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reals [1] and from this work and the remarks in the introduction, a rotund Banach
space over the reals satisfies the Menelaus ‘Property.

Conversely, from Lemma 1, each two distinct points of M lie on a unique metric
line and consequently M has the two-triple property [2, Theorem 21.3). We show 3/
satisfies the Young Postulate.

Let p, q, r be noncollinear points of M and let ¢, ¥’ be the respective midpoints
of p and ¢ and p and r. Select a sequence {r,} of points between p and r with
limr, = r' and pr,/pr>1/2. From Lemma 2, we obtain a sequence {s,} of points
with r, between ¢ and s, and r between g and s,, n=1,2, ..., and

0} (Sutulrad) (PG PR (rglrs,) = 1.
But pg'/pg = 1/2 and lims,r,/rs, = 1 since
(rs,,——rr,,)/rs,,SS,,J‘,,/rs,,s(rs,,—l-rr,,)/rs,,

and the extreme sides this inequality have limit 1. It follows from this and (1) that
limrg/r,q' = 2. However, by the continuity of the metric, limrg/r,q' = rq/r'q’ = 2,
which implies ¢'r' = gr/2. Thus M satisfies the Young Postulate, so by the result
of Andalafte and Blumenthal M is a real Banach space.
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Properties of a function of E. Marczewski
by

T. Swiatkowski (B6dz)

Abstract. Let E C R be measurable set with the positive measure |E|. H. Steinhaus has proved
that there exists an interval (0, 8) such that

ae(0,0) = En(E+a)# @

where E+4a = {x: x—a¢E}. Let (0, 8g) denote the maximal of those intervals.
. Then the function ¢ defined by the formula

@(x) = inf{0g: E C<0,1> A |E| =x} for Ogx<1
can be expressed explicitly by the formula

0 for Ogx<t,

n+1 <x n N
— ——, neN.
1 Smm1

X) =
(x) for

S n

H. Steinhaus has proved the following

THEOREM. Let E< R be a measurable set such that |E|>0. Then there is a number
6>0 such that En (E+o) # & for all we (0, ).

‘Put
6)) S(E) = sup{5: 0<a<d = En (E+u) # O}

for any measurable set Ec R. Unless otherwise stated all the sets under considerations

“will be Lebesgue measurable and |E| will denote the Lebesgue measure of E. The

following function was defined by B. Marczewski:
)] @ () = int{3(E): Ec{0,1DA|E| =x} for ~xe(0,1).

In this paper we investigate the properties of function (2).

LemmA 1. If Ec(0,1) is a measurable set and En (E+o)= O then o]
>2|E|~1.
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Proof. We may. assume that ¢>0. Then Eu (E+o)={0,14+a) and that
implies
l1+a=|Ev (E+a)| = |E|+|E+o| = 2|E].

This completes the proof.

PROPERTY 1. ¢(x)2>2x—1 for 0<x<1.

Proof. If 2x—1<0 (hence x<%), then the asserted inequality is obviously
valid. Let Ec(0,1) be an arbitrary set such that |E| = x>%. For every
«e(0,2x—1) it follows by Lemma 1 that E n (E+0) # &. Thus §(E)>2x—1,
Since the set E was arbitrary, ¢(x)>2x—1 and Property 1 is proved.

The inequality “>" in Property 1 cannot be replaced by the inequality “>*
since there exist numbers x for which ¢ (x) = 2x—1. This is true for points of the
form n/(2n—1):

PropeRTY 2. @(x,) = 2x,—1 = x,/n for x, = n/2n—1) where ne N.

Proof. Set _
rof 2k 2k+1
E, = —, —— ] f =
? U (271——1’ 2n— l) or. m=12

Obviously E, =0, 1 and |E,| = x,. Since E, contains the mterval (O 1 /(2n~1))
we have E, N (E+d) # @ for every number from this interval. On the other hand,
sets E, and. E,+1/Cn— 1) are disjoint, which implies §(E,) = 1/(2n—1). Thus
@ (x)<6(E,) = 1/(2n—1) = 2x,~ 1. But for Property 1 we also have (p(:«,,)>2x,,—1
Thus Property 2 is proved.

Remark. The proof of Property 2 follows from the inequality 8(E,)<1/(2n—1)
only. The equality §(E,) = 1/(2n—1) with |E,| = n/(2n—1) proves the existence
of sets for which ¢(|E|) = §(E).

It is obvious that the function (2) is nondecreasing, but it is not so trivial that
the function ¥ (x) = ¢ (x)/x has the same property.

Lemma 2. If O<xy<x,<1 theri (xy)i (<o) X,
Proof. We first observe that if Ec(0,1) and ©® €(0, 1) then E-0<(0, 1),
|E-@| = |E|-© and 5(E-0) = @-5(E). Let @ = %,: x,. Thus
¢(x) = inf {§(E): E<=(0, 1), |E| = x,} -
<inf{3(OE): E<(0,1), |E| = x;}
= inf{@8(E); Ec(0, 1), |E| = x,}

X
=0-9(x) = x—1<P(Xz)-
2

The lemma is proved.

PrOPERTY 3. The function (2) is nondecreasing on <0, 1>. Mor eover, zf (p(x0)>0
and 0<xy<1, then ¢ is increasing on (x,, 1).

icm
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Property 3 is an immediate consequence of Lemma 2.

PrOPERTY 4. If ne N then ¢(x)<x/n for 0<x<x, = n/(In—1).

Proof. It follows from Property 3 that ¢ (x)<y(x,) for 0<x<x,. Since by
Property 2 Y (x,) = @(x): x, = 1/n, we have ¢(x): x = Yy (x)<¥(x,) = 1/ and
therefore ¢(x)<x/n for x<x,.

Lemma 3. If E<=(0,1), a>1/2n where ne N and E n(E+0) =
FAE A

Proof. Let I dcnote lhc interval {ok, a(k+1)). The sets E and E+aare d]S_]Olnt
and thus (J, 0 E) (T, (E+ ®)) = @. Therefore

D then

[E O Tz 9 Tz g)] = |E 0 Do +|E 0 Iy |
= |(E+0) N Do y|+E 0 Iy
= [(E v (E+0)) N Ly_q<a. -

Since for azl1/2n we 11ave 0, e U (L2 Ipg ), it immediately follows that
k=1

if Ec(0,1) then E = U (B~ (Tpg=p U Iyg~1). Thus

lE] =,‘~ZLIE (a2} (Izkul v Izk—l)lsna‘ .

COROLLARY 1. If 6(E)=1/(2n—1) for Ec=(0, 1), then |E|<n-6(E).

Proof. §(E) was defined by (1) as the supremum of such numbers § that
En (E+d) # @ while 0a< 8. Thus there exists such a nondecreasing sequence o
with the limit §(E) that E N (E+a) = @ for k= 1,2, ... Since o;,>8(E)>1/2n,
it follows from Lemma 3 that |E|<n-a,. By letting k—o0, we obtain |E|< -0(E)
and the corollary is proved.

PROPERTY 5. For every number x<x, = nj(2n—1), where ne N, the inequality
@(x)=1/2n implies ¢(x) = x/n. _

Proof. Since, for Property 4, ¢(x)<x/n, it temains to prove the inequality
o(x)=x/n. Let E=(0,1) and |E|=x The assumption ¢(x)>1/2n implies
8(E)>1/2n. Therefore by Corollary 1 it follows that 8(E)>|E|/n = x/n. This implies
the inequality

X
() = inf {§(B): E<(0, 1), E = xl}>—,

which. completes the proof of Property 5.

Lemma 4. If E<(0,1), 0<a<1/2n, where ne N and E n (E+q) = &, then
|E|<1—no.

Proof. Since this proof is 51m11ar to that of Lemma 3, we w111 only write the
following relations:

(0, 1) = (0, 2n%) U {2net, 1)
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and
|E| = |E 0 (0, 2na)|+E n (2na, 1)

= |E n (2na, 1)+ leE O (Dopmg Y D)
. =
- Lnot1-2n0 = 1—~no .

CoROLLARY 2. If §(E)<1/2n for a set E<(0,1) then 8(E)<(1—|E|)/n.

Proof. Since §(E)<1/2n, there exists a number o with §(E)<a<1/2n and
E n (E+a) = &. Therefore |E| <1 —na<1—nd (E) and this implies 8 (E) < (1 —|E|)/n.

PROPERTY 6. If @(x)<1/2n for some x € (0, 1), then op(x)<(L—x)/n.

Proof. Let ¢(x)<1/2n Then there exists such a set Ep<(0, 1) with [Ey| = x
that §(E,)<1/2n. Then, by Corollary 2, it follows that 6(E,)<(1—|E,])/n and
therefore :

1—|E,| 1-x
PR<BENS— 2 = .

n
Property 6 is proved.

‘We have obtained a collection of properties of the function (2), or more precisely
some inequalities for the values ¢ (x). In what follows we will prove that this collec-

tion of properties characterizes the function (2) and permits us to find an explicit
expression for it. This results from the following theorem and its proof.

THEOREM. The function (2) has the following expression:

0 for 0<x<i,

(3) o(x) = {x n+1 n
e < N.
LA e v TR

Proof. (A) For points of the form x, = #/(2n~1), (3) means the same as Prop-
erty 2. )
(B) Let x,,4<x<x,, where x, = k/(2k—1).
Since ¢(x,4+4) = 1/@n+1), ¢(x,) = 1/(2n—1), the monotonicity of ¢ (Prop-
erty 3) implies that ‘

1 1
ﬁn+l<¢(x)<2n~1 )
Case 1. ¢(x)<1/2n. In this case it follows from Property 6 that ¢ (x)<(1—x)/n.
On the other hand, Property 1 implies that ¢(x)>2x—1. Thus 2x—1<(1—x)/n,
so that x<(n-+1)/(2n+1). Therefore Case 1 cannot occur,

Case 2. p(x)=1/2n. In this case Propci-ty 5 implies ¢ (x) = x/n. Since only
Case 2 is possible, we have ¢(x) = x/n for x,,; <x<x,.
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C) Let 0<x<+4. For the monotonicity of ¢ we obtain p(D<px)<1/2n
for every ne N. o(x)<0 and, because @(x)>0, it follows that o(x) = 0. The
theorem is proved.

Remark. The assumption that | E| denotes the Lebesgue measure is not necessary
in all the foregoing definitions and properties. It can be replaced by the assumption
that |E| denotes an arbitrary additive and homogeneous measure such that
{(a, b)] = b—a. In fact this extension of the considerations brings nothing new.
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