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An analogue of the theorem of Hake-Alexandroﬂ‘-Looman
by

Cheng-Ming Lee (Milwaukee, Wis.)

Abstract. A characterization for monotone increasing functions is given. Based on it an abstract
integral of Perron type and one of Denjoy type are defined and the two are proved to be equivalent.
Concrete examples are also briefly given.

1. Monotone functions. To give a characterization for monotone increasing func-
tions, we first fix certain terminologies and notations.

A function defined on a (finite) closed interval I is said to be upper closed mono-
tone (or simply uCM) or I if the function is monotone increasing on the closed
interval [c, d] whenever it is so on the open interval (¢, d) =I. Clearly, every Darboux
function on I is uCM on I. But the converse does not hold. .

A function F on I is said to be lower absolutely continuous (or simply IAC)
on a set EcI if for each &>0, there exists >0 such that

2 [F@)—Fla)]>—¢
for each finite set {[4;, b;]} of non-overlapping intervals with end points in E and
Y (b;—a;)<6. A function F is said to be generalized lower absolutely contimious
(or simply [IACG)) on a set E if Eis a union of countably many closed sets on each
of which F is 1AC. ‘

The notion of IAC dates back to Ridder [10] (cf. also Jeffrey [6]), which is a gen-
elization of the notion of absolute continuity in the wide sense (i.e. AC given in -
Saks [11]). Note that the Cantor singular function is a monotone function which
is JAC but not AC on the unit interval.

For convenience, if P is a well-defined property for functions defined on a certain
domain, we will also use P to denote the class of all functions having the property .P.
Unless otherwise stated, the domain of functions will be a fixed finite closed interval
I = [a; b, and will be left unspecified. Thus, uCM is also used to denote the class of
all functions which are uCM on I, and similar for [IACG]. Furthermore, we also write

ICM = {F: —FeuCM},
CM = ICM nuCM,
[WACG] = [F: —Fe [IACGI},
[ACG] = [IACG] n [WACG].
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Note that the notion of [ACG] generalizes that of ACG in Saks [11] so that the
functions concerned are not necessarily continuous (cf. Ellis [5]).

The following result gives a characterization for monotone increasing functions.
The proof is a standard argument using Bair’s category theorem and Vitali’s covering
theorem, and hence is only given in a brief manner.

THEOREM 1. Let F be a function defined on I = [a, b]. For the function F to be
monotone increasing on I it is necessary and sufficient that F € uCM n [IACG], and
F(x)>0 for almost all x in I, where F(x) is the upper derivate of F at x.

As an immediate consequence of Theorem 1, one has the following result.

COROLLARY, For the function F to be a constant Sunction on I, it is necessary and
sufficient that Fe CM n [ACG], and F,(x) = 0 for almost all x in I, where Fap(x)
denotes the approximate derivative of F at x.

Proof of Theorem 1. That the condition is necessary is trivial. We prove that
the condition is sufficient. Let £ be the set of all points x & I such that there is no open
interval I, containing x with the property that F is monotone increasing on I, n I.
If one shows that E is empty, then applying the Heine-Borel theorem, one conchudes
easily that F'is monotone increasing on I, and the proof will be done. To see that E'is
empty, suppose, on the contrary, that E is non-empty. Then one sees easily that E is
closed in I, and since Fis [JACG] on I, one concludes from Bair’s category theorem
that there exists an interval [¢, d]<I such that Fis IAC on [, d] n Eand (¢, d) N E
is non-empty. Using the condition F e uCM, one sees that F is monotone increasing
in the closure of each contiguous interval of [c, d] N E relative to [¢, d]. Then it
follows easily that F, being IAC on [¢,d] n E, is in fact JAC on the whole inter-
val [c, d]. Then since F(x) >0 for almost all x in I, applying Vitali’s covering theorem,
one proves easily that F is monotone increasing -on [c, d]. This contradicts the as-
sumption that (¢, d) N E is non-empty, and hence the proof is completed.

.2. Perron and Denjoy integrals. A class of functions, say &, is termed an upper
semi-linear space it % is closed under linear combinations with non-negative co-
efficients, i.e. if af+fg.e # whenever f, g € # and a, B are non-negative constants.
It is noted that the intersection of finitely many such spaces is also such a space,

The class [IACG] given in the previous section is an example of upper semi-
linear spaces. But the class uCM is nof such a space. Examples for upper semi-linear
spaces contained in uCM will be given in the next section. Here, we will consider an
abstract upper semi-linear space contained in uCM.

Throughout the rest of the section, let ul, denote an upper semi-linear space
contained in uCM, and f a function defined on I = [a, B].

A function M is said to be a LPG-major furction for f on I if

0 M@ = 0; ‘
(i) MeuL on I;
(i) 1Dy, M(x)2f (x) for almost all x in I;
(iv) Me[IACG]l on I. - :
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Here, the notation 1D,, M (x) denotes the lower approximate derivate of M at x.
(Later on, we will also use D,,M(x) to denote the approximate derivative of M

~at x).

A function m is'said to be a LPG-minor function for f on Iif —misa LPG-major
function for —f on I It then follows from Theorem 1 that M — m is monotone increas-
ing and non-negative on I for any LPG-major function M and minor function m.
Then by a standard procedure (cf. [3]), an integral of Perron type is defined, which
we denote as LPG-integral, and call it the generalized Perron integral using uL.,
As usual, it can be proved easily that an indefinite LPG-integral isin
L= {F: Fand —Feul} and its approximate derivative exists and is equal to
its integrand almost everywhere provided that uL is closed under uniform conver-
gences (i.e. M,—M uniformly in I with M, e uL=>M e ul). Furthermore, we have
the following non-trivial result.

LEMMA. Every indefinite LPG-integral is [ACG].

Proof. Let F be an indefinite LPG-integral for f on [z, b] and without loss of
generality let F(a) = 0. Let M, m, with or without indices, denote respectively, the
LPG-major and minor functions for fon [, b]. Then it follows from Theorem 1 that
one has

(1) M—m is monotone increasing and non-negative on [g, 5] for every pair M, m. .
Then, routinely one shows that

(2) there exist sequences {M,}, {m,} such that M,—F and m,—F uniformly on
[a, b], and .

(3 M-—F and F—m are both monotone increasing and non-negative on [a, B]
for every pair M, m.

ﬁsing (2) and (3), one proves easily that F is [ACG] on [a, b] provided that
the following holds. . )

(4) There exists'a sequence {£;} of closed sets covering [a, b] and over each of
“which M and —m are IAC for all pairs M, m.

To show that (4) holds, let M,, m, be a fixed pair. Then it is clear that there
exists a sequence {E;} of closed sets covering [4, b] and on each £; both M, and —mo
are 1AC. Then using (1), one proves that both 3, and m, are BV (i.e. bounded vari-
ation) on each E;. Furthermore, since M = (M— myp)-+mg and m = Mo—(MP— m),
it follows from (1) again that every M and every m are BV on E;. Using this fact,
we show that every M (and similarly every —m) is' 1AC on each E; as follows: Let
M, (x) = M(x) for x in E; and on each interval (¢, d) contiguous to E;, M, be defined
to have its graph the linear segment joining the points (c, M(c)) and (d, M(d)).
Then since E; is closed and since M is a LPG-major function and M is BV on E;,
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one shows that M, is uCM, [IACG] and BV on [a, b]. Consider the function G de-
fined by .

GO) = MyW)—HG), H() = | Mi@)dr.

Note that since H is continuous and AC on [a, b], the function G is uCM, [IACG]
on [a, ], and furthermore G'(x) = 0 for almost all x in [a, b]. Hence by Theorem 1, ‘
G is monotone increasing in [a, b]. Then

M(»)— M(x) = H(3)—~H(x)

for all [x, y] =[a, b]. It then follows that M, is IAC on [, b] since H is AC on [a, b].
Hence M, being identical with M, on E;, is IAC on E;, completing the proof.
For an upper semi-linear space uL contained in uCM, note that

L= {F: Fand ~Feul}

is a linear space. Hence it follows from the corollary to Theorem 1 that if F,
GeLl n[ACG] and D,,F(x) = D,,G(x) for almost all x in I, then the difference
function F—G'is a constant on I. Therefore the following definition of LDG-integral,
which may be called as the gemeralized Denjoy integral using L, is well-defined.
A function f is said to be LDG-integrable on I = [a, b] if there exists a function
FelL n [ACG] such that D,, F(x) = f(x) for almost all x in I, and in this case, the
LDG-integral of f over I'is defined to be F(b)—F(a), and the function F is called an
indefinite LDG-integral of f on I

Now, we are in a position to give a result which is an analogue of the theorem
of Hake—-Alexandroff-Looman, which asserts that the Denjoy integral in the restric-
ted sense is equivalent to the classical Perron integral (see Saks [11]).

THEOREM 2. Let UL be an upper semi-linear space contdained in the class uCM,
and be closed under uniform convergences. Then the generalized Denjoy integral using L
(i.e. the LDG-integral) is equivalent to the generalized Perron integral using uL
(i.e. the LPG-integral). ’

Proof. Clearly, if fis LDG-integrable on I = [z, b] and if F is an indefinite
LDG-integral of f on I, then F—F(a) serves as both a LPG-major and minor
function for £ on I and hence f is LPG-integrable with F as an indefinite integral.
Conversely, if fis LPG-integrable on I with F as an indefinite integral, then by the
remark preceding the lemma and the lemma itself, one concludes that S is
LDG-integrable.

3. Examples and remarks. For functions defined on a fixed finite closed interval I,
let us denote

Co = {F: F is continuous (in I)},
AC, = {F: F is approximately continuous},
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C, = {F: Fis an exact nth Peano derivative},
AC, = {F: F isan exact nth approximate Peano derivative},

where n = 1,2, 3, ... Then it is trivial that each of these classes is a linear space
(and hence an upper semi-linear space). Furthermore, each is contained in the
class uCM since it is known that every function in any of the above classes has the
Darboux property (cf. [15] for approximately continuous functions, [9] for Peano
derivatives and [1] for approximate Peano derivatives). Hence, taking the upper
semi-linear space ul considered in the previous section to be C,;, AC,, respectively,
and noting that in this situation, uL. = L, one obtains C,PG-, C,DG-, AC,PG-
and AC,DG-integrals for n =0,1,2, ...

The C,DG-integral is just the Denjoy integralin the wide sense, or the so-called
Denjoy-Kintchine integral (see Saks [11]). Similar to the Hake—Alexandroff-Looman
Theorem, Theorem 2 asserts that the C, DG-integral is equivalent to the CyPG-in~
tegral of Perron type. Note that Ridder has also defined an integral of Perron type
which is equivalent to the Denjoy—Kintchine integral. But his definition is not the
same as that given here for the C,PG-integral (cf. Jeffery [6]).

Ellis in [5] has defined inductively a GM,-integral of Denjoy type for
n=1,2,3,.. His definition for the GM,-integral is based on the concept of
M,-continuity defined by using GM,,_,-integral. Note that it can be proved (cf.
Sargent [11]) that a function is M,-continuous in a whole closed interval if and only
if it is C,-continuous (in Burkill’s sense [4]) in the interval. Hence a function
M,-continuous in a-whole closed interval is just an exact nth Peano derivative
(cf. [8], [2]). It then follows that Elli’ GM,-integral is equivalent to the
C,DG-integral defined here, and hence is equivalent to the C,PG-integral by
Theorem 2, noting that the class C, can be proved to be closed under uniform con-
vergences. )

Kubota [7] has defined an integral of Perron type and proved that his integral
is equivalent to the GM);-integral defined by Ellis. Note, however, that the non-
trivial part, similar to the establishment of (4) in the proof of the lemma in the
previous section, has been neglected in his proof. A similar neglection has appeared
in the interesting paper [13] for the equivalence of the C,P-integral of Burkill and
the C,D-integral of Sargent (see [14] for a complete proof). The proof of the lemma
in the previous section is a slight modification of that given in [6], where the equiv-
alence of Denjoy-Kintchine integral and Ridder’s generalized Perron integral was
given in detail.

1t is clear that the AC,PG-integral is an “approximate” extension of the C,PG-
(or GM,- or C,DG-) integral, and hence is also such an .extension of Burkill’s

. C,P-integral. However, the AC,PG- and AC,,,PG-integral are incompatible.

Examples for this can be obtained by a slight modification of examples given in [8],
where another “approximate” extension of the C,P-integral was considered.
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Metric criteria for Banach and Fuclidean spaces
by

L. D. Loveland and J. E. Valentine * (Logan, Utah)

Abstract. Let M be a complete, convex, externally convex, metric space. It is known that M is
a Banach space if and only if M satisfies the Quadrilateral Midpoint Postulate. In this paper Banach
spaces with unique metric lines are characterized by somewhat weaker four-point properties. These
weaker versions are analogues of the Weak, Feeble, and Queasy Euclidean Four-point Properties
used by Blumenthal and Day to characterize Euclidean spaces. In addition localized versions of the
Euclidean and Banach four-point properties are used to characterize inner-product spaces.

1. Introduction. Andalafte and Blumenthal [1] characterized the class of real
Banach spaces among the class of complete, convex, externally convex metric spaces
which have the two-triple property by means of a specified relation between the seg-
ment joining the two midpoints of two sides of a triangle and the base of that triangle.
More specificially Andalafte and Blumenthal said that a metric space satisfies the
Young Postulate provided for each three of its points p, g, and r, if g’ and r' are the
respective midpoints of p and ¢ and p and r, then g'r" = gr/2. They showed that
a complete, convex, externally convex metric space with the two-triple property
is a real Banach space if and only if it satisfies the Young Postulate. Valentine and -
‘Wayment [8] said that a metric space satisfies the Quadrilateral Midpoint Postulate
provided for each four points p, g, ¥, and s of the space, no three of which are collinear,
if m;, m,, ms, and m, are the midpoints of p and ¢, gand r, 7 and s, and s and p,
respectively, then mym, = mym, and myms = m;my. They showed a complete,
convex, externally convex metric space with the two-triple property satisfies the
Quadrilateral Midpoint Postulate if and only if it satisfies the Young Postulate,
and thus obtained a characterization of real Banach spaces.

The Quadrilateral Midpoint Postulate is analogous to the characterization
of Hilbert space by the parallelogram law [7]. It is'also analogous to the Euclidean
Four-point Property which assumes each quadruple of points of a space is congruent
to a quadruple of points of Euclidean space. The Euclidean Four-point Property
was introduced by Wilson [9] who showed that a complete, convex, externally
convex metric space has the Euclidean Four-point Property if and only if is congru-
ent to 2 Buclidean space (possibly infinite dimensional). Since the Quadrilateral
Midpoint Postulate effects a characterization of Banach spaces (see Theorem 2.1

* Currently University of Texas at San Antonio.
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