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Metric criteria for Banach and Fuclidean spaces
by

L. D. Loveland and J. E. Valentine * (Logan, Utah)

Abstract. Let M be a complete, convex, externally convex, metric space. It is known that M is
a Banach space if and only if M satisfies the Quadrilateral Midpoint Postulate. In this paper Banach
spaces with unique metric lines are characterized by somewhat weaker four-point properties. These
weaker versions are analogues of the Weak, Feeble, and Queasy Euclidean Four-point Properties
used by Blumenthal and Day to characterize Euclidean spaces. In addition localized versions of the
Euclidean and Banach four-point properties are used to characterize inner-product spaces.

1. Introduction. Andalafte and Blumenthal [1] characterized the class of real
Banach spaces among the class of complete, convex, externally convex metric spaces
which have the two-triple property by means of a specified relation between the seg-
ment joining the two midpoints of two sides of a triangle and the base of that triangle.
More specificially Andalafte and Blumenthal said that a metric space satisfies the
Young Postulate provided for each three of its points p, g, and r, if g’ and r' are the
respective midpoints of p and ¢ and p and r, then g'r" = gr/2. They showed that
a complete, convex, externally convex metric space with the two-triple property
is a real Banach space if and only if it satisfies the Young Postulate. Valentine and -
‘Wayment [8] said that a metric space satisfies the Quadrilateral Midpoint Postulate
provided for each four points p, g, ¥, and s of the space, no three of which are collinear,
if m;, m,, ms, and m, are the midpoints of p and ¢, gand r, 7 and s, and s and p,
respectively, then mym, = mym, and myms = m;my. They showed a complete,
convex, externally convex metric space with the two-triple property satisfies the
Quadrilateral Midpoint Postulate if and only if it satisfies the Young Postulate,
and thus obtained a characterization of real Banach spaces.

The Quadrilateral Midpoint Postulate is analogous to the characterization
of Hilbert space by the parallelogram law [7]. It is'also analogous to the Euclidean
Four-point Property which assumes each quadruple of points of a space is congruent
to a quadruple of points of Euclidean space. The Euclidean Four-point Property
was introduced by Wilson [9] who showed that a complete, convex, externally
convex metric space has the Euclidean Four-point Property if and only if is congru-
ent to 2 Buclidean space (possibly infinite dimensional). Since the Quadrilateral
Midpoint Postulate effects a characterization of Banach spaces (see Theorem 2.1
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and [8]) it is more appropriate to call it the Banach Four-point Property as we do
here. The condition that no three of {p, g, r, s} be collinear is superfluous and
will not be considered a part of the definition of the Banach Four-point Property.
Blumenthal [3] characterized Euclidean space with the Euclidean Weak Four-
point Property (each quadruple which contains a linear triple is congruent to a qua-
druple in Euclidean space), and he [4] further showed that one need only consider
quadruples containing a triple of which one is a midpoint of the other two (the
Euclidean Feeble Four-point Property). A metric space has the Euclidean Queasy
Four-Point Property provided for each pair of distinct points ¢ and s, there
"is a point r between g and s such that for each point p of the space the quadruple
{p, q, r, s} is congruent to a quadruple of points of Euclidean space. Day [5] showed
this property also characterizes Euclidean space among the class of complete, convex,
externally convex metric spaces. In Section 2 we define the Banach Weak, Feeble,
and Queasy Four-point properties and show they characterize rotund Banach, spaces
over the reals among the class of complete, convex, externally convex metric spaces.
Since the time of Blumenthal’s characterizations of Euclidean space by means

of the Euclidean Weak and Fezble Four-point Properties, much work has been done

toward reducing the types of quadruples in a space that need be congruently -

embedable in FEuclidean space to obtain the characterization. For example,
Valentine and Wayment [9] have shown that the Buclidean Weak, Feeble, or
Queasy Four-point Properties need only be vaid in a small neighborhood of each
point. In Section 3 we investigate slightly different local versions of these properties,
where we require that only those quadruples containing a given fixed point of the
space be congruently embeddable in Euclidean space. In this situation we say -that
a particular four-point property is possessed by the space “at the point p”,
Theorem 3.3 states that a reasonable space with the Euclidean Feeble Four-point
Property at a point p must be an inner-product space. The various Banach Four-
point Properties at a point p can be used to characterize inner-product spaces pro-
vided there is also a neighborhood of p in which one of the Euclidean Four-point
Properties is valid (see Theorems 3.1 and 3.2 for clarification). "

Throughout the paper M will denote a complete, convex, externally convex metric
space. o

2. The Banach Four-point Properties. In this section we formally define the Banach
Weak, Feeble, and Queasy Four-point Properties and show that a complete, convex,
externally convex metric space is a rotund Banach space over the reals if and only
if it possesses one of the Banach Four-point Properties. We consider a Banach space
to be rotund provided it has a unique metric line through each pair of its distinct
points. Other critesia for a Banach space to be rotund are given in [2]. We first show
the Young Postulate implies unique metric lines, and consequently it implies the
two-triple property (see [3, Theorem 21.3, p. 57]). This fact was apparently over-
looked by Andalafte and Blumenthal [1] and Valentine and Wayment [8], since they
postulated unique lines.
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TueoREM 2.1. If M satisfies the Young Postulate, then each pair of distinct points
lies on a unique metric line.

Proof. It is well known that each pair of distinct points of M lie on at least one
metric line. If M contains distinct points x and y which lie on at least two lines, then
there are at least two metric segments with endpoints x and y; or there is a unique
segment with endpoints x and y and this segment admits two prolor.lga.ttions. Suppose x
and y endopoints of two segments. Since points x’ and y' and distinct subseg}nents
can be found which have only the endopoints x’ and y' in common, we assume w1th‘out
loss of generality that the distinct segments with endpoints x and y hth? only the po'mts
x and y in common. Since M is externally convex the segments adxmt.prolon.gatl?n.
Pick p, ¢, » and m such that m is a midpoint of p and q and m is a midpoint
of pand rbut g # r. Then 0 = mm # gr/2 50 M does not satisfy the Young Postulate.

If x and y are endpoints of a unique segment which can be prolonged th:m'lgh X,
say, in two ways, then it is possible to pick p, ¢, r and m as above and obtain the
same contradiction. The theorem follows.

DEFINITION 2.1. The space M has the Banach Weak Four-point Pr?perty pro-
vided for each quadruple {p, g, r, s} of distinct points containing a hnee}r tr{ple
{g,r,s} with r between g and s, it my, my, ms and m, are respective midpoints
of pand g, g and r, r and s, and s and p, then mym, = mzm, and m m, = myms.

DermTIoN 2.2. The space M has the Banach Feeble F.our-poz'flt Property
provided for each quadruple {p, ¢, r, s} of distinct points contaimvng a t}'lple‘{q, r, S}
with 7 a midpoint of ¢ and s, if m,, m,, my and m, are respective midpoints of p
and ¢, ¢ and r, r and s, and 5 and p, then mym, = msmy and m,m, = myms.

DerNITION 2.3. The space M has the Banqch Queasy .Faur-point Property
provided for each pair {g, s} of its distinct points there is a point r between ¢ ant‘1 s
such that for each point p of the space, if my, my, M3, and m, are the respecth;
midpoints of p and ¢, g and 1, 7 and s, and s and p, then mym, = mym, an

my, = myms.

" ft is clzear3 that if M has the Banach Weak Four-point Property, then M has
the Banach Feeble Four-point Property; and if M has t}:.me Banach Feeble Four-
pbint Property, then M has the Banach Queasy Four-point Propert}}i. llx\dor_eozf;;
every rotund Banach space over the reals possesses all the Banac‘ I4))ur prtieS
Properties. Thus in order to show that each of thesEa Banach Four-point IOJI\);'
characterizes rotund Banach spaces over the reals it suffices to show that is az
rotund Banach space over the reals if A/ has the Banach Queasy II:our—po%nt
Property. We accomplish this by shovsfing that the Banach Queasy Four-poin
Property implies the Young Postulate in M. . ‘

TuroREM 2.2. If M has the Banach Queasy Four-point Property, then M satisfies

‘ late. o

e i?(l)nff.]’ Ili:::uﬁ, tq and s be any three points of M and let ¢’ and s }.)etn;ipc;ﬁ;s
of pand ¢ and p and s, respectively. By tl_le Panac}fl Queasy Four—go;nmidopomt;
there is a point r between g and s such that if # and 7’/ are the respectiv D
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of r and ¢ and r and s, then ¢'s" = #'#”. But since gr' = gr/2, sr'" = rs/2 and
gr+rs = gs, we have ¢'s’ = gs/2. Thus M satisfies the Young Postulate.

Theorem 2.3 follows from Theorem 2.2, Theorem 2.1, and [1].

THEOREM 2.3. A space M is a rotund Banach space over the reals if and only if
it has the Banach Weak, Feeble, or Queasy Four-point Property.

‘When examining a space for the Banach Four-point Property one may fix
a point p rather than checking all possible quadruples, as the following definition
and theorem indicate.

DEFINITION 2.4, The space M has the Banach Four-point Property at p provided
for each three distinct points g, 7 and s of M—{p} if m,, m,, m; and m,, are respect-
ive midpoints of p and g, g and r, r and s, and s and p, then m,;m, = mym, and
mymy = myms. ‘

THEOREM 2.4, A space M is a rotund Banach space over the reals if and only
if M contains a point p such that M has Banach Four-point Property at p.

Proof. As in the previous proof, we show this property implies the Young
Postulate. Let g, r and s be noncollinear points of M, and, as in Definition 2.4.
If p ¢ {q,r, s}, let my, m,, my and m, be the respective midpoints of p and ¢, gand r,
r and 5, and s and p. We must show m,ms = gs/2. By the Banach Four-point Prop-
erty at p, -

(05} mymy, = Mymy .

Let ¢ be a midpoint of ¢ and s, and let mj and mj be the respective midpoints
of gand 7 and ¢ and 5. The Banach Four-point Property at p applied to the quadruple
1ps 4, t, 5} yields mym, = mym} = gs/2. This together with (1) shows m,m; = gs/2.

If pe {q,r, s}, then it may be necessary to re-label the points but the previous
paragraph still applies to complete the proof.

Analogous to the Banach Four-point Property at p are the Banach Weak,
Queasy, and Feeble Four-point Properties at p. We formally state only the Banach
Weak Four-point Property at a point, leaving the other two definitions to the reader.

DEFNITION 2.5. The space M has the Banach Weak Four-point Property at p
provided for each quadruple {g,r,s, #} of distinct points of M containing p and
containing a linear triple {r, s, £} with s between r and ¢, if m,, m,, m, and m, are
respective midpoints of g and r, r and s, 5 and ¢, and ¢ and g, then my m, = ‘mg my
and mym, = myms.

Whether or not Theorem 2.4 remains valid when the Banach Four-point Prop-
erty at p is replaced by the Banach Weak, Feeble, or Queasy Four-point Property
at p is an open question.

3. Characterizations of Euclidean spaces. None of the neighborhood versions
of the Euclidean Weak, Feeble, or Queasy Four-point Properties at a single point
imply that M is an inner-product space — Example 3.2 presented below illustrates
this. However when one of these local properties is combined with one of the Banach
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Weak, Feeble, or Queasy Four-point Properties at the same point an inner-product
space results, To demonstrate this fact we first need some definitions.

DErFNITION 3.1. The space M satisfies the Young Postulate at a point p provided,
for each pzir of points ¢ and r of M, if ¢’ and ' are the midpoints of p and ¢ and p
and r, respectively, then ¢'t" = gr/2.

TrEOREM 3.1, If' M has the Banach Weak, Feeble, or Queasy Four-point Property
at p, then M satisfies the Young Postulate at p.

The proof of Theorem 3.1 is an easy exercise. Example 3.1, due to Blumenthal,
shows the converse is false, This example also shows that the Young Postulate at
a point does not characterize real Banach spaces among the class of complete, con-
vex, externally convex metric spaces. ’

ExaMpLE 3.1, Let T be the convex, externally convex tripod; that is, T’ is the
union of three metric rays R(p, 9), R(p, r) and R(p, 5) whose pairwise intersections
are each {p} and whose pairwise unions are metric lines. With the preceeding no-
tation, it is easily seen that the tripod T satisfies the Young Postulate at p. However
if we choose a triple {g, r, s} in T such that pg = pr = ps and if we let my, m,, ms,
and m, be the respective midpoints of p and g, g and r, r and s, and 5 and p, then
we see that m, = m, = p and 0 = mym; # mymy. Consequently T does not have
the Banach Weak, Feeble_, or Queasy Four-point Properties at p.

DERNITION 3.2. The space M has the Local Buclidean Weak Four-point Proper"ty
at a point p if there is a neighborhood of p in which the Euf:lidean Weak lf‘our-p.omt
Property is valid (note that p need not be one of the four points under consideration).
The other four-point properties are similarly localized.

TuporeM 3.2. If M has the Local Euclidean Weak, Feeble, or Queasy Four-
poirit Property at a point p of M, and if M satisfies the Young Postulate at the same
point p, then M is an inner-product space. ‘

Proof. It is known [4] that M is an inner-product space itM satisﬁeg th? Eucli-
dean Feeble Four-point Property; thus we proceed to show that M has this ‘latter
property. We illustrate the proof with the hypothes'is that M haithe Local Euclidean
Feeble Four-point Property at p, leaving the sim11a1" “Que_:asy case to the reatf{cr.
Suppose the Euclidean Feeble Four-point Property 1s .vahd in t.he sphere S(pzls),
and let {g, r, s, t} be any quadruple of points of M with s a 1'md,po1nt 'of r and z.
If k = max{pg, pr, ps, pt}, choose n such that 2">k/e. Let ¢, r', &', ¢ be points
of M such that px' = px/2" and x' is between p and x, where x € {g,r, s, t}. Then
{¢', ¥, &', }=S(p; &) and from n applications of th.e Ym‘mg .Postula’lce a(t1 p we
have x'y’ = xy[2" where {x, y}={d,7,5; t}. Now & isa mldp.blnt.of r-and t, so
the Euclidean plane E? contains a quadruple v.of p‘ou}ts which is congru;x:t to
{¢', ', &', ¢'}. Multiplying all the distances of this Euclidean quadruple by :r I\I{e
obtain a quadruple in E? which is congruent to the quadruple {g,r, s, t}.. This

completes the proof.
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The question arises as to whether the Local Euclidean Weak, Feeble, or Queasy
Four-point Property at a single point is strong enough by itself to effect a charac-
terization. The following example due to Freese [6] shows the answer is negative.

ExampLE 3.2. The point set involved in the example by Freese is the union

" of the closed Euclidean half-plane P and the interior C' of a Euclidean half-circle
(as a model of the hyperbolic half-plane) including the open diameter of C, with
the diameter of C and the boundary of P identified under an isometry I". The distance
between pairs of points is Buclidean or hyperbolic if both points lie in the Euclidean
or hyperbolic portion, respectively. The distance between a pair of points, one of
which is in the Euclidean portion and one of which is in the hyperbolic portion
is defined as follows. If p is in the hyperbolic part of the space and ¢ is in the Euclidean
part, the segment joining p and g is the union of the hyperbolic segment [p, x] and
the Euclidean segment [I'(x), g] where x is the unique point of the diameter of C such
that the angles that [p, x] and [I"(x), g] make with the diameter of C and the bound-
ary of P, respectively, are supplementary. The distance pg is now defined as
px+1I'(x)g. Clearly each point in the interior of the Euclidean half-plane has a neigh-
borhood which has the Local Euclidean Feeble Four-point Property, yet the space
is not an inner-product space.

In spite of the above example, the Euclidean Feeble (and “Weak” and “Queasy™)
Four-point Property at a point together with the local version of this property at
the same point do characterize inner-product spaces among the class of complete,
convex, externally convex metric spaces.

THEOREM 3.3. If M has the Euclidean Feeble Four-point Property at p and if M has
the Local Euclidean Feeble Four-point Property at p, then M is an inner-product space.

Proof. By hypothesis M has the Local Euclidean Feeble Four-point Property
at p, so by Theorem 3.2 it suffices to show M satisfies the Young Postulate at p.
Let g and r be points of M, and let ¢’ and #' be the respective midpoints of p and ¢
and p and r. By the Buclidean Feeble Four-point Property at p, the quadruples
{p.4’,q,r} and {p, ¢', r, r'} are congruent with quadruples of the Euclidean plane.
Thus the Euclidean cosine law for the cosine of the angle with vertex p and sides the
segments S(p, ¢) and S(p, r) yields the same result when evaluated with the triples
{p,q',7} and {p, ¢, r'}. Thus,

[(pg* D) +(pr* /)= q' T (pg-pri2)] = [pg*+(pr*49)~ qr'*)(pg-pr) .
Solving the above equation for ¢'r'?, we obtain
@ = R ).
Similarly using the quadruple {p, g, r, '}, applying the law of cosines as above

for the angle with vertex r and sides S(g, r} and S(p, ), and solving the resulting
equation for qr?/4, we have »
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3) qr*[4 = (~ap*[)+(pr*8)+qr'*f2).

It follows from (2) and (3) that ¢'r = qr(2, and the result follows.
It would be interesting to know if Theorem 3.3 remains true when the hypothesis
that M has the Local Euclidean Feeble Four-point Property at p is removed.,
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