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Homotopically fixed arcs and the contractibility of dendroids
by

J. J. Charatonik and Z. Grabowski (Wroctaw)

Abstract. The concept of an R-arc in a dendroid is introduced and studied in the paper, to
show a new class of non-contractible dendroids, namely of dendroids which contain an R-arc.
Using this concept, hereditarily contractible fans are characterized as smooth ones, but the problem
of finding a characterization of hereditarily contractible dendroids remains open..

Although the theory of contractible spaces is well-known (see e.g. [4] and [6]),
general methods are not very useful for investigation of the contractibility of some
special spaces, e.g. of some curves. In particular there are only a few papers which
concern the contractibility of dendroids; no characterization of the class of contract-
ible dendroids is known at present, and merely several conditions which are either
necessary or sufficient have appeared in the literature. This paper is a contribution
to the attempt to find further conditions concerning the contractibility of dendroids.

All spaces considered in this paper are assumed to be metric. A continuum
means a compact connected space. A property of a continuum X is called to be
hereditary if each subcontinuum of X has this property. A continuum X is said to
be arcwise connected if for every two points « and b of X there exists an arc ab
joining & with b and contained in X. A continuum X is called unicoherent if for each
two subcontinua 4 and B of X such that X’ = 4 U B the intersection A N Bis con-
nected. A dendroid means an arcwise connected and hereditarily unicoherent con-
tinuum. A point p of an arcwise connected space X is called a ramification point
of X provided there are three arcs pa, pb, pc such that p is the only common point
of every two of them. A dendroid which has only one ramification point is called
a fan. A point x of an arcwise connected space X is called an end point of X if
it is an end point of every arc containing it and contained in X, )

Given a space X with a metric d, let 4 be a subset of X and let & be a positive
number. We denote by Q(4, ¢) the spherical s-neighbourhood of 4, i.e., the set
of all points x of X for which there exist points a of 4 with d(x, a)<e. We denote
by [«, B] the closed segment of reals from o to f, i.e. [, Bl= {t: u<r<f}, and
we put I for [0,1). The closure of a set A=X is denoted by 4, and we put
Frd = A XA for the boundary of A. To describe some examples we use the
symbol xy for the straight line segment joining the points x and y in the Euclidean
space. We hope there will be no confusion with the closure of a set. Given a se-
o
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quence of subsets 4, of X, we denote by Lim 4, the topological limit of 4, in sense

n—+eo
of [6], §29, VI, p. 339.

_A mapping means a continuous transformation. A mapping H: XxI-Y is
called a homotopy. If X< ¥ and if H(x,0) = x for each x € X, then the homo-
topy H is said to be a deformation of X in ¥, Furthermore, if for each x € X the
point H(x, 1) is the same (i.e., if H(-, 1) is a constant mapping), then the defor-
mation H is called a contraction of X in ¥. They are simply called deformations and

contractions of X if ¥ = X. If a contraction of X (in Y) exists, then X is said to be’

contractible (in Y) (see [4], T, 8, p. 11 and 12; cf. [7], § 54, I, p. 360; IV, V and VI,
p. 368-375).
ProposiTiON 1. Let a space X contain two sets A and B such that

(Y] A+9, B#X
and
(2) for every deformation H: XxI-+X we have H(AxI)=B.

Then X is not contractible.

In fact, suppose there exists a contraction H with H(AxI)=B which con-
tracts X to a point y, i.e., H(x, 1) = y for every x € X. Thus X is arcwise connected
([7), § 54, VI, Theorem 1, p. 374) and hence we may take an arbitrary point of X
as y. Taking y in X\B and x in 4 we get a contradiction.

DEFINITION 2. A non-empty subset A of a space X is said to be homotopically
fixed if for every deformation H: X xI—>X we have H(4dxI)cA.

As an immediate consequence of the above definition and of Proposition 1 we get

PROPOSITION 3. If @ space X contains a proper subset A which is homotopically
fixed, then X is not contractible.

Let X be a dendroid, Consider an arbitrary arc ab contained in X and a point x
of X. If, for some number ¢>0 we have xe Q(ab,¢) and the intersection
xa n Q{ab, &) is non-connected, then we denote by x(e) the first point of the arc xa
ordered from x to @ which lies in FrQ(ab, &), i.e., x(&) e xa n FrQ(ab, &) and
xx(8) n FrQ(ab, &) = {x(e)}.

DEFINITION 4. An arc ab contained in a dendroid X is called an R-arc il

1° there are two sequences {u,} and {v,} of end points of X such that

lim u, =a and lim v, = b;
n-+co n-+o

2° there is a number >0 such that for almost all positive integers » the sets

u,bn Q(ab, &) and v,a N Q(ab, €) are non-connected (thus the points u,(e) and
v,(g) are well-defined) and the sets u,u,(e)\{,(e)} and v,v,(e)\{v,(e)} contain no
ramification point of X;

3° [Lim u,u,(e)] N [Lim v,v,(g)] = ab.
n—+wo n—+w
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The case of a degenerate R-arc (i.e. when @ = b) is also acceptable.
THEOREM 5. Every R-arc contained in a dendroid X is homotopically fixed.
Proof. Let a dendroid X contain an R-arc ab. Suppose, on the contrary, that

there exists a deformation H: X' x - X for which H(ab x I)\ab # @, i.e., for which
there exists a number ¢ € I with '

® H(abx {f})\ab # .
Let a number &>0 satisfy condition 2° of Definition 4. For each pbint peab
put ' .
t, = sup{tel: H{p}x[0, ) =Q(abd, }o)},

and let #, = inf{t,: p € ab}. Observe that #,>0. In fact, suppose 7o = 0. Then there
is a sequence of points p, € ab such that the sequence of corresponding numbers ¢,
tends to zero. It follows from the compactness of the arc ab that the sequence {p,}
contains a subsequence {p,} which converges to a point p, € ab. We see by the
definition of #, that if 7,<1, then H(p, #,) € Fr Q(ab, }¢). Since the sequence {1, }
tends to zero as a subsequence of {t, }, we may assume ¢ < 1 for sufficiently large &,
and therefore H(p,,, t,nk) e FrQ(ab, }¢). The mapping H being continuous and
the set Fr Q(ab, %¢) being closed, we conclude H(p,, 0) € Fr Q(ab, }¢). But since H
is a deformation we have H(p,,0) = p,, whence p, € Fr Q(ab, ¢), which con-
tradicts to p, € ab. Thus the inequality #,>0 is established.

It follows from the definition of #, that H(ab x [0, #,]) = O(ab, £). We claim
that there is a number ¢’ € [0, £,] such that condition (3) is satisfied. In fact, if 1, = 1,
then the claim follows from the supposition done in the beginning of the proof.
If t,<1, then there exists a sequence of points p,e€ab such that 7,<t, and
to = limz, . Let — as previously — {p, } be a subsequence of {p,} converging to

n— o

a point p, e ab. Applying once more the same arguments as above we get
H(py,, t,,,k) eFrQ(ab, Le), whence H(pg,t,) € FrQ(ab, &) and thus the point
H(po, to) is not in ab. Therefore we may take 7, as 7'.
Let ¢ € [0, t,] be any number such that (3) holds and let p, € ab be such a point
that H(po, t) is mot in ab. Put H(p,, #') = g and define
ty = inf{t € [0, t,}: H(po, 1) = ¢} .

Thus by the continuity of H we have H(py, to) = g € X\ab.
Now let us recall that ab is an R-arc and thus it satisfies condition 3° of
Definition 4. Since p, € abc (Limu,u,(e)) n (Limw,n,(e)), there exist two sequences
n=+c n=+o

of points p, and p! such that p] € u,u,(€), Py € v,0,(e) and po = lim p, = lim p;’.
- n-r oo

n=ao0
Put g, = H(py, ty) and g, = H(p,', t;) and consider the following two conditions:
“) g.eu,ue) for almost all n,
(5 ¢ ev,0,()  for almost all n.
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If (4) holds, then we have
q H(Pm tO) = hm H(_pm tO) = hmqn € LIIT\ unun(ﬂ)

Sxmllaﬂy if-(5) holds, then ¢ ele 0,U,(8). Theleforc if both (4) and (5) hold, we
have ge (le U, 1,(8)) N (le v, v,,(s))c:ab which contradicts to g e X\ab.

So, e1ther 4) or (5 does not hold. Assume (4) is not true. Thus there is a sub-~
sequence {g,,} of the sequcnce {g,} with g, not in u,, 1, (). Since the points Pr, AT€
in the arcs u,, u, (¢) and g,, are not, and since u,, are end points of the dendroid X,
we conclude by 2° that u,(€) € H({pp,} % [0, £o]). Thus there are numbers #,, € [0, tol
such that H (p,,k, = u, (£). By the compactness of [0, to] we may assume that the
sequence {z, } converges to a number " & [0, fp]. Hence it follows from the con-

tmulty ‘of H that -

11mH(Pm¢, nk) = H(po, ")EH(abX[O to])cH(abX[O io])C 0(ab, ! %8)

E~ro0

But lim H(p,, 1,) = lim 1

k=
points u,(¢). This contradxction finishes the proof of the theorem.

(¢) which is not in Q(ab -}e) by the definition of the

llk

Proposition 3 and Theorem 5 imply the following
COROLLARY 6. If @ dendroid contains an R-arc, then it is not contractible.

‘We shall prove now that all hypotheses of Corollary 6 are essential, i.e. , that all
conditions of Definition 4 are necessary to show the non-contractibility of a dench oid
which contains an R-arc.

EXAMPLE 7.Leta pomtp be the pole (i.e. the origin) of the polar coordinate
system in the Euclidean plane. Put in the polar coordinates (g, ¢)

=0, = (L2, g= (1327 for
and let

n=1,2,..

X =ppo v Ul(pp,,upnq,,) :
=

(we recall that here xy stands:for the straight line segment joining points x and y).
So X'is a fan with the top p and with end points p, and g, for n = 1, 2, ... Define
H: XxI-X as follows. H(p, 1) = p for every te I If x_ p, then H(x, 1) belongs
to the same componént of the set X\{p} as the point x for every 7 e I. Further,

if g1 and g are the radii, i.¢. the first polar comdmates of the points H(x, ¢) and x~

respectwely, we_put

(1+29)e if o<} and 0<t<},

_ ] A=20e+2t  if 3<0<1 and 0<t<d,
€1 =1 4100 if  g<%and i<i<l,
2(1—4) if $<o<1 and }<i<1.
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#' Tt is easy to verify that H contracts X to its topp (cf. [1], p. 31). Putting, for
the fan X defined above, u, = ¢,, v, = £,2'™), a= (4,0), b= Z,0) and e = %
we see that all the conditions of Definition 4 are satisfied except for v, are end points
of X. Thus 1° is essential.

ExampLE 8. Putting, under the same mnotation as

in  Example 7,
r, = (217", 217" and ’

—_— - 0
R =pp, v Ul(ppz., U Panan) U U Plan-1
n= n=

we see that R is a subfan of the fan X which can be described as the uﬁion of a fan
homeommphlc to X and of a locally connected fan U prz,, 1, the top p of which is

the only common pomt of the both fans. Hence R is contractible.
. Further, putting u, = ¢3,, 0, = rop-y, ¢ =(%,0) and b =p we see that
condition 1° of Definition 4 holds and that for every ¢ such that 0<e< the sets

u,b n Q(ab, 5) are non-connected for almost all n, but v,an Q(ab,e) are con-
nected (and thus the points v,(e) cannot be defined). Therefore the first part of con-
dition 2° is essential.

To see that the second part is essential consider the fol]owmg example (due
to P. Minc).

ExAMPLE 9. Let X be the fan described in Example 7, let x, = (3,2 22“”)
and y, = (3,2'™") for n'=1,2,... and define

o
M=XulU=xy,.
n=1

It is easy to observe that M is a contractible dendroid. Taking u, = g,,
v, =x,, a=(3,0), b=(%,0) and ¢ = we see that all conditions mentioned
in Definition 4 are satisfied except that the sets v, v,(E)\{v,(€)} contain ramification
points y, of M. :

ExaMPLE 10. Putting, under the same notations as in Example 7, s, = (3,2'™)
and

J— L] @
S = ppy U Ul(szn U Pandan) Y Ulpsz,.q
n= n=

we see that § is a subfan of the fan X which can be described as the union of a fan
homeomorphic to X and of a fan homeomorphic to the harmonic fan, both having
the common top and such that the limit segment of the latter one is contained in the
limit segment of the former. Define F: S x IS as follows. F(p, f) = p forevery tel.
If x € S\{p}, then F(x, ) belongs to the same component of the set S\{p} as the
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point x for every ¢ € I. Further if ¢, and ¢ are ;the radii of the points F(x, f) and x
respectively, we put

) if o<} and 0<1<i,
@1+Do—t if t<g<% and 0<1t<%,
(1-209+2t if 3<p<1 and 0<t<},
2(1-9¢ if 0<% and 3<1<1,
(1-f(6e—1) if t<o<% and }<t<l,
2(1-1) if 3<o<1 and $<i<1.

Q2=

It is easy to verify that F is a contraction of § to its top p. Putting u, = g,,,
Uy = S95-1, @ = (3,0), b = (%,0) and ¢ = % we see that conditions 1°and 2° Defi-
nition 4 hold true. Further, we see that Lim u,u,(e) is the straight line segment

. n—o
joining the point a with (£, 0) and similarly Lim v,v,(¢) is the straight line segment
n—+ow
joining (%,0) with the point b. Thus & = (Lim u,u,(e)} n (Lit v,v,(e))<ab and
n-*ow n- o
the opposite inclusion does not hold. So this inclusion is essential.
ExAMPLE 11. Let, under the same notations as in Example 7, the point w,

denote the center of the straight line segment p,q,; thus w, = (3, @,), where
3.23 g p,< 217", Putting :

—_— o 0
W = ppy L Ul(ppz.. U PanGon) Y Ul(ppz.,-] U Pane1Wan—1)
n= n=

we see that W is a subfan of the fan X which can be described as the union of two

fans, both homeomorphic to X, having the top p and the limit segment pz in com~

mon. Further, it is easy to verify that H{WxI: WxI-W (where H is defined in

Example 7) is a contraction of W to its top p. Taking u, = oy, Uy = Wap—1,

a=1(30),b=(,0) and e= 2 we see that conditions 1° and 2° of Definition 4

are satisfied. Further, we see that Lim wu,u,(¢) and Lim v,v,(€) both are the straight
o«

n-+w n-
line segment joining (3, 0) with the point p,, whence the arc ab is a proper subset
of the intersection of these limits: the inclusion ab< (Lim u,u,()) N (Lim v,,(e))
n-»ow n—+oo
does hold but the opposite one does not. So this inclusion is essential.

Examples 10 and 11 show that every inclusion of equality 3° is essential, so
condition 3° is essential even in so strong sense.

PROPOSITION 12. There exist dendroids X and Y such that
(6) X is a countable plane fan,
(M X is contractible,
(8) Y is contained in X,
(9) Y is not contractible,
(10) Y is contractible in X.
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In fact, take the fan X described in Example 7 and observe that (6) follows from
the construction and (7) is proved in that place. To define ¥ put — under the same
notations — y, = (3, 2! and take

JR— o 3
Y = ppy v Ul(PPzn U Panan) Y U]P.Y2;x—1 .
n= n=

Thus we see that (8) holds, i.e., Y is a subfan of the fan X, whence it is a plane
fan, Taking #, = qzu, Uy = Yan-1 @ = (3,0), b= (%,0) and & =% we sce that
all the conditions of Definition 4 are fulfilled with Y for X, thus ab is an R-arcin Y.
Therefore (9) follows from Corollary 6. Further, (7) and (8) imply (10).

Tt follows from Proposition 12 that Theorem 1 of [3] is not true not only for
dendroids, which was known (see e. g. [S]) but even for plane fans. Thus the following

question seems to be natural:

QuESTION 13. Give an internal characterization of hereditarily contractible
dendroids.
A contribution to the attempt to find such a characterization is the following.

PrOPOSITION 14. If @ dendroid is smooth, then it is hereditarily coritractible.

Indeed, it is known that the smoothness of dendroids is a hereditary property,
i.e., that every subdendroid of a smooth dendroid is also smooth (see [2], Corollary 6,
p. 299). Further, every smooth dendroid is contractible (see [8], Theorem 1.16,
p. 371; cf. [3], Corollary, p. 93). Thus, for dendroids, the smoothness implies the
hereditary contractibility.

LemMa 15. If a contractible dendroid contains a point p and a convergent point
sequence {a,} such that the sequence of arcs pa, is convergent, then the limit continuum

Lim pa, is hereditarily locally connected.
n—+oo
Proof. Let X be a dendroid that satisfies the hypotheses of the lemma, and let
H¢ Xx I-X be a contraction of X. Without loss of generality we may assume that
H(Xx{1}) = {p}. Let @ = lim a,. We claim that the point a must pass through all
n-=w

points of the continuum Lim pa, during the contraction. In other words we claim

n-ow

that

(11)  for every point x € Lim pa, there exists a number ? € I such that H(a, 1) = x.
n+oo

In fact, for each natural m consider the spherical neighbourhood Q(x, 1/m).
Since x € Lim pa,, there is a natural 7o(m) such that for each n>ny(m) we have
pa, N Q(xn, 17m) #@. Let x,,€pa,n O, 1/m) and consider the dendrite
D, = H({a,} xI). Since a,= H(a,,0)e D, and p = H(d,,1)e D,, we have
ap,< D,, whence x,,, € D,.So there is a number #,,, eI such that H(a,, f,,,,,,) = Xym-
Tending with m and # to infinity and considering convergent subsequences if necessary

we get the limit 2 of {f,.} With H(a,?) = x. So (11) is proved.
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It follows from (11) that Lim pa,=H({a} x I). Since H({a}xI) is a dendrite,

thus a hereditarily locally connected continnum, therefore the continuum Lim pd,, is

n-roo

also hereditarily locally connected.
THEOREM 16. If a fan is hereditarily contrfactible, then it is smooth.

Proof. Assume a fan X with the top p is not smooth. Thus there exists a con-
vergent sequence of points x,eX such that, putting x = lim x,, we have

n—+cw .

Lim px\px s @. If the continuum Lim px, is not locally connected, then X is not

n- o n—+co -

contractible by Lemma 15. So we can assume that Lim px, is locally connected. Since

R
itis a subcontinuum of the fan X containing the top p, it is also a fan which can reduce
to an arc in some particular case. In any case there is an end point y of Lim px,
which is not in the arc px. By the local connectedness of Limpx, there is a positive

n-r oo

real number # such that

r 3

n<}min{dist(y, px), dist (y, (Lim px,\py) U {p})} -
n—r oo

By the definition of an end point of an arc as a point of order 1 (see [7], § 51, 1,
Pp. 274) applied to the point y and to the arc py, there is an open set G such that y € G,
diamG<%7 and py n (G\G) is a one-point set. Denote by a the only point of

2y n (G\G). Define (for n = 1,2, ...) p, as the first and g, as the last point of the -

arc px, ordered from p to x, which lies in the boundary G\G of G. Taking proper
convergent subsequences if necessary we may assume without loss of generality that
the sequences {p,} and {g,} are convergent and we see by comstruction that
limp, = a = limgq, and yeLimp,q,. Putting u, = p,,, v, = g5,_; and

e : .

n-rew n=*oo

[ee]
Y = Ul(pu,, U puy)
P

we see that Y” is a subfan of X having u, and v, as its end points, and that the
sequences {u,} and {v,} are convergent to the point . Thus condition 1° of Defi-
nition 4 is satisfied with a = b (the case when the R-arc is degenerate). We shall
show that conditions 2° and 3° are satisfied too. Namely, let 0 <& <+min (4, d(y, @),
where d denotes the metric on X. Since p & u,a\Q(4, &) for almost all n, the sets
u,a N Q(a, ¢) are not connected. Thus u,(e) are well defined and — taking convergent
subsequences if necessary — we see that Lim u,u,(s) cap by construction. Similarly,
n-+oo

since

y € Lim p,q,\Q(a, &) =Lim v,a\Q(a, ¢)
n-+eQ -

n=co

we see that the sets v,a N Q(a,€) are not connected. So v,(e) are well defined and,
using the same arguments as previously we conclude Lim v,v,(8)=ay. Therefore
_ o oo ‘ ‘
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[Lim u,u,(e)] N [Lim v,v,(e)] = {a}. Observe further that the sets u,u,(e) and v,0,()

Her o n-

are contained in Q(«, &) and therefore do not contain the only ramification point p
of Y. So conditions 2° and 3° are fulfilled for the degenerate R-arc{a}. Thus ¥" is
not contractible by Corollary 6 which finishes the proof.

Observe that the hypothesis that the dendroid under consideration is a fan is
essential in Theorem 16. Namely, put in the rectangular Cartesian coordinate system
in the plane p = (0,0), ¢ = (3,0), p, = (1,1/n) and ¢, = (2, /) for n = 1,2, ...
and define

D =pqu U (er, © 40s) -
n=

It is obvious that D is a non-smooth, hereditarily contractible dendroid having
two ramification points p and g¢.
Proposition 14 and Theorem 16 imply

COROLLARY 17. A4 fan is hereditarily contractible if and only if it is smooth.
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