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icm

On the transformers of -derivatives

by

M. Laczkovich and G. Petruska (Budapest)

Abstract. Let D be the class of derivatives defined on [0, 1]. Let T denote the class of trans-
formers on D thatislet ge Tiff gis a homeomorphism of [0, 1] onto itself, g0 =0, g =1
and fe D implies fo g e D. . Co .

A result of R.J. Fleissner implies that if ¢ is continuously differentiable and 1/g'(x).is of
bounded variation then g € 7. On the other hand A. M. Bruckner has shown that g ¢ T can hold
even if both g and ¢~ (the inverse function of g) satisfy Lipschitz 1 condition.

In this paper a necessary and sufficient condition is given for g to be a transformer. The
authors give some applications of this result as well, Some of them: '

If g(0) = 0, g(1) = 1, there exist k¥ and X such that

0<k< DIXN<Dg(x)<K<oo

for every x « [0, 1] and ¢'(x) is of bounded variation on the set of its existence then g eT. (Dg and
Dg denote the lower and upper - derivative of g.) : o ' ’
If g(0) =0, g(1) =1 and ¢ is convex then g eT if and only if
o ge)—-1 1
Iimsup ~——+ .
it x—1 Dy

There exists a strictly increasing convex function g such that geT and g~1¢T.

1. Introduction. Let g(x) be a homeomorphism of [0, 1] onto itself, g(0) = 0,
g(1) = 1. If Fis an arbitrary family of real functions defined on [0, 1] then g is said
to be a transformer on F if £ (g(x)) e F holds for every fe F. In this paper we are
going to find the characteristic properties of the transformes on D where D denotes
the class of (finite) derivatives defined on|[0, 1]. T'denotes the family of transformers
on D. .

A. M. Bruckner has shown in [2] that g ¢ T can hold even if both g and its
inverse function satisfy Lipschitz 1 condition. On the other hand, it turns out
from [3] that if g(x) is continuously differentiable and 1 /g'(x) is of bounded
variation then geT. In fact, under the conditions mentioned above 1 lg'(x) is
a multiplier on D, i.e., fe D implies f*(1/g") € D. Now if Fis a primitive of fe D
then F(g(x)) = £ (g(x))g’(x) € D and hence

1
“ F(gx)g (x)vg,(x) f (g‘(x)) €D
holds, too. LI

1 — Fundamenta Mathematicae C
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As it will turn out the condition that 1/g'(x) is of bounded variation and con-
tinuous is not very far from being necessary as well.

2. We introduce the following notations. If f(x) is an arbitrary (finite) real
function then D(f; x) denotes any one of the derived numbers of fin x. Of course,
if f/(x) exists then D(f;x) = f'(x), otherwise D(f;x) can be chosen in several
ways. As usual, f4(x), f_(x) and D f(x), D f (x) denote the right hand side and left
hand side derivatives (if they exist and are finite), and the lower and upper deriva-
tives (possibly D = +o0, D= 4 00). V(f; E) denotes the total variation of
f(x) on the set E.

THEOREM 1. If ge T .and a €0, 1] then there exist. >0 and K>0 such that
Dg(x)>0 and

gx)—gl@ 1
x—a  Dg(x)

zf 0<[x~ a]<5
_ Proof. Suppose mdlrectly that there exists a sequence ‘

(ael0,1))

Xo = 1>x1>x2> ey
with

g(x,.) g( )

K=

® >an(x,,) n=1,2,..).

We can also suppose (after selecting a subsequence) that
L . =g (x,
Dg(x,) = lim éi)__g_(_).
t-rx, 40 ‘t'—x_,.

(The proof runs analogously if D is produced by left hand side limit or x, tends
to a from the left.)
Let #,>0 be so small that

@ e B O
denoting {, = g(x,+1,)—g (x,),
) B | g(x)~g(@) <2 (n=1,2,.),

g —L—g(a
@ - G<minl3(g(x) =g (s ) 3 (9Cn-0—g ()]
In addition to (2), (3) and (4) we can choose #, such that

1 g(x,.) g@

n

(n=1,2,..).

&) —[g(x +1a) =g (x,)]< n=1,2.),

icm
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since by (1) we have
X,
Dy (x”)< I g(x)— g(a)
Xp—a

Let (see Fig. 1)

[ 0 if x<g(@ or x>g(x;) or gx) +4L,<x<g (%, )iy

1 g(x)—g(@

n g (Xy+1,)—g (x,)

1 g(x)—g(a)
# g (X, +1,)—g(x,)

if ge)<x<g@,+1,),

f) = (n=2,3,.)

if g(e)+20,<x<g(x,)+3¢,.

continuously linear on the remaining intervals ~

) . g +2Z  glxw+34  gla)+4Z
gxn=& glw)  g(ut ' '
=g(x)+
Fig. 1
‘We can easily check that
0 if x<g(a),
Fx)y=q ! .
—-{f@dr if x>g(@a)

is a primitive of f(x), i.e., f'e D. In fact, F'(x) = f(x) is trivial for x # g (a) and also
for the left hand side limit in g(a).

For g(xn) cn<x<g(xn—1) Cn—i we have

F@-Fg@)|_ 1 f l
’ x—g@ | x—g9@ f@ar
gGn)—In
since
g(xn) + 40,
| fdt=0 (n=1,2,.).

g(xn)—fn
1
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Hence

1 9x)—-9(@
n g tl)—g(n) _4
9x)—Lu—g(a)

n

-0 for n—w

‘F(x)—F(g(a)) <

x—g(a)

by (3), ie., F'(g(a)) = 0. S
Thus fe D and hence f(g(x)) e D. Let G(x) be a primitive of f (9(x)), then

G(H—-G(a)
t—a

t—a+0.

~f(g@) =0 if

Hence :
G0 -G(@) 6@ -0  (n-o0)

/ Xn—a . ’ B

and by x,—a~x,+n,—a (see @

G(x,+1,)—G(a)
————— Ly
Xp—~a

0 (n—o).

Thus by subtréctior_x

6o tn) =Gl

0  (m—oo).
. Xp—d

O]

We have, however

Xntnn

G5t~ G (xy) = f FeG)dx = , L LCN=0@

X, —
" n g (x,,+11,,) —4g (xn) "

a

. -
by (5). Hence ‘ R

G(X,, + nn) -G (xn)w> 1
Xy—d

which ééﬁftﬁdiéts(@.' This Vc‘ontradic'fidh proves the theorem.

COROLLARY 1. If geT then Dg(x)>0 holds for all but a finite number of
xel0,1].

Proof. If g is a limit point of the set {x; Dg(x).= 0} then Theorem 1 fails
to hold in g. ‘ : o LT

LemMA 1. Let f(x) be a monotone increasing function on [a, b]. The following
properties are equivalent to each other.

@ f'x) is of bounded variation on the set E = {x; f'(x) exists and firite}
and Df (x)< o0 at every point of [a,b]. .

On the transformers of derivatives 183

() f(x) = r(x)—s(x) where both r(x) and s(x) are convex functions on [a, ]
and they have finite derived numbers everywhere. Hence Fi@) and fL(x) exist for
xela,b) and x € (a, b], respectively; moreover :

fil) = lim D(f;0) = Im f'() (re [a, b)),
t—+x+0 1=>x+0
(7) teE
fix) = 1meD(f; H= lmf'@ (xe(a,b)
trx— t=+x~0
teE
hold for any choice of D(f; o).
(i) D(f; x) is of bounded variation on [a, b] for any choice of D(f; x).

Proof. (i)=(i). By (i) there exist bounded and increasing functions m,(x)
and my(x) defined on E such that

S =mx)—my() (xeE).

Let

r) = [m@ditf @ (a<x<b),

5(X) = [ my(Hde (a<x<gb).
a

Since f is monotone, A(E) = b—aq, my(2) and my,(Y) are defined almost everywhere
on [a, b] thus the integrals above make sense. r and s are obviously convex functions
and since they are integrals of bounded functions, r and s can have finite derived
numbers only. It remains to prove r(x)—s(x) = f(x). Consider the function
4(x) = f(x)~(r(x)—s(x)). Since 4’(x) = 0 holds a.e. on [z, b] and any derived
number of 4 is finite (0< Df< Df< o by our assumption) referring to [1], 7.2.2.1
(p. 222). 4 is constant and hence 4(x) = 4(@) = 0.

(i)=>(iii). (ii) obviously implies that for any choice of D(f;x), D(f;x) = f;(x)
or fZ(x). Thus if D(f; x) is given then D(r; x) and D(s; x) can be chosen such that
D(f; %) = D(r; x)—D(s; x). By (i) D(r; x) and D(s; x) are finite and increasing
functions.

(iii)=(i). Trivial.

LEMMA 2. Let the monotone function S (x) satisfy any of (i), (i), (iii) in Lemma 1
and let E denote the set {x e [a,b]; f ‘(x) esixts}. Then

a) V(D(f3x); [, B) = V(f'; E [a, ﬁ])-f:lD(f; 0)=f1(D|+|D(Sf; B)—fL(B)I
Jor any choice of D(f; x) and [x, fl=]a, b];

n
b) for any continuous function h(x) the integral [ h(t)dD(f; 1) is independent
H
of the choice of D(f;1) whenever ¢, n € E, furthermore

[{roanesiol< fmoravss o e


Artur


icm
184 :

M. Laczkovich and G. Petruska

On the sransformers of derivatives 185
, ion B In such cases D(f;x;) = f'(x;) which shows that the integral is:independent of
2 for- any contimuous Function B - ) the choice of D(f, #). Furthermore we have
= wBdD(f; - D(f, )——f (C)]+h(d)[D(ﬁ a)—f(d)] "
I h(t)dD(f, D) h;nof h(0)dD(f; D=hQ[D(f, ) —fi {Z o (D 5y D(f’ )< e V(D(f’ 9 B n)
’1"' . i=1
o (e, d1=la, B]); o : - ‘2
8 [ DUf: ndt = £ B~ @.

h(x‘)l V(fl En[x, 15 % 1])

-

Proof. a) Let Fy: a<x(P <..<x® < B be a sequence of subdivisions of [u, f]
such that xP e E (1=1,2, w13 k= 1,2,..), xP

*Psa, x4 and

-Im_,= W

= [ A@IaV(f’; Eﬁ[rf, .

c¢) Obviously
n d

. . 1i; h(D)dD(f; 1) = [ (D) d:

nZIf (x(k)) —f D=V En [, BD {_}f‘io-‘; P { OO

i=2

n—=>d—0
&neE
o where
if k—oco. Thus D(f; 1) if e<t<d,
_— _ C u)=1f00 i t=c,
V(D(f; x); [, BT) ( . fidy i t=d.
. 1o (K (k) i)
> ,{ﬂ[w(f’ %) _,f I+ Z A )] 1/ Gn)= DU B] This trivially implies the assertion.
=V'(f"; En o, BD+ID(f; d)~f+(oc)l+lD(f; B2l - v

d) (7) trivially implies that Df (x) is bounded on [z, 5]. In particular fis a Lip-
schitz 1 function and a fortzorz absolutely continuous. Thus
Now let o = xp<x;<..<x,'= f be an arbitrary subdivision of [«, f]. Accord-

ing to Lemma 1(11), (7) there exist sequences {#{°}2; such that #? eLE _" D(f;Ddt = ,ff’(t) &
,(k—12 z—Ol Ln), lim P =x, (=0,1,. ,n)‘ and, hrnf(t()) a a

. koo

=f®)~f(a).
= D(f: 1) i=1,2, ,n——l). Thus

THEOREM 2. Let g €T, x,€[0,1). We denote y = g~ and
_ E={xel0,1]; y'(x) exists} .
© 2D x) = D(f, xi-9)l Suppose x,>x,>
H= .

hm 0D, ) =f (18] +2 FRCRUETE (z""ol + £ (r"”) -D(f; ﬁ)l]

s X, —Xg, X, €E (n=1,2,..) and
. : - lim “x"~xo =1,
nso Xpp = Xo
sV(fl; B0l [ +1D(f; =1 @) HD(f; h=r-@I. Then there exists K>0 such that
Since the subdivision {x;} was arbitrary we have

V(D(f; %) [, BDSV(S '3 E 0 [0 B +ID(fs ) =i+ DSy BY=FL(B)]

ZN(X" =xX) Vs E0 Xy 41, %,D<K (7 (o) —y (xo))
e
and the assertion a) is proved.

if N is suﬁ?czently large.”

"Proof. Suppose indirectly that K can not be chosen according to Theorem 2.
n
b) Since h(x) is continuous the integral | A(r)dD(f; 1) is the limit of sums Then for K = 1 there exists N; with
: s
thxi) (D(fs x)—D(f3x;-{)) where we can assume x;eE (i=0,1
=1

, ).

n=N,

Z (x —xo)V >1: (v(le) 7(xo0))
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and hence M>N, with
1
i\! (xn_xo) Vn>1 : (')’(XN‘)-’Y(XQ)) )
n=N

where we put briefly ¥, = V(y"; E 0 [%,41, %)) U Ny <M <N, <M, <...< N <M,
has been selected then we can find Ny.,>M, such that

T (5mx0) V> (k4 1) (o ) =7 050)

n=Ni+1

and hence M., with

M+ 1
NZ' (xn_xo) Vn>(k+ 1) (Y(xNk“)“')’(xo)) .
n=Ngg1
Hence by (x,—x,) V,=0
Nes+1—1
;\T (x,,—xo) Vn>k(?(xNk)—Y(x0)) (k = 1’ 2: "') .

For every fixed n we can find 3 = x,.,, <y{"<..<y® = x, such that y{"e E

(G=0,1,..,p,) and

' Nies1~1
® DIERED) Z V'O = G2 )1 > K (3 (i) — 9 (o))

n=Ng

still holds for k = 1,2, ...

We put

Xy—Xo
o, = . for N, <n<Npyy.

By (8)
) Z Z ') —y (y§'21)l>v(xNk)-v(xo)-

Further, we fix a sequence 4,>0 with

o
(10) 2, A= 0(y(e)—7(x0))
{4y = Iy () =2 (o) = [y (441)—7 (%0)* applies).
Now, making use of our indirect assumption we are going to construct a deriva-
tive f(x) such that f(g(x)) ¢ D.
We choose 0<#,<h, so small that

2h,+4n,< min (yy‘)—nyl).
15j<pn

icm
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Let
0 if x<uxp, or x>y, or x =y (0<j<p,, n=1,2,..),
or Y2y +h,+ 2, <x<YP— (B t20,) (n=1,2,..);

’ 7 a n
76 = BB OM=YORII i 32+, <x <2y +mth;
n

—sga[y' (5 — )’(;V(")ﬂ] if YO~ th)<x<YP~1, (1=1,2, ...;

* 1<j<p.);
and let f(x) be contmuously linear on the remaining intervals [y(")l,yg"’1+11,,],

J-
D21 bt 321 R+ 20,), [0 ~hy= 2010, Y0 —hy—,]  and [y —n,, y®]
(see Figure 2).

7

Fig. 2
We prove f(x)e D. Let
1
- fHar
x
0 if x<x .

=f(x) (x# xo)and FZ(x5) = 0 = f(xo)

if x>x,;
F(x) =

Since f (x) is continuous for x #* x,, F'(x)
trivially hold. If {2, <x<y{" then
1

F(x)—F(xo) - ! Jf(t)dt = L J f(Har
X—Xq X—Xo

X—Xp
x A2y
since
)'_(,'") 1 )
{ f@dt= | f@dt=o0.
y o
g1 J

(n)
%5

f j fa|< j 1f(t)1dt<4un=%(xn—xo)

y&".’ 1 y&") 1
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if N, <n<N_.,,, therefore

F(x)—F(x 4 Xn y
() =F(xo)| _4 for every x,<x<x,
X—xg k X1 —Xg, : ’
which implies
F(x)—F(x
lim T#=F&) o =f(x0).
x=ap+0 X —Xp

Now we prove that for suitably chosen sequences {,} and {#,} the functmn
F(9(x)) is not a derivative.

Since ¥ € E we can fix %, so small that
YOS+ h) =GR
/1" 2 "p"
and
1O =v O =h)
IZ" 2 "p"

hold for j = 1,2,..,p,.
Let 1 be fixed and suppose 5,—0. Since

F(g(x)) = sgn[ v(,v‘"’) Y ({2 )]:—"
if
YO A n) <> <y OF2 s+, hy)
and
n i “ll
F@@) = —sgnly G —y (8, I
if '

20 =+ B <3<y -1,
it is easy to see that

7(xn)
j flg@®)ar
Y(¥n+1)
Pn
— (n) (n) (O
) O~ o[ Lot T10) 10 =10) ]
= n Ty

Z PG =y’ 52 D[~ 4,

- On the transformers of derivatives 189
Therefore we: can choose 7, such that

I f (9(®)dr>a, Zlv(y(”’) Y20 —4,

Y(%n+1)

Suppose f(g(x)) e D and let G(x) be a pr1m1t1ve of S (g(x)). Then

G Comd) =G (v (o))

() — 7 (x0) = f(x0) = 0.

(11 - =f (g (y(%0))

On the other hand

G(an)) =G 5) = 3 [0(60)=G 1Gone )]

o y(xn)

= [ flg@)dr

n=Ni y(¥n+1)

> Z %, Z YO -y ORI- Y, 4,
n=Nr Jj=1 n=Ni
> () — v (x0) — ;v 4, by (9.

Hence, by (10)

timing &0 C) = G (0 (o))

>1
ko0 G —7 (%0)

which contradicts (11). This proves the theorem.

COROLLARY 2. If geT, y = g™, then there exists a finite set Ucx [0, 1] such
that for [a, b]<=[0, 11\U, y possesses properties (i)-(iii) formulated in Lemma 1,

Proof. By Corollary 1, Dy<co holds apart from a finite set U, =[0, 1]. By
Theorem 2, for every x, € [0, 1] a neighbourhood (x;—&, x,+0) can be given such
that for [z, blc(xy—8, xo+8)\{xo}, V(¥'; En[a,bl)<oo where E = {x;7'(x)
exists and finite}. Thus there exists a finite. set U, =[0,1] such that
V@'; Enla, b)<owo for [a,b]c[0,1\U,. Putting U= U, u U, and [a,b]
<[0, INU, condition (i) in Lemma 1 is satisfied by y. Hence (ii) and (iii) hold,
too.

COROLLARY 3. If g €T, y = g~ ! then for every x, € [0, 1] there exist K and §>0
such that -

| VOIS KDy G2ty (o))
holds for every |x|<8 where

12 Vi) = {V('}";Eﬂ[xo+t,xo+5]), if 0<1<6,

V({y'; Enxg—6,xo+1), i —06<t<0,
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E = {x;y'(x)< 00 exists} and the integral above makes sense as an improper
Riemann-Stieltjes integral:

[ v = lim {
0

&> +0 (sgnx)s

dv(r) .

Proof. Given x, € [0, 1) wé choose §, >0 with [x,, Xo+8;) N (UNfxo}) = @.

Let the sequence y,>y,>...>,>... be the union of the sequences {x,+1/n} and

{g(v(xp)+1 /n)} Since E is everywhere dense in [0,1] we can choose an

%y € (Up+1, ¥s) N E for every n. Then the sequence x, has the following properties:

X, € By X;>%,> .., X,—o x40, '
Xp—Xo

R | e Lo N

lim
P (Xt 1)=7(x,)

n=o Xpp1—Xg

if n2ny (there is at most one k with Xpi1<g (y(xg)+1 /k)<x, and hence

1
() =7 (%) k-1 <2
P (X 1) =7 (%0) 1
k+1

if Xn+1<g (y (x0)+%—))
Referring to Theorem 2 there exist X>0 and Ny>ny such that

-EN =X VO's O [pss, D<K Goy) =7 (x)]

for every N>N,. Let 6 = min (6, xy,~x,). Then

x M
’{de(t)’ < ;N(xn—xo) V(’Y’, En [xn+1 2 xn])

<Ky ()~ y(x0)) 2K [y () ~ 7 (xo)]
where N is the maximal and M is the minimal index satisfying xy—xy=x and
and xM—-xosa,. respectively. Since [ 1dV () is a monotone function of ¢ the proof
&
is complete,

Now we turn to prove our main result which gives a complete description of
transformers.

THEOREM 3. Let g be a continuous and stricily increasing function on [0, 1]
g0 =0, g() = 1. geT holds if and only if

o) there exists a finite set Uc= [0, 1] such that for [a, b]< [0, I\U, y possesses
Droperties (i), (i) and (iii) formulated in Lemma 1.

icm
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In addition at every x, €[0, 1] g satisfies

. gx)—g(xe) 1
B e T i@
and
h
limsu tdV({H) <+
" B0 p?(xo'*‘h)—')’(xo).[ ®

O - .
where y denotes the inverse function g~* and V(f) is defined under (12) in Corollary 3.
Proof. Conditions o), B) and y) are necessary by Corollary 2, Theorem 1 and

Corollary 3. ‘ v
Suppose o), B), v) and let £ (x) € D be arbitrary. We are going to find a primitive

for f (g (x)). It is obvious that, if 7, = 0<?; <...<4, = 1 is a finite decomposition and
a primitive of f(g(x)) has been found on each [t;_;,%] (i=1,2,..,7) then
f(g()) e D. Hence, without loss of generality we can suppose U = {0}. Let F(x)
denote a primitive of f(x), F(0) = 0. )

.U = {0} means that on [x, 1] y satisfies (i), (ii) and (iii) formulated in Lemma 1

if 0<x<1. For x>0 we define
1
(13) . G(x) = F(g(x)) D (v; 9(x)) +ﬂ£ F(0dD ;).

We ought to verify that this definition is independent of the choice of D (y; x)-
This can be done easily applying Lemma 2. Qur proof below gives G'(x) = f (g (x))
which of course implies the uniqueness. We prove that -

def 1 o
G0) = (J;F(t)dD(v; ]
is a continuous extension of (13). In fgct,
. F(g(x)
]F(g(x))D(?, g(X))Is_x _g(—x)
_ xIF(g )
gix)

1)
P
g(x)

xDg(x)

D (g9)

xDg (x)

If x->0then FQ(—(J)C—)) - f(0) and bi By 9(9 is bounded thus the first term in (13)
g(x
tends to zero. Since |[F(H)|<Kt (_0<t< 1), by Lemma 2b) and c) we have

[ F®apG, 0]<|{IFOIV @]+ Fiy) ID@; )= Y- O +F@ D63 %) =79l

y —
. <K|[1dV(D)|+2KyDy()+2KxDy(x). .
0
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Now by ﬁ) we have
B

——Dy(\c) is locally bounded at every x, € [0, 1].
v(x) ?(x0)

Hence

|{ FdpG; 0| <Kiy0)+ Kap )+ Kap(9-0 it x, 30,

1
Therefore by Cauchy’s principle the improper integral [ F(1)dD(y; 1) is convergent.
0

We prove first G'(0) = £ (g(0)) = 1 (0).

) 9(x)
GO=60 _F66) 9% g o ))-— f [/ ©)t+e()AdDG:

x g(x) X

where Time(?) = 0. Now
t=0

{a(x) 9(x) 8(x)

J [f(O)t+e(@®]dD(y; H) = ZL) hm f tdD(y; t)+—13;1im J () tdD(y; 1).
-+0 -0

n n
As for the first term we have
a(x) g(x)
§ 1dDG;) =g D(y;9(x)—nDy;n)— | D(y; Hat
n n .
= g(x)D(y; g(x))—nD ;) —(x—yn)
by Lemma 2 d). Referring to p’) ‘
[nD(y; )| <nDy ()< Kzy(m—0 if n—0
thus
9(x)
lmgf taD(y; ) = g(x) D(y; g (x))—x.
-

As for the second term we have by Lemma 2 b) and c)

g(x)
| I e(t)-1dD(y; 1)|
n
o(x)
<H e 2V (B)|+¢ (g (x))g ()| D (v; g () ~¥-(g )|+ n: | D@; 1)~y ()]

< max le(d)] H th(t)l+2e(g(x))9(x)(ﬁv)(y(x))+2e(n)n5v(n)

05 <g(x)

By B') nDy(n)—0 and hence by 7) and B) we obtain -

8(x)
|lim | e()2dD(y; H|< max |e()IK;x+2¢(g(M)Kax = 0(x)  if x~0.
n~0 7 0<1<g(x)
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Combining the two parts

4(x)

j [f Q) i+e()ldD(y; 1) = "(—Q(Y)D(v g(X))—f(0)+0(1)

that is
GM-G60) _[F(g(x) 9()
o —[ ) ~f(© ):l D(y; g(x))+f(0)+0(1)

Referring to VB) again and observing

lim [F——(g ©)_, (o)] =0,

x=0 g (x)
we have

i T =GO 1),
x-»O X

We turn to the case G'(a) = f(g(@)) for a>0.

G(x)—G F —F|
(x))c — @ _ (9 (x)J)L‘ = (9(a)) DG; g6+
F (g (a))

[D (’)’s g(x)) -D (?, g(a))]_
a(x)

J F@®)dD(y; 1)

. g(a)
Flg(x)—F(g@) ¢(x)—g(@)

EPTe ) —— D)~

ox)
- f ()~ F(g(@)1dDG; 1.
x—a
g(a)
Making use of F({)—F(g(@) = f (9(a))(1—g(@)+e(®)(t—g(a)) ( iir{l)a ) = 0) we

have
(%)

1
L [ tro-Fe@nave: o

g(a)

2(x) g(x)
_f@) f (=g (@)dDy; )+ —— f £() (=g (@)dDy; 1)
X—a xX—a
g(a) o(a)
def . :
= L+1,
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By partial integration

g(x)

I =£J§g_%)2|:(g(x)—g(a))D(v;g(x))—‘J‘ D(v;t)dt]
g(a)
=@ 272D b 5; g0) -1 o @)

where we have applied Lemma 2 d). Referring to Lemma 2b) and ¢)

g(x)

i<y | Bl =a@)aro+
x—aj B
9(a)
— (0 )lg()-g (@1 DG 90O (6 9)

e

< max |e(D)| Ky |x~al+
[x—al gaysi<ac=)

g(x)—g(a
X—a

+2e(g(x)) o(l)

(x—a)

1 ] _
Dy (x)
by properties B) and 7).
Summing up our results we obtain

G(x)—-G@) _ [F(g x)~F(g(@)

O 0@) | 222D b6 407 @) o)

X—a

and hence the theorem is proved, referring to property B) again.

THEOREM 4. (¥) Let g be a continvous and strictly increasing function in [0, 1],
g(0) =0, g(1) = L. If there exist x and K such that 0<x<Dg(x)<Dg(x) <K<
(0<x<1) and g'(x) is of bounded variation on the set of its existence E then geT.

(x*) On the other hand if g € T then there exisis a nowhere dense closed set of
measure zero H<[0, 1] such that for every [a, b]<[0, 1]NH

0< inf Dg(x)< sup Dg(x)< oo
xe(a,b] xe[a,b]
and g'(x) is of bourded variation on the set E N ta, bl.

Proof. Let g have the properties described in (). We are gbing to verify con-
ditions «), B) and ) of Theorem 3. o) is trivial. As for B) we have 1/Dg (x)<1/x and

]im sup M SK \

x—+a X~a
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Turning to y) we remark

—

and

V6's 9(E) r [a, b])s% V(' E e (@), 1))

1
<5V E)=C.
N X
Hence [j th(t)]shC and
© ]
limsup L J 1dv ()| < limsup ¢ B
p ————— <lmsupC—-r—
o 1@ )=y oo (@R (@
1
= C——<KC.
Dy(a)

(+*) Let g e T'and denote y = g~*. Let H = {x; Dg(x) = o0} U y(U) where U
is the finite set defined in Corollary 2.
H is closed: let x, € H and lim x, = a¢y(U). Thus g(x,)-g(a) ¢ U and ac-
B+

cording to.Corollary 2, y possesses the properties (@, () and (ifi) in Lemma 1 in

a meighbourhood of g(a). Hence (Dy) {(g(@))<lim (Dy) (9(x)) =0 that is
n—rom

Dg(a) = w0, aeH.

A(H) = 0 since g is differentiable almost everywhere in [0, 1].

Let[a, b)< [0, 11\H, then Dy(x)>0if x e [g (@), g ®)]and by [g(a), g(B)] " U=0
we also have Dy(x)<oo (x & [g(a), g(®)]). Lemma 1 (ii) easily implies that Dy
and Dy are lower semi-continuous and upper semi-continuous, respectively. Thus
we can choose % and K with =

1 - 1
0<E<DV(X)<D?(?€)<; <o (xelg(a@),g®)).
These inequalities and the application of Lemma 1 for y in [g(a), g(b)] gives the

result.

ExaMpLE 1. In this section we show by an example that H = {%;9'(x) =0}
can be a perfect set for a suitably chosen g e 7. It means to find a perfect set A and
a function y such that H = {x;y'(x) = 0} and y"' =geT,

Let the sequence ry, r,, ... Tun over the rational numbers of (0,1) and put

0 if 0<x<r,
Jux) =41
2
o
SG) = Zlfi.(x)
b

2 — Fundamenta Mathematicae C

if r,<x<Il,
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() is a strictly increasing jump function, £(0) =0, f(1) = 1. Let
m f(x), b,= lIm f(x) @#=1,2,.),
x=rnt0 .

x—rp—0

a, =

B =10, 1NU @ B

H is obviously is a nowhere dense perfect set, 0, 1 € H and the intervals contiguous
to H can be ordered in a sequence I, = (a,, b,) such that A(Z,) = b,—a, = 1/2"
In particular A(H) = 0.

We define 9'(x) by the formula

0 if xeH,
y'(x) = ]2(x—a,l) if a,,<x< %(un'l'bn) s
12(b,—x) = if L@, +b)<x<b, (n=1,2,.).

x .
9 is continuous, let y(x) = { y'()dt. y is obviously a strictly increasing and con-
0

tinuously differentiable function, y(0) = 0,

o by

y(1) = 2 [y @at =

n=1an

S3B~a) =1.
n=1
We have to prove y~* = g e T. For this reason we apply our Theorem 3, ie., we

are going to verify properties o), B) and y) on'g.

It is obvious that for any interval [z, b]<[0, 1], 9'(x) is of bounded varlatlon

on [a,b] and

(14 V(@' [a, B]) = 12(b~a) .
Thus o) holds. In order to check B). we prove first that
13 ORI GESCICETS

for every 0<a<b<l.
In fact, let («, B) be a component of (a, b) N ([0 1INH) havmg maximal length

If a,<a<b,, a,<b<b, then
b—a=(b,~a)+ Y,

Tie & [brsaim]

A‘(]k) + (b”am) ~<\4(ﬁ—0!)

(we may suppose (a,b) n H # @, otherwise («,f) = (a,b)) thus we obtain

,
1B~ (@27 —y(@) = [ YO di=12-5(B~0)* 2T5(b—a)®

and (15) is prc;ved.
Property B) can be written in the form

limsup

X—a
xa () —(@)

Dy(x)<oo.

icm

" (16) limsup
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If a ¢ H then y'(a) # 0 and by the continuity of y'(x) we obtain

X—

() Dy(x) = — () =

limsup ——
x—a 'y(x) x= a?(x) ( )

If aeH and xe H then ~
x—
Y- v(a)
If a<x, xe(a,, b,) then by (15) we have

—— ) =

X—a
() ~7(@)

The same argument applies also if x<a and thus in any case

x—a
'x)< -1
Y (x) E— 12(x~g,

X—

@<

which proves B).
Let ae[0, 1] be arbitrary, then by (14)

V() = V(' la+t,a+d]) =6~ if 0<i<§,
T VG [e—6, at1]) = 6+t if —<t<0
and hence
h h
|§ v @] = [[tar] = $H* <3 (@+B)~r @] by (15).
That is, property y) is verified, too.

‘We remark that the set {x; g’(x) = 0} can not be infinite for any g e T because
of Corollary 1. Thus our function y(x) constructed above is not a transformer since
{x;9'(x) = 0} is infinite. Therefore g & T does not imply g~ 1eT.

We give another application our Theorem 3 by proving

THEOREM 5. Let g(x) be a strictly increasing contimuous function on [0, 1],
g(0) =0, g() = 1. If g(x) is convex then g eT if and only if

gx)—1 1 -
<< 00
Dg(x)

In particular, if g_(1)<co then geT.
Analogous assertion holds for concave functions.
Proof. We prove first that (16) and convexity imply properties o), ) and v) at

every point x € [0, 1]. &) is trivial for convex functions. Since for 0<a<x<b<1
we have

0<g(@<Dg(x)<Dg(x)<g(B)< 0
2*
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we can apply the same argument used in the proof of part (¥) in Theorem 4 which
yields properties B) and 7) for 0<x<1. For @ = 0 we have

Jg'war
o

g(x) <1
xDg(x)

xDg (x)

Since ¥ (f) = —y4()+c we obtain

[fth(z)[ = —gtdy;(t) = — lim0 ftdyﬁ,(t)
Q e++0 s
= - lilfo(xvl,(x)-svﬁr(a)- [75(di)

= - Iililo(xvi,(X)—fs‘vﬁ»(ﬁ)~ G —yE)).

Making use of
g(x) <
xDg (x)
we have
74+ (O <eDy(e)<y(e)
and hence

|[v 0] = i+ <1,

i.e., y) is verified. ’ )
Consider now a = 1. Property B) is assumed in (16) thus there exists K>0
such that :

gM—-gx) 1
1-x  Dg(x)

<K for isx<l.

h h
|£th(t)| = gtdy’_(l——t) =y (A—=B)—[—y(1 =B +y )] <hy~(1—F)
, (0 (D)= ()
= (=0=Rp-0-R = GO0 7|
‘ <K(1—(1~5)
thus y) holds at a = 1, too.
If g_(1)< oo then
gh—gx) 1
AL AW

:1;1—»1 1-x _D;(—;) -

1

and the previous result applies.

icm°®
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ExamPpLE 2. We show that there exist convex and ‘concave functions not belong-
ing to T. Since g (x) e T trivially implies 1 —g (1 —x) € T, it is enough to give a concave
function y(x) ¢ T. Let

0 if x=0,
gx) =4 _2,,
e if 0<x<1.

R

It is easy to verify that g(x) is a strictly increasing continuous and convex function
on [0, 1], g(1) = 1. Since g’(1) = 2, by Theorem 5 we have geT.

We prove that for the concave function y(x) = g~(x), v ¢T. In fact, for
0<xx1 )

“2422
te ' —
1) 1 ') £

LA = = if x-0
X Y& g(® f=yw

= ——an

7(x)

—%+z
€ t=1(x)

and hence y(x) does not satisfy condition ) at x = 0.
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