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Abstract. For a compact space X denote by 2% the hyperspace consisting of all non empty
closed subsets of X and by C(X) the hyperspace consisting of all non empty connected closed sub-
sets of X with finite topology. Then it is proved that Sh(2X) = Sh(29%) and Sh(C(X)) = Sh(C1X),
where [.X is the decomposition space of X consisting of all components. As a consequence, if X is
connected then Sh(2%) and Sh (C(X )) are trivial. Also for any compact spaces X and Y such
that both [(1.X and [3 Y are countably infinite, we have Sh(2%) = Sh(2Y). If X(n) denotes the nth
symmetric product of X, then it is proved that Sh(X)>Sh(Y) means Sh(X(m)>Sh( ¥ (). Hence
if X is an ASR(ANSP) so is X(n).

§ 1. Introduction. Let X be a compact Hausdorff space. We denote by 2% the
hyperspace with finite topology consisting of all non empty closed subsets of X and
by C(X) the hyperspace with finite topology consisting of all non empty closed con-
nected subsets of X. Let [1X be the decomposition space of X consisting of all com-
ponents. In this paper we shall prove that Sh(2¥) = Sh(2"*) and Sh(C(X))
= Sh([1X). Here by Sh(X) is meant the shape of X (cf. Borsuk [2], Marde§i¢
and Segal [8, 9] and Mardegi¢ [11]). As a consequence the following corollaries

- are obtained.

(1) T X is connected, then Sh(2) and Sh(C(X)) are trivial. _
(2) If [1X and (0¥ are metrizable and infinite, then Sh(2¥) = Sh(2"). (Here

~ we mean by Sh(4) = Sh(B) that both the relations Sh(4)<Sh(B) and

Sh(4)zSh(B) hold.)
(3) If both. (JX and [1Y are countably infinite, then Sh(2®) = Sh(2".
For a positive integer 7, let X(z) be the nth symmetric product of X. We shall
show that if Sh(X) = Sh(Y) then Sh(X(n)) = Sh(¥(»)). :
Throughout this paper all of spaces are Hausdorff and maps are continuous.
By an AR-space and an ANR-space we mean always those for metric spaces.

§ 2. Hyperspaces of the inverse limit space. Let X be a space. We denote by 2% the
set of all nonempty closed subsets of X, by C(X) the set of all non empty closed
connected subsets of X and by X (%), n a positive integer, the set of all non empty
subsets consisting of at most » points. We consider C(X) and X (#) as subsets of 2X,
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Let {U;:j = 1, ..., k} be a finite collection of open sets of X. Denote by Uy, o, U
e

the set {Fe2*: F< |J U; and Fn U, # @ for each j}. The finite topology of 2% is
i=1

the one generated by collections of the form (U, ..., U,> with Uy, ..., U, open
sets of X. (See Michael [13, Def. 1.7].) Throughout this paper we assume that 2% has
the finite topology and C(X) and Y(n) are subspaces of 2%.

Let X and Y be compact spaces and let f: X>¥ be a continuous map. Define
Sui 25527 by fi(F) = f(F) for Fe2*. Then by [13, 5.10] f, is continuous and
f(CN)=C(Y) and f,(X() = ¥(n). We say that £, is a map Induced by f.

LeMMA 1. Let f, g: X—Y be maps of a compact space X into a space Y. If feug then
Segu, [l CQX) g4 C(X) in C(Y) and fo X(n)o2g, X (n) in Y(n).

Proof. Let H: X'x I-» Y be a homotopy connecting fand g. Define H': 2% % [—2¥
by H'(F, 1) = H(Fx {t})for Fe 2¥ and t e I. It is easy to show that H' is continuous,
H(CX)xI)=C(Y) and H'(X(n)x IeY(). Since H'(F,0) = fu(F) and
H'(F, 1) = g4(F) for Fe 2%, the lemma is proved. :

Let {X,, 7%, Q} be an inverse system consisting “of compact spaces X, and
projections #f: X, X, a<p, o, feQ, where Q is a directed set. Then
{2%, ), {C(XD), b C(X)} and {X,(n), 78, |X, »(m)} form inverse systems over @,
where 7;,: 2%#—2%* js induced by 7?. The following lemma was essentially proved
by Segal [19]. '

Lemva 2. Let X =1mX, Then 2¥=1m2%, C(X)=ImC(X)) and
X(m) = lim X,(n). , :

Proof. Let m,: X—X,, aeQ, be the projection. Consider the maps
Toxt 2¥2%% ae Q. Since nlmy = 7, for a<p, nf, Tps = Ty and hence the collection
of maps {m4, « € Q} defines uniquely a continuous map m,: 2¥->lim2%*. Obviously
74 (C(X)) =limC(X,) and 7,(X(n)climX,(n). Let x = {F,: FeX,,0aeQ} be
a point of lim2* Then nf,(F,) = F, so that n4(Fy) = F, for each B>, Since
{F,, nf |Fy} forms an inverse system of compact sets with onto bonding maps,
F, = imF, e 2% and ,(F,) = F, foreacha e Q. If xe lim C(X,) (resp. x & lim X, ()
then F, e C(X) (resp. F, € X(n)). Obviously nx(F,) = x. Thus m, is onto. Similary
it is proved 7, is one-to-one. The lemma is obtained by the compactness of 2%, C(X)
and X(n). '

LeMMA 3. Let f: XY be a map from o compact space X into ¢ space Y. Let
, k
A ={y3j=1,...k} be a finite set of Y. Then f;'(4) = [1277'0a,
. . =1

The lemma follows from the definition of the map fy iJnduced by f.
_ The following lemmas were obtained by Wojdystawski [20, Théoréme IT and 1I,]
and Ganea [3, Korollar].

LemMa 4 (Wojdystawski). If X is a compact connected ANR -space then 2% and
C(X) are compact AR-spaces.

e ©
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Lemma 5 (Ganea). If X'is a finite dimensional compact ANR, then X () is a com-
pact ANR-space.

§ 3. Shape of hyperspaces. For a space X, we mean by Sh(X) the shape of X de-
fined by Mardei¢ [11]. By Mardegi¢ [11, Th. 6.8 and § 7] this shape is equal to one
defined by Borsuk [2] if spaces are compact metric and one defined by Marde¥ié
and Segal [8] if spaces are compact. For a space X, [1X denotes the decomposition
space defined by the decomposition consisting of all components of X. If f: X—¥
is a map, then a map [/ OIX—[Y satisfying ny f= [1f- 1y is uniquely defined,
where my is the decomposition (quotient) map from.X onto [X.

THEOREM 1. Let X be compact and let my: X—[1X be the decomposition map.
Then each of maps myy: 25—27% and my,: C(X)—C(OX) = [1X induces a shape
equivalence. In particular, Sh(2¥) = Sh(2"%) and Sh(C(X)) = Sh(OX).

We need the following lemma.

LemMa 6. If X is a compact metric ANR, then the map (riy)y: 2X—2% is a homo-
topy equivalence.

Proof. Let y = {y%, »% ..., ¥} €29%. Then by Lemmas 3 and 4, (my; (%)

k .
= ]—[2"51(”‘) is a compact metric AR-space. It is easy to see that for any different

A iy'le 27%, () (%) and (my)3'(y') are disjoint and 29 is finite. Thus (mx)s is
a homotopy equivalence.

Proof of Theorem 1. We shall prove the first part of Theorem 1 (the proof
of the second part is similar, only simpler). Let X = {X,, n}, @} be an ANR -system
associated with a compact space X. Then it is easy to prove that

0OX = lim{01X,, Oz, @} .

By Lemma 2 we have 2% = lim{2% (nf),, @} and 25% = lim 2%, ((Ixf),, €}
For any «, e Q, a<p, the following diagram commutates

B
2Xe e (e zxﬁ
(nx,)tl (mxp)e
=} AP ox#
2 (Tnl) 2

because my,7h = ([Inf) 7y, - Thus the system of maps {(mx,)}aeq is the map from t.he
system {2%°, (nf)4, @} to the system {20% ((Onf)s, @}, which is a homotopy equiv-
alence in the sense of Mardesié (because every (mx)« is 2 homotopy equivalence). -
It is easy to see that the map (my)y: 2¥-—27% is the inverse limit of the map (of
systems) {(mx )itsca. Thus (mx)y is the shape equivalence.

. Next we-shall give alternative proof of Theorem 1. We start with the following
lemma.
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Lemva 7. Let X be a paracompact spdce. Suppose that there is a closed
map f from X onto a space Y with dim ¥ = 0 such that for each ye Y f~(y) is of
trivial shape. Let H be an ANR-space.

(3.1)) If gi: X—H, then there is a map g': Y—H such that g’ f~g and the homo-
topy class of g’ is determined uniquely by the homotopy class of g.

(3.2) Let g, h: X—H. Then g=~h if and only if nyg = ngh: X—[1H, where
Ty H—[1H is the decomposition map.

Proof. Let g: X—H. Take any point ye Y. Since f~!(y) is connected,
g(f7%(») is connected. Let H, be the component of H containing g (f~ ).
Then H, is an ANR-space. Since f~!(y) is of trivial shape and X is paracompact,
it is easy to show that there is an open neighborhood U, of £ ~*(») in X and a homo-
topy h,: U,xI—H, such that

(3.3)  hy(x,0) = g(x) and h(x, 1) = p,(= @ point of H,) for each xe U,.

This is done by using a bridge map theorem (see for example [4, Theorem 5]).
Put ¥V, = Y—f(X—-U,), ye Y. By the closedness of f ¥ is paracompact and
{V,: ye Y} forms an open cover of Y. Since dim ¥ = 0, there is a locally finite
open cover #" = {W,: a € Q} such that order of #” = 1 and ¥ refines {V,: ye Y}.
For each a e Q, choose a point y, of ¥ such that W, V,,. Define g': Y~H by
9’ =p,, for ye W,, oe Q (cf. (3.3)). Since order of # = 1, ¢’ is continuous.
Since {f~'(W,); a € Q} forms a locally finite open cover of X whose order = 1,
and g'f | f =YW, =g |f~*(W,) for each a € Q@ by (3.3) and the definition of ¢’, we
know g'f=g. This completes the proof of the first part of (3.1). Next, let us prove (3.2).
Since [JH is a discrete space by the local connectedness of H, it follows that g~}
implies nyg = myh. Suppose that nyg = myh. Let g’ and 4’ be maps of ¥ into H con-
structed for g and / in the proof of (3.1) respectively. Let %7, and #", be locally
finite open covers of ¥ used for the constructions of g’ and %’. Take a locally finite
open refinement #” of %7, A %, such that order of #" = 1. From ngzg = ngh and
the definition of g’ and %', we know for each W'e # two points ¢'( W) and h'(W)
belong to the same component of H. Since each component of H is arcwise connected,
g'=h" and hence g=fy'~f'~h. This completes the proof of (3.2). The second half
of (3.1) is a consequence of (3.2).

By Lemma 7 we obtain the following theorem. In case X and Y are metrizable
and X'is finite dimensional, it is a consequence of [6, Theorem 1]. Note that we do
not assume the finite dimensionality of X in the theorem.

THEOREM 2. Assume that X, Y and f satisfy the same hypothesis as in Lemma 7.
Then the shaping f: X—Y induced by f (cf. [11]) is @ shape equivalence. In particular
Sh(X) = Sh(¥).

Proof. We have to construct a shaping ¢: ¥—X such that of = 1y and fp = Iy,
where [y and Iy are the shapings induced by the identities 1y: X—X and 1y: ¥—Y.
For a map g of X into an ANR-space K, define ¢(g) = g’, where g’ is a map of ¥
into K constructed for g in Lemma 7 (3.1). To show ¢ is a shaping, let L be an
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ANR-space and let ¢: K—L and h: X—L be maps such that ég~h. Since
npbo(9)f = miég = mph = mpe(h)f, we have Ep(g)f~o(h)f by (3.2). Hence, by
the uniqueness of g in (3.1), we know £¢(g) =~ ¢ (k). This implies that ¢ is a shaping.
Tt is easy to prove by (3.1) and the definition of f that of = 1 and fo = 1y. This
completes the proof. :

ExampLE 1. Consider the following sets in the plane R*: 4y = {(0,0)},

A= {(%,3): x20, (x=1)2+y? = (1+1/i)?}

i=1,2,, X = Udy ¥ = {0,0} v {0, 1/); 1= 1,2,..}. We define /: X—¥
i=0 '
by f(dy) = (0,0) and f(4) = (0,1/i), i = 1,2, ... Next, let
Ay = {(6,2) ¥ #£ 2, (= 174y? = 1}

and put X’ = Apu | 4;. Define g: X'—Y by g(d) = (0,1/i), i>0 and
=1

g(4p) = (0, 0). Then fand g are continuous and open maps and for each ye ¥ j:"i( )
and g~ 1() are a point or an open interval or a closed interval. However, since H(X),
and H*(X") are both infinite groups and H*(¥) = 0, each of f and § is not a shape
equivalence, where B is the integral Cech cohomology. We know that X is locally
compact, These examples are shown that we can not replace the closedness of
a map f in Theorem 2 by the condition (i) or (i):

(@) f is open and for each ye Y f(y) is compact;

(i) X is locally compact and f is open.

(Note that if two conditions () and (ii) are satisfied then f becomes a closed
map.)

Alternative proof of Theorem 1. Since X is compact, [1X is a compact
space and dim [1X = 0 by Ponomarev [16]. Hence 27% is compact and dimZE"; = 0.
Therefore by Theorem 2, it is enough to prove that for each point y of 2% or
C(O1X) = OUX, (mx); 1(y) is of trivial shape. However it is easily proved by Lemmas 2
and 6. '

There are several corollaries of Theorem I. The first concerns an absolute shape
retract (ASR) and an absolute neighborhood shape retract (ANSR) (see [10] for the
definitions.) ' '

CoROLLARY 1. Let X be compact. ‘Then:’ ‘

’(3.4) 2% and C(X) are ASR (equivalently of trivial shape [10, Theorem 4]) if
and-only if X is connected. ‘ . ’ ’

(3.5) 2% and C(X) are ANSR if and only irX has a finite number of components.

Proof. The if part is an immediate consequence of Theorem 1 because [jX: 1§
a singleton or a ﬁnite set. Next, let us prove the iny if part of (3.5), Ther}lt by Mardesi¢
[10, Corollary 2] there exists an ANR (compact) ¥° such that Sh(2")<Sh(Y) or

L]
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Sh(C(X))<Sh(Y). Since for compact spaces A and B Sh(4)<Sh(B) implies
Sh([14)<Sh([1B), we have Sh([D2%)<Sh(¥) or Sh(IIC(X))<Sh(O . Also
it is easy to know that Sh({12¥) = Sh(2™%) and Sh([IC(X)) = Sh(C(OX)).
By Theorem 1 we have ShQP*)<Sh(OY) or Sh(OOX)<Sh(C17Y). Since ¥ is an
ANR (compact), []Y is a finite set. Since dim27* = dim[JX = 0, by Mardesié
and Segal [8, Theorem 20] we can conclude [JX is a finite set. The proof of (3.4)
is similar. ) '
COROLLARY 2. For every compact space X, 2% and C(X) are movable.

Proof. By Theorem 1 we know that each of 2¥ and C(X) has the same shape
type as a 0-dimentional compact space. The corollary follows from Mardesié and
Segal [7, Example 2].

COROLLARY 3. Let X and Y be compact spaces. If Sh(X)=Sh(Y) (resp.
Sh(X) = Sh(¥)), then Sh(2®)>Sh(2") and Sh(C(X))>Sh(C(Y)) (resp. Sh(2%)
= Sh(2") and Sh(C(X)) = Sh(C(Y))). ;

Proof. By the proof of Lemma 6 and Marde§i¢ and Segal [8, Theorem 20],
we know that any shaping ¢: X—Y determines uniquely a continuous map
fo: OX—-[Y such that f‘f,ﬁx = fly @, where § denotes the shaping determined by
amap g. If y: Y—X is a shaping such that ¢ = 1y, where 1y is the identity of X;
then the map fy, = fu.f,: IX—[X is the identity. Thus fy,x = fyafpu: 275—27%
is the identity so that Sh(2®*)<Sh(27%). The corollary follows from Theorem 1.

COROLLARY 4. If |OX| = |OY]| = &, then Sh(2X) = Sh(2Y), where |Z| denotes
the cardinality of Z. .

Proof. Since [JX and []¥ are compact, it follows from Arhangel’skix [1]that [1X
and [JY are metrizable. Since both [1X and (1Y have dense sets of isolated points,
29% and 29" are homeomorhic by Pelczyhski [15). Thus Sh(2¥) = Sh(2™%)
= Sh(2™) = sn(2h).

Denote by .# the class of all compact spaces X such that [X is metrizable,
We note that the hypothesis of Corollary 4 can be replaced by the following:
X, Ye# and both [JX and [1Y have countable infinite dense sets of isolated
points (cf. Pelczynski [15]).

COROLLARY 5. If X, Ye M, then Sh(2¥)3Sh(2¥) or Sh(2¥)<Sh(2!) and also
Sh(C(X))=Sh(C(X)) or Sh(C(X))<Sh(C(Y)). Moreover, if both X and [1Y are
infinite, then Sh(2¥) = Sh(2"), that is, Sh(2*)>Sh(2") and Sh(2¥)<Sh(2Y).

Proof. Since X, Y'e .#, (X and [ Y are 0-dimensional compact metric spaces.
It [OX|>8,, then [1X contains a Cantor discontinuum, Hence []¥ is embedded
into [1X so that (] Y is a retract of [JX (see for example [5, Theorem 4) and 277 is
a retract of 27% Thus Sh(OX)>Sh(OY) and Sh(27%)>Sh(2%Y), ‘Therefore
Sh(C(X))=Sh(C(¥)) and Sh(2")>Sh(2") by Theorem 1. If IOX|<), and
| Y]<¥o, then [1X and [JY are homeomorhic to ordered compacta by Mazur-
kiewicz and Sierpifiski [12, Théoréme, p, 21]-and hence it holds that there is an
embedding: [(JX—[Y or [J¥—[]X. This completes the proof of the first part of

L]
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+ the corollary. Next, let [1X and []Y be infinite sets. By Pelczyfiski [15] both 2X

and 2% contain Cantor discontinua. Hence there are embeddings: 29%207 gn4
29Y28% 56 that both the relations Sh(2™)>Sh(27%) and Sh(2%)<Sh (2™ hold.
The corollary is a consequence of Theorem 1.

ExAMPLE 2. Let X be a Cantor discontinuum and let ¥ be a countably infinite
compact set. Then Sh(2¥) = Sh(2") by Corollary 5. However Sh(2¥) # Sh(2")
because 2* has no isolated points by Michael [13, 4.13.4] and on the other hand 2¥ has
isolated points (every isolated point of Y is isolated in 2"). This example
shows that we can not replace the relation Sh(2*) = Sh(2") in Corollary ‘5 by
Sh(2*) = Sh(2". :

The following example shows that the hypothesis X, Y& 4 in Corollary 5is .
essential.

ExaMPLE 3. Let X" be a discrete space whose cardinality |[X”| = ¥, and let X be
a one point compactification of X'. Next, let D be a set consisting of exactly two

points and let ¥ = ] D,, where |Q| = %, and each D, is a copy of D. Then both X
xed

and Y are 0-dimensional compact spaces with an infinite number of points and
hence C(X) = X and C(Y) = Y. Since ¥ has no isolated points, there is no em-
bedding of Y into X so that Sh(X)#Sh(Y). Suppose that Sh(X)<Sh(¥). Then
there is an embedding i: X— ¥ and a retraction r: ¥—i(X) by Mardesi¢ and Segal’
[8, Theorem 20]. Since ¥ has Souslin property (= the countable chain condition)
by Sanin [18], #(X) must have Souslin property. This contradiction means
Sh(X)¢Sh(Y). Finally, suppose Sh(2¥)<Sh(2"). Then there is an embedding
i: 2%=2" and a retraction r: 2Y—i(2%). Note that, by the definition of the finite
topology, if Z is separable then 2% is separable. Since Y is separable by Ross and
Stone [17], 2" is separable so that 2% must be separable. However it is easy to see
that each point of X" is isolated in 2* and hence 2% is not separable. This contra-

- diction shows that Sh(2¥) # Sh(2").

THEOREM 3. Let n be a positive integer. If X and Y are compact, then
Sh(X)<Sh(¥) (resp. Sh(X) = Sh(Y)) implies Sh(X(m)<Sh(¥(n)) - (resp.
Sh(X () = Sh(Y (). )

Proof. Let X = {X,, %, Q} and ¥ = {¥,, , I'} be ANR-systems consisting
of finite dimensional compact ANR’s X, and Y, associated with X and ¥ respectively.
Suppose that Sh(X)<Sh(Y). There are maps f: X—Y and g: ¥Y—X such that
gf~1y. (See MardeSi¢ and Segal [8] for notations.) Let f = {f,, I'} and g = {g,, 2}.
For each o e Q there is an index o' € Q such that o' >fg(x), o and

(3.6) IaSy Moty 27+ XX, o

Consider the systems X(n) = {X,(n), #, @} and ¥(n) = {Y,(n), &, I'},: where
7 = al | Xy(n) and [ = pi,|¥3(n). By Lemmas 5 and 2, X(n) and Y(n) are
ANR -systems associated with X'(n) and ¥(n) respectively. For each y e I, define

§ — Fundamenta Mathematicae C
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S Xpa(m—Y,(m) by f,m)
—’Xa(n)! °E 'Qa by gu(n) = ga*l

(EX) 90 fo W) gy 2 i X p(m)—X () .

Also Lemma 1 shows that f(m) = {f,(n), I'} and g(m) = {g.(n), @} are maps of
X(n) into Y (n) and of Y(r) into X (%) respectively. Since (3.7) implies g () f (n) =~ lx,
Sh (Xm)<Sh(Y(m). That Sh(X) = Sh(Y) 1mphes Sh(X(m) = Sh(¥(n) i
proved similarly.

= [l X;»n() and similarly define g, (n): Y )
Yy@). By (3.6) and Lemma 1 it holds that,

COROLLARY 6. For a positive integer n and a compact space X, the followings
hold.

@ If X is an ASR, then X(n) is an ASR.
(i) If X is an ANSR, then X(n) is an ANSR.
(i) If X is movable [7], then X(n) is movable.
(iv) If X is uniform movable [14], then X (n) is uniform movable.

Proof. Suppose that X is an ANSR. By Marde§i¢ [10, Theorem 6] there is
a finite dimensional compact ANR -space ¥ such that Sh(X)<Sh(Y). From The-
orem 3 it follows that Sh(X())<Sh(¥(n)). Since by Lemma 5 ¥(n) is a compact
ANR -space, by applying Mardesi¢ [10, Theorem 6] again we know X'() is an ANSR.
The proof of (i) is similar. The assertions (iii) and (iv) are proved by the same argu-~
ment as in the proof of Theorem 3.

References

[11 A.V. Arhangel’skil, 4n additition theorem for weight of sets lying in bicompacta, Dokl.
Akad. Nauk SSSR 126 (1959), pp. 239-241 (Russian). ‘
[21 X. Borsuk, Theory of shape, Lecture Note Series 28, Math. Inst. Aarhus Univ. 1971.
[3] T. Ganea, Symmetrische Potenz topologisher Réiwme, Math. Nachr. 11 (1954), pp. 305-316.
[4]1 Y. Kodama, Mappirgs of a fully normal space into an absolute neighborhood retract, Sci.
’ Rep. Tokyo Koiku Daigaku 5 (1955), pp. 37-47. .
[51 — On LC" metric spaces, Proc. Japan Acad. 33 (1957), pp. 79-83.
[6] — Decomposition spaces and shape of Fox, Fund. Math. 97 (1977), pp. 199-208.
[71 S. Marde§ié¢ and J. Segal, Movable compacta and ANR -systems, Bull. Acad. Polon. Sci.
Sér. Sci. Math. Astronom. Phys. 18 (1970), pp. 649-654.
[8] — — Shapes of compacta and ANR-systems, Fund, Math. 72 (1971), pp. 41-59.
[91 — — Eguivalence of Borsuk and the ANR-system approach. to shapes, Fund. Math. 72
(1971), pp. 61-68.
[10] — Retracts: in shape theory, Glasnik Math. 6 (1971), pp. 153-163.
[11] — Shapes for topological spaces, Gen, Topology and Appl. 3 (1973), pp. 265-282.
[12] S. Mazurkiewicz and W. Sierpinski, Contribution & la topologie des ensembles dénom-
brables, Fund. Math. 1 (1920), pp. 17-27. )
[13] E.Michael, Topologies on spaces of subsets, Trans. Amér. Math, Soc, 71 (1951), pp. 152~181.
[14] M. Moszynska, Uniformly mavable com_pzzct spaces and their algebraic properties, Fund.
Math. 77 (1972), pp. 125-144.
[151 A. Pe}czynskl, A remark on spaces 2% far zerodzmenswnal X, Bull. Acad. Polon. Sci. Sér.
Sci. Math. Astronom. Phys. 13 (1965), pp. 85-89,

icm

On shape of hyperspaces 67

[16] V.I. Ponomarev, On continuous decompositions of bicompacta, Uspehi Math. Nauk (N. S.)
12 (1957), 4 (76), pp. 335~340; Amer. Math. Soc. Translation, Ser. 2, 30 (1963), pp. 235-240.

' [17] K. A.Rossand A. H. Stone, Products of separable spaces, Amer. Math. Monthly 71 (1964),

pp. 398-403.

[18] N.H. Sanin, On intersection of open subsets in the product of topological spaces, C. R.
(Doklady) Acad. Sci. URSS (N. S.) 53 (1946), pp. 499-501 (Russian).

[19]1 I.Segal, Hyperspaces of the inverse limit spaces, Proc. Amer. Math. Soc. 10 (1959), pp. 706-709.

[20] M. Wojdystawski, Rétractes absolus et hyperespaces des continus, Fund. Math. 32 (1939),
pp. 184-192. .

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF TSUKUBA

Ibaragi

DEPARTMENT OF MATHEMATICS
UNLVERSITY OF WARSAW

Warszawa

DEPARTMENT OF MATHEMATICS
TOKYO UNIVERSITY OF EDUCATION
Tokyo

Accepté par la Rédaction le 9. 2. 1976


Artur




