. Assume (F_n^{k-1}, L_n^{k-1}) is choosen. Then there exists $a, b \in U_{i}$ s.t.

$$Q_b^{i_n} \cap F_n^{k-1} = \{c_{i_n}\}$$
 and $Q_b^{i_k} \cap F_n^{k-1} = \{c_{i_k}\}$.

Let (Q, W) the path from c_{i_k} to c_{i_k} s.t. $W \subset W_h^{i_k} \cup W_h^{i_k}$, and define

$$F_n^k = F_n^{k-1} \cup Q, \quad L_n^k = L_n^{k-1} \cup W.$$

Let $F_n = F_n^{n-1}$ and $L_n = L_n^{n-1}$. Then the graph (F_n, L_n) has properties a) and b). To finish the construction define

$$F' = \bigcup_{n=1}^{\infty} F_n$$
 and $L' = \bigcup_{n=1}^{\infty} L_n$.

Stable graphs

An easy application of Ramsey's theorem shows that there is an e < 2m and a subgraph (F, L) of (F', L') which is isomorphic to K^e_{ω} . This proves the theorem.

3. COROLLARY. Let (E, K) be a flat graph, m a natural number and $\overline{A} \subset {}^{n}E$ infinite. Then there is an infinite $\overline{B} \subset \overline{A}$ and a finite $S \subset E$ s.t. for all distinct $\overline{a}, \overline{b} \in \overline{B}$:

$$d_s(\bar{a}, \bar{b}) > m$$
.

Proof. By recursion on $e\!\leqslant\! n$ we choose infinite $\overline{A}_e\!\subset\!\overline{A}$ and finite $S_e\!\subset\! E$ as follows:

Let $\overline{A}_0 = \overline{A}$ and $S_0 = \emptyset$. Suppose that \overline{A}_e and S_a are chosen. If

$$U = \{ \overline{a}(e) | \ \overline{a} \in \overline{A}_e \}$$

is finite, let $S_{e+1} = S_e \cup U$ and $\overline{A}_{e+1} = \overline{A}_e$. Otherwise, since (E,K) is flat, there is an infinite $U' \subset U$ and a finite $S_{e+1} \subset E$, s.t. for all distinct $a, b \in U', d_{s_{e+1}}(a, b) > 2m$. Let \overline{A}_{e+1} be an infinite subset of \overline{A}_e s.t. for all distinct $\overline{a}, \overline{b} \in \overline{A}_{e+1}, \overline{a}(e) \neq \overline{b}(e) \in U'$. If $S = \bigcup_{e \leq n} S_e$ we have for all distinct $\overline{a}, \overline{b} \in \overline{A}_n$ and for all k < n:

$$d_s(\bar{a}(k), \bar{b}(k)) > 2m$$
.

By induction we choose elements $\overline{a}_i \in \overline{A}_n$ as follows:

Let $\bar{a}_0 \in \bar{A}_n$. Suppose that \bar{a}_j , $j \le i$, is already choosen. Then we choose $\bar{a}_{i+1} \in \bar{A}_n$ such that

$$d_s(\bar{a}_{i+1}, \bar{a}_j) \leq m$$
 for $j \leq i$.

If such an element does not exist, the infinite \overline{A}_n must contain \overline{a} , \overline{b} s.t. for some $j \le i$; l, k < n we have:

$$d_s(\bar{a}_j(k), \bar{a}(e)) \leq m, \quad d_s(\bar{a}_j(k), \bar{b}(e)) \leq m.$$

This implies $d_s(\bar{a}(e), \bar{b}(e)) \leq 2m$, which is a contradiction to the construction of \bar{A}_n .

Graphs with definable orderings. The (first order) language $\mathscr L$ of the theory of graphs contains besides the logical symbols a binary relation symbol P. Let X be a set, then $\mathscr L_X$ denotes the language $\mathscr L$ extended by using the elements of X as constant symbols. Let V be the set of variables, let φ be a formula from $\mathscr L_X$ and let $\overline{V}_i \in {}^{m_i}V$ s.t. $\overline{V}_i(m) \neq \overline{V}_j(l)$ for all $i \neq j \ (m \neq l)$. If every free variable of φ is equal to some $\overline{V}_i(l)$, $i \leqslant k$, $l < n_i$; we write $\varphi(\overline{V}_1, ..., \overline{V}_k)$. This notion indicates how to substitute constants:

Let $\overline{d}_i \in {}^{n_i}X$ then $\varphi(\overline{d}_1, ..., \overline{d}_k)$ denotes the sentence from \mathscr{L}_X , which is obtained from $\varphi(\overline{V}_1, ..., \overline{V}_n)$ by substituting $\overline{V}_i(l)$ by $\overline{d}_i(l)$.

If (E, K) is a graph and f a function from X to E, then $(E, K, f(x))_{x \in X}$ is a structure for \mathscr{L}_x . For $\varphi(\overline{V}_1, ..., \overline{V}_k)$ from \mathscr{L}_X and $\overline{a}_i \in {}^{n_i}E$ let

$$(E, K, f(x))_{x \in X} \models \varphi[\bar{a}_1, ..., \bar{a}_k]$$

express that φ holds in $(E, K, f(x))_{x \in X}$ if $\overline{V}_i(I)$ is interpreted by $\overline{d}_i(I)$. Th $(E, K, f(x))_{x \in X}$ is the set of all sentences of \mathcal{L}_X which hold in $(E, K, f(x))_{x \in X}$.

For example let S be a finite set, \overline{V}_1 , \overline{V}_2 two n-tupels of variables. Define $\sigma^m(\overline{V}, \overline{V}_2)$

$$\mathbf{w} := \bigwedge_{l, \ k < n} \bigwedge_{i \leqslant m} \forall_{w_0} \dots \forall_{w_i} (w_0 = \overline{V}_1(l) \wedge \bigwedge_{j < i} P(w_j, w_{j+1}) \wedge w_i = \overline{V}_2(k) \rightarrow \bigvee_{x \in s} \bigvee_{j \leqslant i} x = w_j).$$

Then

$$(E, K, f(x))_{x \in S} \models \varphi_s^m[\bar{a}, \bar{b}]$$
 iff $d_{f(S)}(\bar{a}, \bar{b}) > m$ in (E, K) .

Similarly we find for all natural numbers n, m a sentence ψ_n^m , s.t. $(E, K) \models \psi_n^m$ iff (E, K) contains no isomorphic copy of K_n^m .

From this we can derive

4. Lemma. (E, K) is superflat iff all graphs (F, L) which are elementary equivalent to (E, K) (i.e. Th(E, K) = Th(F, L)) are flat.

Proof. If (E, K) is superflat there is for every m an n s.t. $(E, K) \models \psi_n^m$. This holds also in every (F, L) elementary equivalent to (E, K). So clearly for every m K_{ω}^m is not embeddable in (F, L).

The other direction is shown by an easy application of the compactness theorem. The following notion is important in model theory [3].

5. Definition. A formula $\varphi(\overline{V}, \overline{U})$ is said to define an ordering of the graph (E, K) if there are an infinite $\overline{A} \subset \overline{E}$ and a linear ordering $A \subset \overline{E}$ on \overline{A} s.t. for all \overline{a} , $\overline{b} \in \overline{A}$

$$(E, K) \models \varphi[\bar{a}, \bar{b}]$$
 iff $\bar{a} < \bar{b}$

(E, K) is called *stable* if there is no definable ordering in any (F, L) elementary equivalent to (E, K).

It is quite useful to make the following definition:

- 6. DEFINITION. A formula $\psi(\overline{V}, \overline{W})$ is called *large* in a graph (E, K) if there is an infinite $\overline{A} \subset {}^{n}E$ s.t. for every infinite $\overline{B} \subset \overline{A}$ there are $\overline{a}, \overline{b} \in \overline{B}$ s.t. $(E, K) \models \psi[\overline{a}, \overline{b}]$. For example, if $\varphi(\overline{V}, \overline{W})$ defines an ordering in (E, K), then $\varphi(\overline{V}, \overline{W})$ and $\varphi(\overline{V}, \overline{W}) \land \neg \varphi(\overline{W}, \overline{V})$ are large. A major step to prove that every flat graph has no definable ordering, is the following theorem.
- 7. THEOREM. Let $\psi(\overline{V}, \overline{W})$ be a large formula in a flat graph (E, K). Then there are an extension (F, L) of (E, K), an automorphism h of (F, L) and $\overline{a}, \overline{b} \in {}^{n}E$ s.t.
 - 1. $h \circ \bar{a} = \bar{b}$ and $h \supset \mathrm{id}_E$,
 - $2. \ d_{E}(\overline{a},\overline{b})=\infty,$
 - 3. $(F, L) \models \psi[\bar{a}, \bar{b}]$.

Proof. If there is an $\overline{a} \in {}^{n}E$ s.t. $(E,K) \models \psi[\overline{a},\overline{a}]$, then let $\overline{b} = \overline{a}$ and (F,L) = (E,K). Otherwise, since $\psi(\overline{V},\overline{W})$ is large in (E,K) there is an infinite $\overline{A} \subset {}^{n}E$ s.t. every infinite $\overline{B} \subset \overline{A}$ contains two different elements $\overline{a},\overline{b}$ such that $(E,K) \models \psi[\overline{a},\overline{b}]$. Since (E,K) is flat, we have by Corollary 3 that for every natural number m there is a finite $S_m \subset E$ and an infinite $\overline{A}_m \subset \overline{A}$ s.t. $d_{S_m}(\overline{a},\overline{b}) > m$ for all distinct $\overline{a},\overline{b} \in \overline{A}_m$. Clearly we can assume that $S_m \subset S_{m+1}$ and $\overline{A}_m \supset \overline{A}_{m+1}$.

Now we extend \mathcal{L}_E to \mathcal{L}_X by 2n new constant symbols which we can arrange in two sequences \overline{d} , \overline{e} of length n. We define sets T_0 , T_1 , T_2 , T_3 of sentences of \mathcal{L}_X :

$$T_0 = \text{Th}(E, K, x)_{x \in E},$$

$$T_1 = \{ \varphi_{\mathbf{x}}^m (\bar{d}, \bar{e}) | m \text{ a natural number} \}.$$

where $\varphi_{S_m}^m(\overline{V}, \overline{W})$ is the formula defined above, which expresses " $d_{S_m}(\overline{V}, \overline{W}) > m$ "

$$T_2 = \{ \sigma(\overline{d}) \leftrightarrow \sigma(\overline{e}) | \sigma(\overline{w}) \text{ from } \mathcal{L}_E \},$$

$$T_2 = \{ \psi(\overline{d}, \overline{e}) \}.$$

Finally let $T = T_0 \cup T_1 \cup T_2 \cup T_3$. First we prove, that T is consistent:

Let Δ be a finite set of formulas $\sigma(\overline{w})$ from \mathscr{L}_E and let m be a natural number. Define

$$\overline{T}_1 = \{ \varphi_{S_r}^r(\overline{d}, \overline{e}) | r \leq m \},
\overline{T}_2 = \{ \sigma(\overline{d}) \leftrightarrow \sigma(\overline{e}) | \sigma(\overline{w}) \in A \}.$$

By compactness it suffices to show that $\overline{T}=T_0\cup\overline{T}_1\cup\overline{T}_2\cup T_3$ has a model. Since \overline{A}_m is infinite, we get by an easy application of Ramsey's theorem an infinite $\overline{B}\subset\overline{A}_m\subset\overline{A}$ s.t.

$$(E, K, e)_{e \in E} \models \sigma[\bar{a}]$$
 iff $(E, K, e)_{e \in E} \models \sigma[\bar{b}]$

for all \bar{a} , $\bar{b} \in \bar{B}$ and all $\sigma \in \Delta$. Choose two different sequences \bar{a} , $\bar{b} \in \bar{B}$ such that $(E, K) \models \psi [\bar{a}, \bar{b}]$ and let f be the map from X to E which satisfies $\mathrm{id}_E \subset f$, $f \circ \bar{d} = \bar{a}$ and $f \circ \bar{e} = \bar{b}$. Then $(E, K, f(x))_{x \in X}$ is a model of \bar{T} and therefore T is consistent.

Let $(F', L', g(x))_{x \in X}$ be a model of T. Since $T_0 \subset T$ we can assume that (E, K) is an (elementary) subgraph of (F', L') and $g \supset \mathrm{id}_E$. Let $\overline{a} = g \circ \overline{d}$ and $\overline{b} = g \circ \overline{e}$. Since $T_2 \subset T$, \overline{a} and \overline{b} satisfy the same formulas of \mathcal{L}_E in $(F', L', e)_{e \in E}$. Therefore using a result of [2, p. 49] we find an elementary extension (F, L) of (F', L') and an automorphism h of (F, L) s.t. $h \supset \mathrm{id}_E$ and $h \circ \overline{a} = \overline{b}$. Since $T_1 \subset T$, $d_E(\overline{a}, \overline{b}) = \infty$ in (F, L). Finally $T_3 \subset T$ implies $(F, L) \models \psi[\overline{a}, \overline{b}]$.

By a similar argument as in [1, p. 178] one can show:

- 8. Lemma. Let (F, L) be a graph, $E \subset F$ and h an automorphism of (F, L) with $h \supset \mathrm{id}_E$. If \overline{a} , $\overline{b} \in {}^nF$ such that $d_E(\overline{a}, \overline{b}) = \infty$ and $h \circ \overline{a} = \overline{b}$, then there is an automorphism f s.t. $f \circ \overline{a} = \overline{b}$, $f \circ \overline{b} = \overline{a}$ and $f \supset \mathrm{id}_E$.
 - 9. COROLLARY. No flat graph has a definable ordering.

Proof. If $\varphi(\overline{V}, \overline{W})$ defines an ordering in (E, K), then

$$\psi(\overline{V}, \overline{W}) = \varphi(\overline{V}, \overline{W}) \land \neg \varphi(\overline{W}, \overline{V})$$

is large. If (E,K) is flat, by Theorem 7 and Lemma 8 there are a graph (F,L) extending (E,K), $\bar{a}\in {}^n\!F$, $\bar{b}\in {}^n\!F$ and an automorphism h of (F,L) s.t. $h\circ \bar{a}=\bar{b}$, $h\circ \bar{b}=\bar{a}$ and $(F,L)\models \psi[\bar{a},\bar{b}]$. This implies $(F,L)\models \psi[\bar{b},\bar{a}]$, which is impossible by the special form of ψ .

A immediate consequence of Corollary 9 and Lemma 4 is

10. COROLLARY. Every superflat graph is stable.

Remark. Let $\mathfrak{A}=(A,\,U_i,\,R_j,f_k)_{i\in I,\,j\in J,\,k\in K}$ be a structure, where $U_i,\,\,i\in I$, are unary relations, $R_j,\,j\in J$, are binary relations and $f_k,\,k\in K$, are unary functions. We define

$$K_{\mathfrak{A}} = \left(\bigcup_{j \in J} (R_j \cup R_j^{-1}) \cup \bigcup_{k \in K} (f_k \cup f_k^{-1}) \right) \setminus \mathrm{id}_{\mathfrak{A}}.$$

Then (A, K_{or}) is a graph and by a similar argument as before one can show:

- a) If $(A, K_{\mathfrak{M}})$ is flat, then \mathfrak{A} has no definable ordering.
- b) If $(A, K_{\mathfrak{A}})$ is superflat, then \mathfrak{A} is stable. For example, if $J = \emptyset$, then \mathfrak{A} is stable.

Moreover we can extend a) as in [1]:

c) If $(A, K_{\mathfrak{A}})$ is flat, then any (in \mathfrak{A}) definable e-ary relation of ^{n}A is almost symmetric.

References

- [1] I. Korec, M. G. Peretiatkin and W. Rautenberg, Definability in structures of finite valency, Fund. Math. 81 (1974), pp. 173-181.
- [2] M. Morley and R. Vaught, Homogeneous universal models, Math. Scand. 11 (1962), pp. 37-57.
- [3] S. Shelah, Stability, the f.c.p., and superstability, Ann. Math. Logic 3 (1971), pp. 271-362.

INSTITUT FÜR MATHEMATIK TECHNISCHE UNIVERSITÄT Hannover FB 3 MATHEMATIK TECHNISCHE UNIVERSITÄT Berlin

Accepté par la Rédaction le 9, 2, 1976