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oNT{ON U cu:,, est un voisinage de « disjoint de K(4). Donc K(H nX' =@
(s,m)eS(d)

alors que K(A) # ©. Il en résulte que K(4) ¢ FX. .
Donc 4 = K™}(FX). Et si FX était borélien dans KL, il en serait de méme
de A4 dans C, contrairement & ’hypothése faite sur 4, et ceci démontre le théoréme.
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COROLLAIRE 7. Pour que la structure borélienne de FX soit standard, il faut °

et il suffit que X soit union d'un K, et d’un polonais.
Ceci résulte immédiatement des théordmes 1 et 6.
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On pui'e semi-simple Grothendieck categories I
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Daniel Simson (Torun)

Abstract. A Grothendieck category st is called pure semi-simple if it islocally finitely presented
and each of its objects is pure-projective. It is shown that # is pure semi-simple if and only if a co-
product of any family of pure-injective objects in + is pure-injective. We study pure semi-simple-
categories with a finite number of non-isomorphic simple objects. Every such category is locally
finite and, under some special assumptions, is equivalent to a module category over a ring. Applying
Auslander’s results ([2], [3]) we obtain connections between pure semi-simple categories and cat~
egories of finite representation type. For instance, the category of all left modules R-Mod over an
artin algebra R is pure semi-simple if and only if R is of finite representation type.

Introduction. Let & be a locally finitely presented Grothendieck category.
o is called pure semi-simple if it has pure global dimension zero, which means that
each of its objects is a direct summand of a coproduct of finitely presented objects
(see [19] and [20]). A ring R will be called left pure semi-simple if the category R-Mod
of all left R-modules is pure semi-simple.

A characterization of pure semi-simple categories is given in [18] and [20],
where, among others things, it is proved that & is pure semi-simple if and only
if of is pure-perfect, or equivalently, o satisfies a pure quasi-Frobenius property
[see [18]), or equivalently, every object of « is a coproduct of indecomposable no-
etherian subobjects with left coperfect local endomorphism rings.

In the present paper we prove that & is pure semi-simple if and only if it satisfies
the following pure noetherian property: a coproduct of any family of pure-injective
objects in o is pure-injective. The idea of the proof is essentially due to Gruson and
Jensen [10] and is the following. The category « is embedded in some locally co-
herent Grothendieck category D(s#f) as its full subcategory consisting of all
FP-injective objects (see [22]) and in such a way that the classes of pure-injective
objects in o and injective objects in D (/) coincide. Moreover, pure exact sequences
in & are exact in D(«#). As a simple corollary we obtain a result, proved in [20],
which asserts that any locally finitely presented Grothendieck category has enough
pure-injective objects. These results are contained in Section 1.

In Section 2 we study pure semi-simple categories with a finite number of non-
isomorphic simple objects. It is shown that such a category is always locally finite.
The classification of these categories is reduced to the classification of left artinian
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rings A with the following two properties: (i) 4/J(4) is a finite product of division
rings, (i) the functor category ,fp-Mod is perfect, where ,fp denotes the category
of all finitely presented left A-modules. Then on the basis of Auslander’s results
in [2] and [3] we obtain the following connection between pure semi-simple cat-
egories and categories of finite representation type. Let % be a skeletally small
abelian category (i.e. the isomorphism classes of objects of ¥ form a set) with
a finite number of non-isomorphic snnple objects. Then the following statements
are equivalent:

(i) Each object of ¢ is both noetherian and artinian and % has on]y a finite
number of non-isomorphic indecomposable objects.

- (i) Lex % and Lex ¢ are both pure semi-simple categories.

Furthermore, an artin algebra R is left pure semi-simple if and only if R is of
finite representation type. This result may be considered as a “pure” version of the
‘Wedderburn—Artin theorem for artin algebras.

In general, we follow the notation and conventions established in [20]. In

particular, o7 denotes a locally finitely presented Grothendieck category and fp(«/)
its full subcategory consisting of all finitely presented objects. If & is an additive
category, ¥-Mod is the category. of all covariant additive functors from % to the

category of abelian groups ofb. When % has kernels, we denote by Lex% the full-
subcategory of ¥-Mod consisting of all left exact functors. Finally, R will denote’

aring with an identity element and gfp (resp. fpy) is the category of all finitely pre-
sented left (resp. right) R-modules.

1. The category D(«/). Recall that in [20] the pure-projective dimension is
investigated by using the full and faithful embedding

h: A—-L(d),

where L(J:i) = fp(2/)°*-Mod and . = Hom (?,-). It is observed that . establishes
an equivalence between &/ and Lexfp(#/)” = fp(s/)*-Fl. Furthermore, there are
natural isomorphisms

Pextly(M, N) = Exthiy (g, hy)s 130

The fo]lowin'g proposition sheds light on the categories L(%/) and fp(&/)-Mod;
we will need part of it subsequently.

ProrosITION 1.1. (a) The category fp(s2)-Mod is locally coherent.

(b) w.gl.dim L (of) is either 0 or 2.

Proof. Statement (a) follows immediately since fp(s#) has cokernels.

We now prove (b). First observe that since h. commutes with inverse limits,
the filtered inverse limit of flat objects in L (.2¢) is flat. Then, by Theorem 4.3 and
Corollary 4.5 in [14], w.gl.dimZL(«/)<2. .Suppose w.gl.dimL(«)<1 and let
Ichy, X e fp(s#); be a finitely generated ideal. Then there exists an exact sequence

i
0-I—hy—hy
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with Y e fp(&/). By our assumption Im f is flat and finitely presented, and so it is
projective and therefore the sequence splits. It follows that w.gl.dimL(sf) = 0
and the proposition is proved.

Since fp(s/)-Mod is locally coherent, by [17] its full subcategory
# = Coh(fp(=)- -Mod) consisting of all coherent objects is abelian, fp(2f)-Mod
= Lex%°® and the embedding functor #—fp()-Mod is exact.

Let 7: fp(/)—4%°" be the functor given by 7(~) = Hom _,,(— 7). Then °? induces
a functor

G: B-Mod—L(sf)
G(—) = Homg.yeu(?,~), which by [1, § 3] admits a left adjoint fanctor
T: L(#)~B-Mod
given by T(—) = — Qryey?, Where
Oty f0(#)°™-Mod x fp(£) -Mod~».ofb

is the tensor product functor. We put D(o/) = Lex4. ‘By Proposition 3.1 in 1}
there is a natural isomorphism

(%) I—IomL(:,,)(A, A4") = Homg pea(T(4), T(4")

and the following diagram commutes:
fp () > B > D(s4) C—>A-Mod
f y/Z
o / / ¢
Vo
ln- -

s
L(s)

where u(—) = Homg(—, ?). Moreover, it follows from [17] that D(s/) is locally
coherent, Coh D(s#) = #°® and u is an exact functor.
Now if 4 esf then 4 = colim4;, 4;efp(«), and
Th, = colimTh,, = colimuz(4;) e D(&).
Then we have a unique factorization
t: of - D(HA) ) .
of the functor Th. On the other hand, if Fe D(&/) then G(F) is left exact, and so

it is flat. It follows that the functor ¢ has a right adjoint functor g: D (&)~ such
that G = h.g. Furthermore, according to (*) we have a natural isomorphism

(+%) Hom (A, A') = Hompu(t(A4), 1(47) .

3* . e
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Tt is clear that 7 commutes with filtered direct limits, coproducts and products, and
carries over pure exact sequences into the exact ones.

LemMA 1.2. If Fe D(s£) is an exdct funcior, then F & t(4) for an Aesf.

Proof. Since g is right adjoint to #, there is a canonical natural transform-
ation @: tg-»idpy,. The functors K =Hom (Z,~), Z € fp(o), are finitely generated
projective generators of fp(s7)-Mod; thus for any B € & there exists an exact sequence
in fp(«f)-Mod :

W sh B0

with X, Yefp(s#), which is also exact in #&. For a given 4 & & the functor
t(f): B—adb is right exact (as the restriction of the tensor product functor) and
therefore it is exact because 1(4) e D ().

Now assume that Fe D (/) is an exact functor, Then we derive a commutative
diagram

1g (F)h¥——>tg (F) B ——>tg (F) B——>0
| e v o()B

F(Y) — F(h*) —> F(B) ——0

with exact rows. To prove the lemma it is sufficient to show that the left two vertical
maps are isomorphisms. But this follows from the fact that for any Z e fp(«/) we
have isomorphisms

tg(FYH? = t(FR) K = (FI) ® iy i” = F(H?)
and the composed isomorphism is equal to ¢ (F)A”.

PrOPOSITION 1.3, Let A: ()—»A’—i»A—»A”—»O be an exact sequence in the cat-
egory of. The following statements are equivalent:

() A is pure. _

(2) The sequence hy, in L(&Z) is exact.

(3) hy is pure exact. ’

(4) The sequence t(d). is exact in D(s).

[©) t(A) is pure exact.

Proof. The equivalence (1)«>(2) is immediate and (2) is equivalent to (3)
because h . is flat.

(1) < (4). The monomorphism i is pure if and only if h;: h,.~h, is a pure mono-
morphism in L(27). But & = fp (fp (=) -Mod); thus in view of Lemma 2.4(c) in [20]
i is pure if and only if the abelian group homomorphism r(HM = h; @panM is
a monomorphism for any coherent fp(sf)-module M, i.e. (i) is a monomorphism,
Since the functer ¢ is right exact, the required equivalence is proved.

To prove the equivalence of (1) and (5) it is sufficient to show that the sequence
t(A) is pure in D (&) if it is exact in #-Mod. Indeed, the purity of 4 implies that
of 4 and therefore ¢(4) = Th, is exact in ##-Mod because the tensor product functor
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carries over pure exact sequences into the exact ones. Now since fp(D ()
= Coh D(&?) = #°°, we have a commutative diagram

® h.
D(ﬂ)»——)L(D(&l))
C
|
2 -Mod.

When the sequence #(d4) is exact in #-Mod, k., is exact in L(D(#)) and from the
implication (2)— (1) applied to the category D(«/) we conclude that 7(4) is pure as
required. This completcs the proof

monomorphlsms.

PROPOSITION 1.4, Let Q be an object of the category &. Then Q is pure-injective
if and only if 1(Q) is an injective object in D(sZ).

Proof. The proof presented here is due to L. Gruson and C.U. Jensen.
Suppose Q is pure-injective and let = #(Q)—I be a monomorphism in D(sf) with
an injective object I. By Corollary 1, p. 354 i [8] I is an exact functor and therefore,
by Lemma 1.2, I = #(A) for a certain A € &/. Since f is full and faithfull, there exists
a monomorphism i: Q—A such that f = #(i). By Proposition 1.3 i is pure. Hence i
and f split, which shows that :(Q) is injective.

Conversely, assume that #(Q) is injective and consider a dlagram in &

0> d—s d’

|5
v

o

with a pure monomorphism i. By Proposition 1.3, #(i) is a monomorphism and
hence £(f) = pt(i) for a certain p: 1(4')—~#(Q). Since ¢ is full and faithfull, / = g7
for some g: A’—Q. Consequently Q is pure-injective and the proof is complete.

As a corollary we obtain the following result, proved in [20, § 4].

COROLLARY 1.5. Every locally finitely presented category s has enough pure-
injective objects.

Proof. Let A€ .« and let f: t(4)—I be a monomorphism in D(s/) with an
injective object 1. Then from Proposition 1.3 and its proof we conclude that there
exists a pure monomorphism i: 4—Q with a pure-injective object Q as desired.

Recall that a ring R is said to be F-semiperfect if idempotents can be lifted
modulo the Jacobson radical J(R) and R/J(R) is regular in the sense of von Neumann
(see [15]). Then in virtue of formula (xx) from Theorem B in [15] and Proposition 1.4
above we immediately obtain the following result:

COROLLARY 1.6. The endomorphism ring of any pure-injective object in a locally

finitely presented Grothendieck category is F-semiperfect.
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Following Stenstrm [22], we call an object A of & FP~injective if it satisfies
one of the following equivalent conditions:

PRrOPOSITION 1.7. Let A be an object of a [ocal[jv. finitely presented category of.
The following conditions are equivalent:

(a) Extn(X, 4) = 0 for every X e fp(of).

(b) Every exact sequence 0—A—»M~N—0 is pure.

(c) There exists a pure exact sequence 0—~A—Q—N-=0 with Q injective.

The proof is left to the reader.

The FP-injective objects in the category D(.¢) are characterized by the following
proposition.

ProrosiTioN 1.8. Let Fe D(sf). The following conditions are equivalent:

(1) F is FP-injective.

(2) F: B—-b is an exact functor.

(3) Felm(z: o/—D(sL)).

Proof. (1)-(2). It is sufficient to observe that Fis a composition of the Yoneda
functor 4': #— D(/) and the functor X trHomp (X, F). By [17] I is exact and
by the assumption the second functor is exact on the image of /.

The implication (2)-»(3) follows from Lemma 1.2. To prove that (3) implies (1)

suppose F = 7(d), Ae . According to Corollary 1.5 there exists a pure exact
sequence

0~A—-Q0—~K-0

with Q pure-injective. By Propositions 1.3 and 1.4 we derive a pure exact sequence
in D(of)

0-1(A)—=t(Q)—~1t(K)—0,

where 2(Q) is injective. Hence 1(4) is FP-injective and the proposition is proved,

It follows that t: o/ — D (/) establishes an equivalence of o and the full sub-
category of D(e/) consisting of all FP-injective objects. Pure-injective objects
of o correspond to the injective ones in D(s#). Hence if Q is a pure-injective

resolution of an object 4 in 7, then #(Q) is an injective resolution of t(A4) in
D(of) and formula (s+) yields

Pextiy(d, A)) = Bxtp(1(d), 1(d"))
for n>0. Furthermore, P.id 4 = inj. dimpyz(4).
We are now able to prove the following result:

TueoreM 1.9. Let s be a locally finitely presented Grothendieck category. The
Jollcwing conditions are equivalent:

(1) o is pure semi-simple.

(2) L() is perfect.
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(3) fp(s/)-Mod is coperfect. .

@) fp(f)-Mod is semiartinian (i.e. each fp(f)-module has a non-zero simple
submodule) and any finitely presented object in of is a finite coproduct of indecompos-
able subobjects.

(5) D(&Z) is locally noetherian.

(6) A coproduct of any family of pure-injective objects in sf is pure-injective.

(7) There exists an object D in & such that every object of s/ admits a pure
embedding in a suitable coproduct of copies of D.

Proof. The equivalence (1)«+(2) was proved in [20]. (3)—(4) is obvious and
(4)—(2) may be proved by using the well-known arguments of Bass (see [16], p. 360).

By [17] the category fp(s#)-Mod is coperfect iff Coh(fp(s#)-Mod) = & is
artinian. Moreover, the category D (&) is locally noetherian iff CohD(&f) = %
is noetherian. Consequently conditions (3) and (5) are equivalent. Finally, (1)—(6)
and the equivalences (5)«>(6)«(7) follow by [17] and the remark after Prop-
osition 1.8. The theorem is proved.

The equivalence (1)«>(6) was proved by Gruson and Jensen for & = R-Mod
where R is a ring (see [10]).

COROLLARY 1.10. If & is a pure semi-simple category, then any indecomposable
injective object in D(f) is noetherian.

Proof, By Theorem 1.9 the category D () is locally noetherian and hence °° is
noetherian. If I is an indecomposable injective object in D(s#), then by Prop-
‘ositions 1.8 and 1.4 I = £(Q) is an indecomposable pure-injective object in /. But
according to Theorem 6.3 in [20] Q is finitely presented and hence I = #(Q) = uz(Q)
is noetherian because the functor 7 is exact (see the diagram beneath formula ()).

2. Pure semi-simplicity and the finite representation type property. In this section
we study the connections between the pure semi-simplicity and the finite represen-
tation type property [2]. We start with some preliminary results on endomorphism
rings.

PROPOSITION 2.1. Let M be a roetherian (resp. artinian) object of an abelian
category 9. If P is a finitely generated projective object in 2, then the right 'End (If)-
module Homg(P, M) is noetherian (resp. artinian). Dually, if Q is an injective ol?]ect
in @, then the left End(Q)\-module Homg(M, Q). is coperfect (resp. noetherian).

Proof. Apply the arguments from the proof of Proposition 3.10 in. [?0].
Let us recall that an object is called finite if it is both noetherian and artinian.

COROLLARY 2.2. If X and Y are finitely presented objects of a pure semi-simple
‘category sf, then the ring End(Y) is left artinian and the left End(Y)-module
Hom (X, Y) is finite.

‘ Proof. By Theorem 1.9 « is pure semi-simple if and only if every fg (ﬂ)-mac{ule
= Hom(4, —), Aefp(sf), is artinian. Then in view of the isomorphism
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Hom (X, ¥) = Hommy g mealh’s BY) the corollary is a consequence of Prop-
osition 2.1.

As an immediate conéequence of Corollary 2.2 and Corollary 6.5 in [20] we get

COROLLARY 2.3. If R is a left pure semi-simple ring, then R is both left and right
artinian.

Finally, we note an easy consequence of Corollary 1.6.

COROLLARY 2.4. Every object of a pure semi-simple category sf has an F-semi-
perfect endomorphism ring.

When a category of all modules over a ring is pure semi-simple, then by Cor-
ollary 2.3 it is locally finite. The next theorem shows that the same result is true for
any locally finitely presented category with a finite number of non-isomorphic
simple objects.

THEOREM 2.5. Let o bea pure semi-simple category such that for each of its finitely
presented objects X there is only a finite number of non-isomorphic simple objects of
the form X'|X"" where X' X' <X. Then o is locally finite.

Proof. By Theorem 6.3 in [20] &/ is locally noetherian. Hence fp (o) is a sub-
category of s/ consisting of all noetherian objects and to prove the theorem it is
sufficient to show that every noetherian object in &/ is artinian.

Let X be a noetherian object in &7 and let Py, ..., P, are all non-isomorphic
simple objects of the form X'/X”’, X"« X' = X. Moreover, let us denote by Q the
injective envelope of P, @...®P,. Since & is pure semi-simple, by Theorem 6.3
in [20] every indecomposable object in & is noetherian, and so Q is noetherian.
Now let us consider a descending chain X=X, > X,>... Then the induced sequence
of epimorphisms X/X; <X/ X, X[X;3+... derives an ascending chain

Hom(X/X;, Q)C~Hom (X/X,, 0)“->Hom,(X/X;3, Q).

of submodules of the left End(Q)-module Hom(X, 0), which is noetherian by
Corollary 2.2. Hence the Hom chain terminates for » greater than a certain »n,.
Let n>ny. Then the exact sequence

T 03,/ X, 1= X[ X, 11> X/ X, 0
induces the exact sequence

i
O'—)Homd(X/Xn: Q)_’Homd(X/X;x+1 H Q)"’Homd(X'rl/X;l-I-tv Q)"'O H

where i is an isomorphism. Hence Hom_,,(X,,/X,,H,“Q) =0 and it follows that
X,/X,+1 = 0. In fact, since X, is noetherian, the assumption X,/X; ., # 0 allows
one to choose a maximal subobject ¥ of X, such that X, = ¥. This is a contradic-
tion because X,/Y = P; for a certain j and the composed map X,/X,.,~X,/¥
= P;c= Q must be zero. Consequently X, = X, for n>n, and the proof is finished.

To observe that the assumption on the number of non-isomorphic simple

object cannot be dropped in Theorem 2.5, consider the following example of a pure
semi-simple category.
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Let 2 be the category of all commutative and cocommutative, connected
graded Hopf algebras over a perfect field of a finite characteristic p>2 and let ##
be the full subcategory of 5# consisting of all primitively generated Hopf algebras.
1t follows from [12] and [23] that 24 is a locally noetherian Grothendieck category.
Moreover, it is shown in [21] that 2 is pure semi-simple. Since the polynomial |
algebra k[x] with degx = 2p is not an artinian object in Zs#, P#’ is not locally
finite. )

A skeletally small category € is a length category if it is abelian and each of its
objects is finite (see [9]).

On the basis of Auslander [2] and [3] we have the following

COROLLARY 2.6. Let € be a skeletally small abelian category with a finite number
of non-isomorphic simple objects. Then the following statements dare equivalent:

(a) Lex @ is pure semi-simple. '

(b) €-Mod is coperfect.

(c) % is a length category and for a given sequence

‘ 1T Sn
Cy5 Cyos Gy, Cyms Gy =
of monomorphisms between indecomposable objects in € there is an integer n such
that f, is an isomorphism for i>n.

Proof. By [17] the category & = Lex®™ is locally coherent, fp(L) = ¥,
and the full embedding fp(&f)csf is an exact functor. Then it follows. from
Theorem 1.9 that conditions (a) and (b) are equivalent. ’ )

Now suppose that (b) is satisfied. By Theorem 6.3 in [20] « is locally noetherian.
Since each simple object is noetherian and fp(#) = %, & has only a finite number
of non-isomorphic simple objects. By Theorem 2.5 & is locally finite and therefore fﬁ
is a length category. Moreover, by Theorem 6.3 in [20] the Jacobson radical of % is
right T-nilpotent and hence the second statement in condition (¢) follows. Since
(6)->(b) is a part of the proof of Theorem 3.1 in [2] (see also [3]), the proof of the
corollary is complete.

Reécall that an additive category is of finite representation type if it has only
a finite number of non-isomorphic indecomposable objects (see [2] and [9]).

COROLLARY 2.7. Let € be an abelian catégory with a finite number of non-
isomorphic simple objects. Then the following conditions are equivalent:

() The categories Lex% and Lex#™ are pure semi-simple.
(b) %°-Mod is locally finite.
() % is a length category of finite representation type.

Proof. It follows from Theorem 3.1 in [2] that (b) implie§ (©) 'becz.iuse by
Corollary 2.6 % is a length category whenever (b) is satisfied. Since, in virtue of
Corollary 2.6 (a) is an immediate consequence of (©), it remains to prove (2)->(b).
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Assume (a). By Theorem 6.3 in [20] categories L(Lex®?) = %°*-Mod and
L(Lex%°?) = ¥-Mod are perfect. Then it follows from Theorem 5.4 in [20] that the
Jacobson radical of % is both left and right T-nilpotent. Furthermore, by
Corollary 2.6, % is a length category. Consequently, the statement (€) in Theorem 3.1
in [2] is satisfied and hence #°°-Mod is- locally finite.

We recall that a ring R is of finite representation type if it is left artinian and the
category pfp of all finitely presented left R-modules is of finite representation type
(see [2]). By Proposition 1.1 in [6] we know that such a ring is also right artinian
and fpg is of finite representation type. By an artin algebra we mean an artinian ring R
having the property that the centre of R is an artinian ring and R is a finitely gener-
ated module over its centre (see [1], [2], [3D.

As a consequence of Theorem A in [3] and Theorem 6.3 in [20] we have

COROLLARY 2.8. Let R be an artin algebra. Then the following conditions are
equivalent: '

(a) 1.P.gl.dimR = 0.

(b) R is of finite representation type.

(c) Every left R-module is a direct sum of indecomposable finitely generated sub-
modules.

It follows that for an artin algebra R 1P.gl.dimR =0 if and only if
r.P.gl.dimR = 0. Moreover, as an immediate consequence of [5] (see also [11])
we obtain

COROLLARY 2.9. Let R be a local artin algebra such that the square of its unique
maximal ideal is zero. Then 1.P.gl.dimR = 0 and only if R is a Gorenstein ring
(i.e. Linj.dimgR is finite).

We now return to our discussion of pure semi-simple categories with a finite
number of non-isomorphic simple objects.

Let o be such'a category and let Py, ..., P, be a complete set of non-isomorphic
simple objects in /. We denote by I, the injective envelope of P,®..®P,.
By Theorem 2.5, & is locally finite and according to Gabriel’s characteriz-
ation ([8], Ch.IV) the correspondence A-Hom,(A4, I,,) establishes an equivalence
of the category &/*" and the category PC(4) of all left pseudocompact modules
over the left pseudocompact. ring

A=Ay = End(l,).

Since & is pure semi-simple, I, is finitely presented and by Corollary 2.2 the ring
A= A, is left artinian. Hence the left linear topology on 4 is discrete. Tt follows

that the category ,fp is equal to the full subcategory of PC(A) consisting of all
finite objects, and hence we get
(i) fp(e)™ = 4fp,

since any duality preserves the finite length property. Observe that AT (A) is a finite
direct product of division rings and by Theorem 1.9 ,fp-Mod = fp ()*P-Mod

icm

On pure semi-simple Grothendieck categories 221

is'a perfect category. Conversely, if A is a left artinian ring with the last two pro-
perties, then by [8], Ch. I, the category Lex ,4fp is locally finite, fp(Lex 4fp)® = ,fp
and hence Lex 4fp has only a finite number of non-isomorphic simple objects. Fur-
thermore, since L(Lex 4fp) = 4fp-Mod is perfect, by Theorem 1.9 Lex ,fp is pure
semi-simple. We have thus proved the following

TueoreM 2.10. Th® map of-A, defines a cne-to-one correspondence between
equivalence clusses of pure semi-simple categories with a finite number of non-iso-
morphic simple objects and isomorphy classes of left artinian rings A with the following
two properties:

() AJJ(A) is a finite product of division rings.

(ii) 4fp-Mod is a perfect category.

COROLLARY 2.11. Let o be a pure semi-simple category with a finite number of
non-isemorphic simple objects. Then s is equivalent to a module category R-Mod
over a certain ring R if and only if the injective envelope of each simple left A ~mod-
ule is finite.

Proof In view of the duality (+#x) the corollary is a consequence of [7],
p. 106, F.

Let S be a commutative ring. We recall that an additive category # is an
S-category if Hom,(X, ¥) is an S-module for any pair of objects in # and the
morphism composition is S-bilinear (see [13D.

‘We are now able to prove ‘

COROLLARY 2.12. Ler S be a commutative artinian ving and let o/ be a pure semi-
simple S-category with a finite number of non-isomorphic simple objects. If the
S-module Hom (X, Y) is finitely generated for any pair X, ¥ of finitely presented
objects in &, then the associated ring Ay is of finite representation type and
& & Mod-A,.

Proof. By our assumption the ring 4 = A, is an S-algebra finitely generated
as an S-module. Hence there is a duality fp, = ,fp™ (see [8]) and A is an artin
algebra. Then in view of formula (x#x) it follows that fp(##) = fps. Furthermore,
by Theorem 2.5 the category & is locally finite, thus, according to Theorem 1
p. 356 in [8] we have

o = Lexfp(o/)” = Lexfp = Mod-A4 .

Finally, by Corollary 2.8 A is of finite representation type and the proof is com-
plete,
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On a problem of Sikorski
by ‘

I Juhisz and William Weiss (Budapest)

Abstract. It is shown that the existence of an w,-metrizable Lindelof space of cardinality
bigger than o, is equivalent to the existence of a Kurepa tree with no Aronszajn subtree'. Thus t_he
problem whether such spaces exist (asked by Sikorski in [5]) turns out to be both consistent with -
and independent of the usual axioms of set theory.

Let us first recall the definition of a)“-metric.i,et pbe an ordinal and Gan or:dered
abelian group such that {g,: £<p} is a strictly decreasing sequence converging to
the unit element 0 € G. Let X be a set and let 0 X'x X—{g e G: g =0} be a function
such that

(1) Q(xay) =0 x f—'_y’

() oCx, Y)<elx, D+e(y,2)

(iii) e(x, ) = e(r, %) . _

o is called an w,-metric on X. A topological space is called a),;metrzzab{e
iff it has the topology generated by some w,~metric, As is showP in [7], the wg-metri-
zable spaces are the usual metrizable spaces. The o,-metrizable spaces are the
“metric” spaces for countable folks. .

A topological space X is x-compact iff every open cover has a subcover o
cardinality <x. In 1950 R. Sikorski asked if there were w,,-.compact, a),,-mc.:tn-
zable spaces of cardinality >w,. In case y = 0 the answer is clearly yes since
the unit interval is such a space. Let us concentrate on th‘e cas'fs u=1 ar}d try
to find a “unit interval” for the countable folks, i.e., a Lindelof, w;-metrizable
space of cardinality > w;.

) A tree (T, <py is a partial order such that for each xeT the set
%= {teT: t<gx}

is well-ordered. If « is an ordinal, the ath level of (T, < _T) is {x € T: % is order iso-
morphic to the ordinal «}. If % is an ordinal and 4 1T a\l ca;'rdmal (T, <y is a

i : 0<|T <A
s, A)-tree if T = | {T,: a<x} and for all a<x, 4 -
v 3& branch b=T'is a 1:1axima1 chain of (T, <ry. A cofinal branch intersects each
level. An Aronszajn tree is an (o, w;)-tree with no cofinal branche§. A Kurepa tree
is an (wy, wy)-tree with 2w, cofinal branches. For further basic results about
trees, please consult [1] or {3].
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