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Axiomatizability of second order arithmetic with o-rule
by

Pawel Zbierski (Warszawa)

Abstract. We prove that the system of Analysis with w-rule and without the axiom of choice
is not finitely axiomatizable. In proof, we use an interpretation of constructible reals in the system
under consideration.

Section 0. Let 4 denote the system of second order arithmetic formulated in
two-sorted predicate logic with number and function quantifiers. System A contains
the induction axiom and the comprehension schema but no axiom of choice.
A, is 4 with the tule » added. We prove below that A, is not finitely axiomatizable,
which anwers a question of Schwabhduser [4].

Section 1. For the proof, we construct in 4 an internal well-ordered model,
namely the constructible reals. To do this, some form of the axiom of choice is
required. Thus, we prove

JLEMMA 1.1. The X%-choice is provable in A, that is,
(© AV (n) (Bx)F(n, X)—(E2) () F(n, z)

for arbitrary It -formula F .of A.

Proof. The theorem of Kondd says that each complementary apalytic set of
irrationals admits a complementary analytic uniformization. Representing CA sets
in A by IT}-formulas (with parameters), we obtain the following schema:

For every I} -formula H(x,y), there is a 11} -formula H*(x,y) such that
Al (x, Y)[H*(x, Y)—HE, 0],
X) A+ (%) [(Ey) H(x, y)—ED) H¥*(x, )]

(H may contain number or function parameters. H* contains the same par-
ameters as H.)

Schema (K) immediately implies the choice schema (C) for IT !-formulas F.
Indeed, let F(n, x) be IT{ and assume the antecedent of (C). Let F* be a uniformi-
4‘
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zation of F, which exists in view of (K). Thus;
AF F¥(n, xy—F(n, x),

AV () (Ex) F(n, x)—(@n) (Blx) F*(n, x) .

By comprehension, there is a z such that
2(I(r, m)) = k = (Bx)[F¥(n, x) & x(m) = k]
(J is a standard pairing function). Thus
AF ()(EX)F(n, x)—(n) F*(n, z™)

and hence

A (n)(Bx) F(r, x)—(Ez2) (n) F(n, 2™) .
Finally, the IT}-form of choice implies the E%-form, for if F(n, x) islzi, then F is
of the form (Ey) Fy(n, x, y) with Fy, II1. Now, if () (Bx) F(n, x), then () (E2) Fy(n, z),
where F,(n, z) is ‘

(5, 9B = Do &y = (), —Fi(, x,9)].

Applying the IT} - choice, we get a z such that (n) Fy(n, 2); thus () F(n, (z™)q, (z), )
and hence (n)F(n,u™) follows by putting u™ = (z™),. It remains to prove
schema (K), which will be done in the next section.

Section 2. In order to prove schema (K), it is sufficient to repeat the standard
Lusin—-Novikoff construction as given, say, in Schoenfield [5] with obvious modifi-
cations, such as e.g. replacing ordinal numbers by well-orderings, and to make sure
that the corrésponding arithmetical statements thus obtained are provable in 4.
This is done below.

We recall some notions of the theory of sieves. We may assume that the positive
integers enumerate in a recursive way finite sequences of integers, or, which is the

same, the binary fractions from the interval 0, 1. In this way we obtain a recursively .
definable ordering <* of positive integers of type s, isomorphic to the ordering > of,

binary fractions. An arbitrary 0-1 function f such that f (0) = 1 is then a code for
the ordering < * restricted to the set {n:f (n) = 0}. The I} -formula Bord(f) means
that fis a well-ordering. For an arbitrary ordering f we define also ordérings f|n by:

F10=f and  (flm)(m) =0 =1(m) =0&m<*n

for n such that f (W) = 0. If f(n) = I'and n>>1 then f|n is constantly 1. (Thus f|n is.
a code for the initial segment of f corresponding to n.) Let H(x, ) be a T3 -formula

(we omit the parameters occurring in H, since if makes no difference for the proof).

Thus, H can be written in an equivalent form:

H(x,3): (£)(Enp(f ), (), y()) ,
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with p recursive. We put

Eyy = {n>0: ()Li<th@=1p 1, x(), YOI} -
Now define the ordering g in such a way that ‘
) g =0=nek,.

Since the above notions are definable, we infer that there is a formula ®(x, y, g)
(¢ is in fact recursive) such that:

‘ AF (x,)E! 98 (x,7,9),
)] At H(x,y) = (Bg[®(x, y,9) & Bord(g)].
We shall also use the relation < (<), which holds for orderings f, g if and onlly
if 7 is embeddable into (a proper initial segment of) g. Both < and < are Zj.

Also =~ denotes the iéomorphism of £, g.
We now construct a uniformizing formula H*. For brevity, let I's(x, ¥) denote

- the unique g such that &(x,y,g) (comp. (2)). The formula

“H(x, ) v {H G, Y) & Bz, 1)5,[(Dn(2(0) = y() & La(x, D)l jTox, Y1)
& (z(m)<y(m) v (z(n) = () & Ta(x, 2) In<To(x, )|m)]}
is equivalent to the X}-formula
THGx, ¥) v (Bz, m)s  {(Dal2() = () & Lolx, D]j=Tolx, ¥)i1&
& [z <y() v (2(n) = y () & To(x, 2) In<Talx, DM},

. which we denote by —1H*. Hence H*(x,y) is ITj and js equivalent to

H(JC, y) & (Z’ n)?l{(j)n[z(j) = y(])& Fdi(xs Z) lj('zrdi(x’ y)l]]
—[(zm=rm) & (z(1) = y()—Te(, 3) n=<Tolx, 2)|n)]} -
(Note that the statement 1(f<g)—(@=<f)is provable in A for well orderings f; g.)
Thus, we have
Ab (x, V) [H*(x, )—H(x, )] -
It remains to show that . ‘
AF (X)[EY) H(x, )—~(E! y) H*(x, )] .
To see this let F(x, ¥ n) be ' :
H(x, ¥) & @ {(Dalz()) = y() & Lo(x, 2)|j=To(x, 3] ,
—[(m =y @) & (20) = ym—Talx, y) In<To(x, 2)|n)]}. \
Thus, we have ‘
AF n<m——>[F(x, ¥, m)—’F(x: Vs n)] s
(B)  AFF(x,7,m&Fx, ¥, )=y () = ¥'(1) & I'o(*, )| j=To(x, ¥l
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Note that if W(f) is a formula such that

A+ ENHW(),

AF W(f)=Bord(f),
then also

A+ Eg{W(9) & (NHIW(/)=9<S1,

i.e. it is provable in 4 that any nonempty class of well-orderings contains a shortest
element. Using this, we infer at once

At (EYF(x,y, )—(Ep) F(x,y,n+1),

because, going from » to n+1, we first select the y’s which take the smallest value
at ‘the point # and then from among such y’s we choose those for which the well-
ordering I'y(x, y)|n is the shortest possible. Since also F(x, y, 0) is equivalent to
H(x,y), induction gives

AFEy) Hx, y)-@m) EY) Fx, y, 1) .
Now, by using (3) and comi)rehension
A+ E) H(x, y)->E)0t, m)z(n) = m = E3)(F(x, y, n+1) & y(n) = m)].
‘We show that ‘

@ , 7 A }-‘(Ey)H(x, P F(x, z,n),.

First, we show that |

® AF Bord(I'p(x, ) .

Let W(f,7) be '

© (EY)H(x, D—ENF(, y, n+1) & fTolx, ).

'Thus, By 3):
AR W(f,n) & W(f', m)—f=f,
(@) AF W(f, n)—»Bord(f).
Now, suppose that n<*m and
To(x, 2)(n) = I'y(x, z)(m) = 0.
If & = max{n, m} and y(j) = z(j) for j<k, then by (1)
To(x, ) () = Tg(x, y)(m) =0.

Thus,. if y is such that F(x, y, k) holds, then n, m are in the domain of the well-
ordering I'g(x,y) and . : :

Lo, ) In<To(x, )| m
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follows. Consequently, using (3) and (6), we infer
® oAb n<*m& Tp(x, 2)(n) = Tylx, 2)(m) = 0—>R(@m, m),
where R(n,m) is defined thus: '

Ef, WS, m)& W(g, m) & f<g].

R is a well-ordering by (7). (8) implies that I'y(x, z) can be embedded into a well-
ordering, and thus A F Bord (I'p(x, 2)) follows. The same argument also shows that

AF EY H(x, )y—=F@x, y, n+1)—>Te(x, 2)In<Te(x, Y)n.
From this and (5) we get (4), and hence
AF ENH(x, Y)—(E)H*(x, 2) .
Since the statement
AF (W) F(x,z, M) & F(x,z',m)—z = 2’
is oBvious, the proof of schema (K) is completed.

Section 3. Let S be a partial system of set theory consisting of the following
axioms:

extensionality, foundation, pairing, union, infinity, subsets and X;-collection.

Z,-collection and subsets imply X,-substitution. S is strong enough to define
the constructible sets and prove their fundamental properties. Thus, we can prove

Lemma 3.1. There is a formula L(x) defining an internal transitive well-ordered
model of S plus the axiom of choice.

Proof. In reconstructing the constructible sets within S we follow C. ‘Karp [11
with some necessery cautions, since § lacks both the power set and full substitution.
Thus, for instance, defining the (£+1)-th level of L, we assign to each sequence
(F, ay ... 4,», where F is a restricted formula and 4 ... a, is a suitable sequence of
parameters from L, the set {xeL; F(x,ay .. a,)} and note that this assignment
is X, (even if F is arbitrary). Hence, Lesy exists by Z,-substitution. Similarly, we
extend the hierarchy at limit ordinals. This process yields a formula & (which
is 4,) such that ‘ )

StEENZ(a),

ie. the constructible sets are a proper class. Putting L(x) = EOZ (€, x), we obtain

a X,-formula such that
S F* for each axiom F of S plus choice, where F* is the relativization of F

" to L.

We first prove the schema of reflection principle, which gives the axiom of subset.
This implies in turn Zy-substitution, notifying again that the suitable assignment
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is Z;. Next, we prove the absoluteness lemma and construct a 4,-formula which
well-orders L. This implies the axiom of choice and X,-collection.

Remark 1. Actually, it can be proved that full substitution as well as the schema
of choice holds in L. Hence L is a model of ZFC(—) (see Marek [2]).

System S can be interpreted in 4 by using well-founded graphs (or trees). We
refer the reader to Zbierski [6], where this interpretation is developed. Let us only
note that the X-formulas of S correspond to the Xj-formulas of A under this in-
terpretation and hence the Z,-collection is provable by using the I3-axiom of choice,
which is valid in 4 in view of the lemma of Section 1 (cf. Marek [2]). There is also
a formula of 4 which selects those graphs which are codes of reals (see Zbierski [6]).
Since system A is obviously interpretable (in a natural way) in S, we get an interpret-
ation of 4 in 4 by means of graphs.

Finally, let L, be the restriction of the above interpretation to constructible
graphs. Thus we obtain '

COROLLARY. A + F*, for each theorem F of A.

In fact, in view of the remark following Lemma 1 the full schema of the axiom
of choice (C) restricted to L, is provable in A. In other words, one can define in 4 an
internal model of A4 with choice (C).

Remark 2. In (Zbierski [6]) it is also shown that the set

{8(f): MFL,IfT},

where M is the principal model of A4, consisfs precisely of-constructible reals (S(f) is
the real encoded by the graph f).

LEMma 3.2. A F FE4(Bf) Mod(f, CFY for an arbitrary Jormula F of 4.

(Mod(f, "F) is a hyperarithmetical formula meaning “the family {f™: new)
is'a model of F”, T F 1 is the Gédel number of F, see Mostowski [3]).

Proof. It is easier to prove the corresponding form of Lemma 2 in S. Using
the axiom of choice, apply within the constructible sets a Skolem—Léwenheim
argument to obtain a countable (and hence enumerated by a single real). model
of F. Now, we may prove our main

THEOREM. Neither 4 nor A, is finitely axiomatizable.

Proof. Suppose, for contradiction, that there is a formula F of 4 whose set
of w-consequences Cn,,(F) is equal to A4,,. Since 4 <., and since the constructible
reals is an w-model, we get

A, FF*  and A, (Bf) Mod(f, "F )

in view of Lemma 3.2. Now, if Con(F) is a suitable formula of A expressing the
consistency of the set of w-consequences of F, then in view of our assumption we
obtain F}, Con(F), which gives the desired contradiction. '
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