

P. Flor

Literatur

- D. L. Armacost, Mapping properties of characters of LCA groups, Fund. Math. 76 (1972), pp. 1-7.
- [2] L. Robertson, Connectivity, divisibility, and torsion, Trans. Amer. Math. Soc. 128 (1967), pp. 482-505.

Accepté par la Rédaction le 27, 4, 1976

On the category of commutative connected graded Hopf algebras over a perfect field

by

D. Simson and A. Skowroński (Toruń)

Abstract. Let $\mathcal{I}C$ be the category of all commutative, cocommutative, connected, graded Hopf algebras over a given perfect field k of finite characteristic p. By [13] $\mathcal{I}C$ is a locally noetherian Grothendieck category of global dimension two. Using functor category methods [10], we prove that

- (a) IC is semiperfect, i.e. each of its noetherian objects has a projective cover.
- (b) The endomorphism ring of any noetherian object in $\mathcal X$ is a module of finite length over the ring of infinite Witt p-vectors over k.
- (c) Any flat object in $\mathcal X$ is a directed union of countably generated pure flat subobjects and has the projective dimension at most 1.
- (d) Every primitively generated Hopf algebra from $\mathcal K$ is a coproduct of Hopf algebras of the form $k[x]/(x^{p^i})$.

We describe local noetherian objects in IC.

Introduction. Let k be a perfect field of finite characteristic p and let \mathscr{H} denote the category of all commutative, cocommutative, connected, graded Hopf k-algebras. In [13] Schoeller showed that $\mathscr{H} = \mathscr{H}^- \times \mathscr{H}^+$, where \mathscr{H}^- is the full subcategory of \mathscr{H} consisting of Hopf algebras generated by elements of odd degrees and \mathscr{H}^+ consists of all Hopf algebras which are zero in odd degrees. Furthermore, gl. dim $\mathscr{H}^- = 0$ and \mathscr{H}^+ is a product of a countable number of copies of a full subcategory \mathscr{H}_1 of \mathscr{H}^+ consisting of all Hopf algebras generated by elements of degrees $2p^i$ where $i=0,1,\ldots$ Moreover, \mathscr{H}_1 has enough noetherian projective objects and therefore $\mathscr{H}_1 = \mathscr{P}^{op}$ -Mod, where \mathscr{P} consists of all indecomposable noetherian projective objects in \mathscr{H}_1 . Then we can apply to the study of \mathscr{H} functor category methods [10].

Section 1 contains the basic results on semiperfect functor categories needed in the paper. In Section 2 we recall some fundamental facts concerning the category \mathcal{H} . In Section 3 we define a useful W(k)-category structure on \mathcal{H}_1 and on \mathcal{P} -Mod, where W(k) is the ring of infinite Witt p-vectors. Using this fact, we show that $\operatorname{Hom}_{\mathcal{H}_1}(N,N')$ is a W(k)-module of finite length for any noetherian objects N and N' in \mathcal{H}_1 . It is also proved that the category \mathcal{P} -Mod is locally noetherian of global dimension two and the set of one-sided ideals in \mathcal{P} is countable.

Section 4 contains a generalization of the results in [14] and [16] concerning the projective dimension of flat objects in a functor category. As a consequence, we infer that the projective dimension of any flat object in \mathcal{H}_1 as well as of any flat \mathscr{D} -module is at most 1. In Section 5 we study primitively generated Hopf algebras from \mathscr{H} . Our main result asserts that every such Hopf algebra is a coproduct of Hopf algebras of the form $k[x]/(x^{p^i})$, which is a generalization of well-known Milnor-Moore result in [9]. In the last section a complete description of all local noetherian objects in \mathscr{H}_1 is given.

Throughout the paper k is a perfect field of finite characteristic $p \ge 2$ and R denotes a commutative ring with an identity element. If $\mathscr A$ is a locally finitely presented Grothendieck category, we denote by $\operatorname{fp}(\mathscr A)$ (resp. $\operatorname{fg}(\mathscr A)$) its full subcategory consisting of all finitely presented (resp. finitely generated) objects.

§ 1. Semiperfect functor categories. Let $\mathscr C$ be a skeletally small additive category (not necessarily with coproducts). A $\mathscr C$ -module is a covariant additive functor from $\mathscr C$ to the category of abelian groups. The category $\mathscr C$ -Mod of all $\mathscr C$ -modules is a Grothendieck category and $\mathscr C$ -modules of the form

$$h^X = \operatorname{Hom}_{\mathscr{C}}(X, -), \quad X \in \mathscr{C},$$

form a set of finitely presented projective generators of C-Mod.

A $\mathscr C$ -module is free if it is isomorphic with a coproduct of modules h^X . A left ideal in $\mathscr C$ is a $\mathscr C$ -submodule of an h^X , $X \in \mathscr C$; a right ideal in $\mathscr C$ is a submodule of an $\mathscr C^{\mathrm{op}}$ -module $h_X = \mathrm{Hom}_{\mathscr C}(-,X)$, $X \in \mathscr C$. A two-sided ideal in $\mathscr C$ is a subfunctor of the functor

$$\operatorname{Hom}_{\mathscr{C}} \colon \mathscr{C}^{\operatorname{op}} \times \mathscr{C} {\rightarrow} \mathscr{A} b$$
.

If I is a two-sided ideal in $\mathscr C$, then we define the quotient category $\mathscr C/I$, which has the same objects as $\mathscr C$ and

$$\operatorname{Hom}_{\mathscr{C}/I}(X, Y) = \operatorname{Hom}_{\mathscr{C}}(X, Y)/I(X, Y).$$

The $Jacobson\,radical$ of an additive category $\mathscr C$ is a two-sided ideal $J(\mathscr C)$ defined by

$$J(\mathscr{C})(A,B) = \{ f \in \operatorname{Hom}_{\mathscr{C}}(A,B), 1_A - gf \text{ has a two-sided inverse for every } g \}$$

(see [10]). It is not difficult to check that $J(\mathcal{C}/J(\mathcal{C})) = 0$ and that $J(\mathcal{C})(X, X)$ is the Jacobson radical of the endomorphism ring

$$\operatorname{End}_{\mathscr{G}}(X) = \operatorname{Hom}_{\mathscr{G}}(X, X)$$

for every object X from \mathscr{C} . Moreover, the following simple lemma holds:

Lemma 1.1. If X and Y have local endomorphism rings, then $J(\mathscr{C})(X, Y)$ is a group of all non-isomorphisms from X to Y.

A small additive category $\mathscr C$ is semi-simple if each $\mathscr C$ -module h^X , $X \in \mathscr C$, is a coproduct of simple left ideals. $\mathscr C$ is regular in the sense of von Neumann if for each of its morphisms f there exists a g such that f = fgf.

A Grothendieck category is *semiperfect* (resp. *F-semiperfect*) if each of its finitely generated (resp. finitely presented) objects has a projective cover (see [1], [8], [16] and [23]).

Recall that an object is called *local* if it has a unique maximal proper subobject [22].

For a functor category we have the following results:

THEOREM 1.2. Let C be a skeletally small additive category. The following conditions are equivalent:

- (a) C-Mod is semiperfect.
- (b) Every simple C-module has a projective cover.
- (c) $\mathscr{C}/J(\mathscr{C})$ is semi-simple and idempotents can be lifted modulo $J(\mathscr{C})$.
- (d) Every finitely generated projective (free) C-module has a semiperfect endomorphism ring.
- (e) Any \mathscr{C} -module h^X , $X \in \mathscr{C}$, is a finite coproduct of local left ideals generated by idempotents.
- (f) Any projective C-module P is a coproduct of local left ideals generated by idempotents.
 - (a'), (b'), (d'), (e'), (f') for Cop-Mod and right ideals.

Proof. The equivalences (a) \leftrightarrow (c) \leftrightarrow (d) are proved in [16], Theorem 5.6 and (a) \leftrightarrow (e) may be proved as in Theorem 2.1 in [18]. Since (f) \rightarrow (e) is trivial and since (c) is left-right symmetric, it remains to show that (e) implies (f).

Assume (e) and let P be a projective \mathscr{C} -module. Then there exists a Q such that $P \oplus Q = \bigoplus_{i \in I} L_i$, where L_i are local left ideals generated by idempotents.

By (d) the endomorphism ring of any L_i is semiperfect and hence it is local because L_i is indecomposable. Then (f) is a consequence of the following theorem:

THEOREM 1.3. Suppose that M is an object of a Grothendieck category which is a coproduct of countably generated objects M_i , $i \in I$, each with a local endomorphism ring. Then

- (a) any two such decompositions are isomorphic.
- (b) a direct summand of M is again a coproduct of subobjects, each isomorphic to one of the original summands M_i .

Proof. See [4], Th. 4.2, [12], Th. 1.3, [19], Th. 1 and [20], Th. 7.

COROLLARY 1.4. If C-Mod is semiperfect, then any projective C-module is a coproduct of local left ideals generated by idempotents and any two such decompositions are isomorphic.

Generally, we can prove the following:

THEOREM 1.5. If C-Mod is F-semiperfect, then any projective C-module is a coproduct of left ideals generated by idempotents.

Proof. In view of Theorem 5.6 in [16] the theorem may be proved as Theorem 3 in [21].

An object M in a Grothendieck category is hollow if the equality M = X + Y implies either X = M or Y = M (see [6]). It is clear that any local noetherian object is hollow. If M is noetherian and hollow, then M is also local. In fact, the family of all proper subobjects of M has a maximal element which is a unique maximal subobject of M.

Lemma 1.6. Let P be a projective finitely generated object of a semiperfect category \mathcal{A} . Then the following conditions are equivalent:

- (a) P is indecomposable;
- (b) P is hollow;
- (c) P is a projective cover of a hollow object.

Proof. First we remark that if $f: M \rightarrow N$ is an essential epimorphism, then M is hollow if and only if N is hollow. So $(b) \leftrightarrow (c)$. Since $(b) \rightarrow (a)$ is trivial, it remains to prove $(a) \rightarrow (b)$.

Suppose that $P=M_1+M_2$, where M_1 , M_2 are proper subobjects of P. Then the natural morphism $v\colon P\to P/M_1\oplus P/M_2$ is an epimorphism. The non-zero objects P/M_1 , P/M_2 are finitely generated; let $r_1\colon p'\to P/M_1$, $r_2\colon P''\to P/M_2$ be their projective covers. Then $P'\oplus P''\xrightarrow{r_1\oplus r_2} P/M_1\oplus P/M_2$ is also the projective cover and hence there exists an epimorphism $P\to P'\oplus P''$. But this is impossible because P is indecomposable.

§ 2. Preliminary results on graded Hopf algebras. Recall that \mathscr{H} is a locally noetherian Grothendieck category and $H \in \mathscr{H}$ is a noetherian object if H is finitely generated as a k-algebra (see [9] and [13]). Denote by \mathscr{N} the full subcategory of \mathscr{H} consisting of all noetherian objects.

Throughout this paper we assume that k is a perfect field of characteristic $p \ge 2$. Let $k[X] = k[X_0, X_1, ..., X_n, ...]$ be the polynomial algebra on variables X_n , $n \in \mathbb{N}$, with $\deg X_n = 2p^n$ and the comultiplication given by

Next denote by ${}^{n}P$ the Hopf subalgebra of $k[\underline{X}]$ generated by $X_{0}, ..., X_{n}$ and consider the Hopf algebra map

$$j_{mn}: {}^{n}P \rightarrow {}^{m}P$$

defined as follows: If $m \ge n$, then j_{mn} is the natural injection, and if m < n, we put

$$j_{mn}(X_r) = \begin{cases} 0 & \text{for } r < n-m, \\ X_{r-n+m}^{p^{n-m}} & \text{for } r \geqslant n-m. \end{cases}$$

Finally, let ${}^nS = k[X]/(X^p)$, where $\deg X = 2p^n$ and $\Delta(X) = 1 \otimes X + X \otimes 1$.

By W(k) we denote the ring of infinite Witt p-vectors over k and by $W_n(k)$ we denote the ring of Witt p-vectors of length n (see [5], [7] and [24]).

We recall that W(k) is a discrete valuation ring with the unique maximal ideal (p), $W(k)/(p) \approx k$ and $W_n(k) \cong W(k)/(p^n)$.

It follows from [13] that

- (H1) $\operatorname{gl.dim} \mathcal{H} = \operatorname{gl.dim} \mathcal{H}_1 = 2$.
- (H2) ${}^{1}S$, ${}^{2}S$, ${}^{3}S$, ... is a complete list of simple objects in \mathscr{H}_{1} , ${}^{n}P$ is a projective cover of ${}^{n}S$, and ${}^{1}P$, ${}^{2}P$, ${}^{3}P$, ... is a family of generators of \mathscr{H}_{1} .
 - (H3) End $k[X] \cong W(k)$ and End $P \cong W_{n+1}(k)$.

It follows from (H2) that there is an equivalence $\mathcal{H}_1 \approx \mathcal{P}^{op}$ -Mod, where \mathcal{P} is the full subcategory of \mathcal{H}_1 consisting of all "P (see [13] p. 152). Henceforth we identify \mathcal{H}_1 and \mathcal{P}^{op} -Mod.

In view of (H3) the results from Section 1 yield

COROLLARY 2.1. (a) \mathcal{H}_1 is a semiperfect locally noetherian category.

- (b) Any indecomposable projective object of \mathcal{H}_1 is isomorphic with a certain nP .
- (c) Any projective object in \mathcal{H}_1 is a coproduct of indecomposable ones and any two such decompositions are isomorphic.

As an immediate consequence of Lemma 1.1 we get

COROLLARY 2.2.

$$J(\mathcal{P})({}^{n}P, {}^{m}P) = \begin{cases} \operatorname{Hom}_{\mathcal{P}}({}^{n}P, {}^{m}P) & \text{for } n \neq m, \\ pW_{n+1}(k) & \text{for } n = m. \end{cases}$$

Remark. The statement (d) of the theorem on page 140 in [13] is false. In fact, by (H3) k[X] is indecomposable, and in view of Corollary 2.1 it is not projective.

§ 3. On \mathscr{P} -Mod and \mathscr{P}^{op} -Mod. We now make some observations on the categories \mathscr{P} -Mod and \mathscr{P}^{op} -Mod. We start with some general facts.

Let R be a commutative ring. Recall that an additive category $\mathscr E$ is an R-category if $\operatorname{Hom}_{\mathscr E}(X,Y)$ is an R-module for any $X,Y\in\mathscr E$ in such a way that the morphism composition is R-bilinear (see [2] and [10]). A functor $T\colon\mathscr E\to\mathscr E'$ between R-categories is an R-functor if the natural morphism $\operatorname{Hom}_{\mathscr E}(X,Y)\to\operatorname{Hom}_{\mathscr E'}(TX,TY)$ given by $f\mapsto T(f)$ is a homomorphism of R-modules for each $X,Y\in\mathscr E$. If $\mathscr E$ is an R-category and F is a $\mathscr E$ -module, then F(X) is, in a natural way, an R-module for any $X\in\mathscr E$. Moreover, if $f\colon X\to X'$ is a morphism in $\mathscr E$, then F(f) is an R-homomorphism. It follows that $\mathscr E$ -Mod is equivalent to the category of all R-functors from $\mathscr E$ to R-Mod (see [2], § 1).

4 - Fundamenta Math. CI

length for any X, $Y \in \mathcal{C}$. An example of a hom-finite R-category is any finite R-variety in the sense of [2]

An example of a hom-finite R-category is any finite R-variety in the sense of [2] where R is an artinian ring.

In what follows we need the following result:

PROPOSITION 3.1. Let R be a commutative ring and let $\mathscr C$ be an R-category. Then there is a unique R-category structure on $\mathscr C$ -Mod such that the Yoneda embedding is an R-functor. Furthermore, if $\mathscr C$ is hom-finite, then so is $\operatorname{fg}(\mathscr C$ -Mod).

The proof is straightforward and it is left to the reader.

The following useful lemma gives us an important example of a W(k)-category.

LEMMA 3.2. \mathcal{P} is a hom-finite W(k)-category such that for any pair n, m Hom_{\mathcal{P}} $(^{n}P, ^{m}P)$ is a cyclic W(k)-module generated by j_{mn} and isomorphic with $W(k)/(p^{s+1})$ where $s=\min(n,m)$.

Proof. Since $\operatorname{Hom}_{\mathscr{P}}({}^{m}P, {}^{m}P)$ is, in a natural way, a right $\operatorname{End}({}^{n}P)$ -module as well as a left $\operatorname{End}({}^{m}P)$ -module and by (H3) $\operatorname{End}({}^{s}P) = W_{s+1}(k)$, in virtue of Proposition on page 151 in [13] a W(k)-module structure on $\operatorname{Hom}_{\mathscr{P}}({}^{n}P, {}^{m}P)$ is given by the formula

$$(3.3) wf = w_m f = fw_n,$$

where $f \in \operatorname{Hom}_{\mathscr{S}}(^{m}P, ^{m}P)$, $w \in W(k)$ and w_{s} denotes the image of w by the natural projection $W(k) \to W_{s+1}(k)$. Using (3.3), it is easy to check that the morphism composition is W(k)-bilinear. Then in view of the proposition on page 151 in [13] the lemma follows.

As an immediate consequence we get

COROLLARY 3.4. The hom-finite W(k)-category structure on $\mathcal P$ defined by (3.3) may be uniquely extended to a W(k)-category structure on $\mathcal H_1=\mathcal P^{\circ p}$ -Mod and on $\mathcal P$ -Mod such that the corresponding Yoneda embeddings are W(k)-functors. Moreover, $fp(\mathcal P$ -Mod) and the full subcategory $\mathcal N_1$ of $\mathcal H_1$ consisting of all noetherian objects in $\mathcal H_1$ are both hom-finite W(k)-categories.

Corollary 3.5. (a) Any indecomposable object in \mathcal{N}_1 has an artinian local endomorphism ring.

- (b) Every object of \mathcal{N}_1 is a finite coproduct of indecomposables and any two such decompositions are isomorphic.
- (c) A pure-projective object in \mathcal{H}_1 is a coproduct of indecomposable noetherian objects.

Proof. Apply the results of Section 1.

We are also able to prove

THEOREM 3.6. The category P-Mod is locally noetherian.

Proof. Fix n and let M be a \mathscr{P} -submodule of h^{np} . It follows that, for any m, $M(^{m}P)$ is a submodule of the cyclic W(k)-module $\operatorname{Hom}_{\mathscr{P}}(^{n}P, ^{m}P)$. Hence $M(^{m}P)$

is also cyclic and is generated by $p^r j_{mn}$ for a certain $r \leq \min(m, n)$. Let r(m) be a such minimal r. Then we have

1°
$$M(^{m}P) = p^{r(m)}W(k)j_{mn}$$

 $2^{\circ} r(m) \geqslant r(s)$ provided $m \leqslant s$.

In fact, if $m \le s$ then the natural injection j_{sm} : ${}^m P \rightarrow {}^s P$ induces a commutative diagram

$$M({}^{m}P) \hookrightarrow \operatorname{Hom}({}^{n}P, {}^{m}P)$$

$$\downarrow M(J_{sm}) \downarrow \qquad \downarrow (J_{sm})_{*}$$

$$M({}^{s}P) \hookrightarrow \operatorname{Hom}({}^{n}P, {}^{s}P)$$

Hence Im $M(j_{sm}) = (p^{r(m)})j_{ns}$ is a W(k)-submodule of $M(^{s}P) = (p^{r(s)})j_{ns}$ and therefore $r(m) \ge r(s)$.

Choose such a $t \ge n$ that r(m) = r(t) for $m \ge t$ (this is possible by 2°) and assume $M = \bigcup_{i \in I} M_i$ with I directed. Then $M(^mP) = \bigcup_{i \in I} M_i(^mP)$ for every m and each $M_i(^mP)$ is a submodule of the W(k)-module $M(^mP)$. Since by 1° $M(^mP)$ is finitely generated, there exists an $i_0 \in I$ such that $M(^mP) = M_{i_0}(^mP)$ for m = 0, ..., t. Now if m > t then the W(k)-bilinearlity of the morphism composition in $\mathscr P$ yields

$$p^{r(m)}j_{mn} = p^{r(t)}j_{mt}j_{tn} = j_{mt}(p^{r(t)}j_{tn}) \in M_{i_0}({}^{m}P)$$

because M_{i_0} is a left ideal in \mathscr{P} and $p^{r(t)}j_{in} \in M({}^tP) = M_{i_0}({}^tP)$. It follows by 1° that $M({}^mP) = M_{i_0}({}^mP)$. Consequently $M = M_{i_0}$ and the proof is finished.

In view of Theorem 3.6 and (H1) we obtain

COROLLARY 3.7.

4*

$$gl.dim \mathscr{P}-Mod = w.gl.dim \mathscr{P}^{op}-Mod = gl.dim \mathscr{H}_1 = 2$$
.

COROLLARY 3.8. The set of one-sided ideals in P is countable.

Proof. By assertions 1° and 2° in the proof of Theorem 3.6 with any left ideal $M \subseteq h^{n_p}$ the sequence $r(1) \geqslant r(2) \geqslant ... \geqslant r(m) \geqslant ...$ of natural numbers is associated; it is in fact finite. This defines an injection of the set of left ideals contained in h^{n_p} into the set of finite sequences of natural numbers. The proof for right ideals is similar.

§ 4. On flat \mathscr{C} -modules. We recall that a \mathscr{C} -module M is flat if $\operatorname{Tor}_{A}^{\mathscr{C}}(X, M) = 0$ for every $\mathscr{C}^{\operatorname{op}}$ -module X. By fl.d(\mathscr{C}) we denote suppd M where M runs through all flat \mathscr{C} -modules [16]. Finally, let \mathfrak{m} be an infinite cardinal number. An R-module is \mathfrak{m} -noetherian if each of its submodules is generated by at most m elements.

The main result of this section is the following

THEOREM 4.1. Let R be a commutative κ_n -noetherian ring, $n \ge 0$, and let $\mathscr C$ be an R-category such that $\operatorname{Hom}_{\mathscr C}(C,C')$ is an κ_n -generated R-module for any $C,C' \in \mathscr C$. If $\mathscr C$ has at most κ_n finitely generated right ideals, then $\operatorname{fl.d}(\mathscr C) \le n+1$.

Observe that the theorem is a generalization of [14] and Corollaries 3.7 and 3.13 in [16].

145

In view of Lemma 2.15 and Theorem 2.12(c) in [16], Theorem 4.1 is a consequence of the following proposition:

D. Simson and A. Skowroński

Proposition 4.2. Let R be a commutative in-noetherian ring where in is an infinite cardinal number. Assume also that \mathscr{C} is an R-category such that $\operatorname{Hom}_{\mathscr{C}}(C,C')$ is m-generated for all C, $C' \in \mathcal{C}$. If \mathcal{C} has at most m finitely generated right ideals. then any flat C-module is an m-directed union of m-presented pure submodules.

To prove the proposition we need some definitions and technical lemmas. Let $F_I = \{F_i, f_{ii}\}_{i,i \in I}$ be a direct system over a directed set I. A set $J \subseteq I$ is called F_{t} -closed if

$$\bigcup_{\substack{k \geqslant j \\ k \in I}} \ker f_{kj} = \bigcup_{\substack{s \geqslant j \\ s \in J}} \ker f_{sj} \quad \text{for any } j \in J.$$

Lemma 4.3. Let F_I be a direct system in a locally finitely presented Grothendieck category. If $J \subseteq I$ is F_r -closed, then the natural morphism $\operatorname{colim} F_r \to \operatorname{colim} F_r$ is injective.

Proof. See Lemma 3.5 in [16].

LEMMA 4.4. Let I be a directed set. If $G_I^{\gamma} = \{G_I^{\gamma}, g_{ij}^{\gamma}\}_{i,j \in I}, \gamma \in A, |A| \leq m$, are direct systems consisting of \mathfrak{m} -noetherian R-modules, then every $J \subseteq I$ with $|J| \leq \mathfrak{m}$ is contained in a directed subset J' of I such that J' is G_I^{γ} -closed for every $\gamma \in \Lambda$.

Proof. By our assumption for every $i \in I$ there exists a subset I_i of I with $|I_i| \le n$ such that

$$\bigcup_{\substack{s \geqslant i \\ s \in I}} \ker g_{si}^{\gamma} = \bigcup_{\substack{k \geqslant i \\ k \nmid I}} \ker g_{ki}^{\gamma} \quad \text{for all } \gamma \in \Lambda.$$

Since the set $L = \bigcup I_j$ has a cardinality at most m, by Lemma 1 in [3] there exists , a directed set $J_1 \subseteq I$ such that $L \subseteq J_1$ and $|J_1| \le m$. Continuing this procedure, we define directed sets $J \subseteq J_1 \subseteq J_2 \subseteq ...$ with $|J_i| \le m$, such that $J' = \bigcup_{i=1}^n J_i$ satisfies the required conditions.

Proof of Proposition 4.2. Let M be a flat \mathscr{C} -module. By Theorem 10.1 in [10] $M = \operatorname{colim} F_I$ for a certain direct system $F_I = \{F_i, f_{ij}\}_{i,l \in I}$ consisting of finitely generated free &-modules. To prove the proposition it is sufficient to show that every subset J of I with $|J| \le \mathfrak{m}$ is contained in a directed set $J' \subseteq I$ with $|J'| \le \mathfrak{m}$ such that the natural map φ : colim $F_I \rightarrow \text{colim } F_I$ is a pure monomorphism.

Since $\otimes_{\mathscr{C}}$: \mathscr{C}^{op} -Mod $\times \mathscr{C}$ -Mod $\to R$ -Mod is an R-functor (see [10], p. 52), by our assumptions $h_X/N \otimes_{\mathscr{C}} F_i \cong F_i(X)/N(X)$ is an \mathfrak{m} -generated R-module for every finitely generated right ideal $N\subseteq h_X$, $X\in\mathscr{C}$. Let $J\subseteq I$, $|J|\leqslant m$. Since \mathscr{C} has at most mfinitely generated right ideals $N \subseteq h_X$, it follows from Lemma 4.4 that there exists a directed set $J' \subseteq I$ containing J such that $|J'| \leqslant \mathfrak{m}$ and J' is $[(h_X/N) \otimes_{\mathscr{C}} F_I]$ -closed for each finitely generated right ideal $N \subseteq h_X$. Then the required result follows from Lemma 4.3 because the natural morphism φ : colim $F_I \rightarrow$ colim F_I is a pure monomorphism if $(h_x/N)\otimes \varphi$ is a monomorphism for any finitely generated right ideal $N \subset h_X, X \in \mathscr{C}$.

COROLLARY 4.5. Every flat object in \mathcal{H}_1 as well as every flat \mathcal{P} -module is an 80-directed union of 80-presented pure flat subobjects.

Proof. In view of Corollary 3.8 the corollary is a consequence of Proposition 4.2.

COROLLARY 4.6. fl.d(\mathscr{P}) = fl.d(\mathscr{P}^{op}) = 1.

Proof. Together with Corollary 3.8, Theorem 4.1 gives $fl.d(\mathcal{P}) \le 1$ and $f_{1,d}(\mathscr{D}^{op}) \leq 1$. Then, by Theorem 5.4 in [16], to prove the corollary it is sufficient to show that the Jacobson radical $J(\mathcal{P})$ is neither left nor right T-nilpotent. For this purpose we consider two sequences from $J(\mathcal{P})$ (see Corollary 2.2),

$$\begin{array}{ccc}
1p & \xrightarrow{j_{21}} & 2p \longrightarrow \dots \longrightarrow {}^{n}p & \xrightarrow{j_{n+1,n}} & {}^{n+1}p \longrightarrow \dots \\
1p & \xrightarrow{j_{12}} & 2p \longleftarrow \dots \longleftarrow {}^{n}p & \xrightarrow{j_{n,n+1}} & {}^{n+1}p \longleftarrow \dots
\end{array}$$

which are non-T-nilpotent because the first is a sequence of monomorphisms and for the second one we have $j_{12} j_{23} ... j_{nn+1}(X_n) = X_0^{p^n}$.

As an immediate consequence of Theorem 3.6 in [16] and Corollary 4.5 we have:

COROLLARY 4.7. Any direct system as well as any inverse system consisting of finitely generated projective objects in \mathcal{H}_1 are \aleph_0 -factorizable (in the sense of [16, § 3]).

COROLLARY 4.8. An inverse limit of flat objects in \mathcal{H}_1 is flat.

Proof. Since $\mathcal{H}_1 \cong P^{\text{op}}$ -Mod and \mathcal{P} -Mod are locally noetherian categories of global dimension two, the corollary follows from Corollary 4.5 in [11].

§ 5. Primitively generated Hopf algebras. One of the main theorems of this section is the following generalization of a well-known Milnor-Moore result [9]:

Theorem 5.1. Every primitively generated Hopf algebra from ${\mathscr H}$ is a tensor product of Hopf subalgebras of the form $k[X]/(X^{p^r})$, $0 \le r \le \infty$ (1), and any two such decompositions are isomorphic.

It follows from the remarks in Section 2 that it is sufficient to prove the theorem for primitively generated Hopf algebras from \mathcal{H}_1 .

Let $\mathscr L$ be the full subcategory of $\mathscr H_1$ consisting of all primitively generated Hopf algebras. It follows from [9] that $\mathcal L$ is locally noetherian Grothendieck category and each of its objects of finite type is a coproduct of objects $K_{nr} = k[X]/(X^{p})$, where $\deg X = 2p^n$, $1 \le r \le \infty$, n = 0, 1, 2, ... Let us denote by $\mathcal K$ the full subcategory of \mathcal{L} consisting of all objects K_{nr} .

We start with the following simple lemma.

 $^(^1) x^{\infty} = 0.$

LEMMA 5.2. For any n, m = 0, 1, 2, ... and $1 \le r, l \le \infty$ we have

$$\operatorname{Hom}_{\mathcal{K}}(K_{nr}, K_{ml}) = \begin{cases} k & \text{if } 0 \leq n-m < l \leq r+n-m , \\ 0 & \text{in the opposite case.} \end{cases}$$

Proof. Let $f: K_{nr} \rightarrow_{ml}$ be an arbitrary morphism in \mathcal{K} . It is clear that f = 0whenever n < m, and $f(\overline{X}) = a\overline{X}^{p^{n-m}}$, $a \in k$, in the opposite case. Hence $0 = f(\overline{X}^{p^r}) = a\overline{X}^{p^{r+n-m}}$ and the lemma follows because f is uniquely determined by $f(\overline{X})$.

Recall that a Grothendieck category is pure semi-simple if each of its objects is a coproduct of finitely presented subobjects (see [15]-[17]).

It follows from the above-mentioned Milnor-Moore result that Theorem 5.1 is a consequence of the following

THEOREM 5.3. \mathcal{L} is a pure semi-simple category.

Proof. By Theorem 6.3 in [16] \mathcal{L} is pure semi-simple if and only if the category $fp(\mathcal{L})^{op}$ -Mod $\cong \mathcal{K}^{op}$ -Mod is perfect, or equivalenty, if the endomorphism ring of any object in $fp(\mathcal{L})$ is left artinian and the Jacobson radical $J(\mathcal{K})$ is right T-nilpotent. But in virtue of Corollary 3.4 it is sufficient to prove the last statement. For this purpose consider a sequence

$$K_{n_1r_1} \xrightarrow{f_1} K_{n_2r_2} \to \dots \to K_{n_sr_s} \xrightarrow{f_s} K_{n_{s+1}r_{s+1}} \to \dots$$

where each f_i belongs to $J(\mathcal{X})$. It follows from Lemmas 1.1 and 5.2 that $J(\mathcal{K})(K_{nr}, K_{ml}) \neq 0$ if and only if either (i) n = m and r > 1 or (ii) $0 < n - m < l \le r + 1$ +n-m. Assume that each $f_i \neq 0$. Then $n_1 \geqslant n_2 \geqslant n_3 \geqslant ...$ and there exists an s such that $n_s = n_{s+1} = ...$ It follows that $r_s > r_{s+1} > r_{s+2} > ...$ and we get a contradiction. Consequently $f_m = 0$ for a suitable m and the proof is complete.

As a consequence of Corollary 2.4 in [17] and Theorem 5.1 we have

COROLLARY 5.4. Every primitively generated Hopf algebra from H has an F-semiperfect endomorphism ring.

We end this section with

COROLLARY 5.5. $fl.d(\mathcal{K}) = 1$.

Proof. It is not hard to check that \mathcal{K} has at most s_0 principal (and so finitely generated) left ideals. Then by Theorem 4.1 fl.d(\mathcal{X}) \leqslant 1 and to prove the equality it is sufficient to show that $J(\mathcal{H})$ is not left T-nilpotent. For this purpose we consider a non-T-nilpotent sequence of natural projections

$$k[X]/(X^p) \leftarrow k[X]/(X^{p^2}) \leftarrow k[X]/(X^{p^3}) \leftarrow \dots$$

with $\deg X = 2p$.

§ 6. Noetherian local objects in \mathcal{H}_1 . It follows from Lemma 1.6 that a noetherian object in \mathcal{H}_1 is local if and only if it is a quotient object of an object "P. Then the next theorem gives a complete description of all noetherian local objects in \mathcal{X}_1 .

THEOREM 6.1. Every Hopf subalgebra of "P has the form $(X_0^{pr_0}, ..., X_n^{pr_n})$, $0 \le r_0 \le r_1 \le ... \le r_n \le \infty$, i.e. it is generated as a k-algebra by elements $X_0^{pr_0}, ..., X_n^{pr_n}$

Proof. Let H be a non-zero Hopf subalgebra of "P. If n = 0, then H is primitively generated because so is ⁰P. Since every primitive element of ⁰P has the form $tX_0^{p^r}$, $t \in K$, then $H = (X_0^{p^r})$, where $r_0 \ge 0$ is a minimal number such that $X_0^{p^r} \in H$.

Let $n \ge 1$ and suppose that the theorem is proved for n-1. Then $H' = H \cap {}^{n-1}P$ $=(X_0^{pr_0},...,X_{n-1}^{pr_{n-1}})$ for certain $0 \le r_0 \le r_1 \le ... \le r_{n-1} \le \infty$. If H=H', we put $r_n = \infty$. In the opposite case choose a homogeneous element $c \in H \setminus H'$ of smallest degree and put $r_n = m - n$ where $2p^m = \deg c$. We shall show that $H = (X_0^{pr_0}, \dots, X_n^{pr_n})$.

First we prove that $r_n \ge r_{n-1}$. For this purpose we observe that each element d of "P of degree $2p^k$ may be uniquely expressed in the form

$$d = \sum d_{l_0...l_n} X_0^{l_0} X_1^{l_1} ... X_n^{l_n},$$

where the sum is taken over all natural numbers $i_0, ..., i_n$ such that $i_0 + pi_1 + ...$ $\dots + p^n i_n = p^k$. In particular the element c has the form

 $c = lX_n^{pr_n} + a + b$

where

$$\begin{split} l &= c_{0...0p^{m-n}}, \\ a &= \sum_{\substack{l_0 + \dots + l_{n-1} > 0 \\ l_n > 0}} c_{l_0 \dots l_n} X_0^{l_0} \dots X_n^{l_n}, \\ b &= \sum_{\substack{l_0 + \dots + l_{n-1} > 0 \\ l_n = 0}} c_{l_0 \dots l_n} X_0^{l_0} \dots X_{n-1}^{l_{n-1}}. \end{split}$$

We now prove that a = 0. Note that

$$(H\otimes H)_{2p^m}=H_{2p^m}\otimes k\oplus k\otimes H_{2p^m}\oplus \bigoplus_{i=1}^{2p^m-1}H_i'\otimes H_{2p^m-i}'$$

because $H_1 = H'_i$ for $i < 2p^m$ by the minimality of deg c. Recall also that $\Delta(X_k) = X_k + Y_k + \varphi_k$, where on the right side X_k and Y_k denote elements $X_k \otimes 1$ and $1 \otimes X_k$ in ${}^n P \otimes {}^n P$, and φ_k is a polynomial of variables $X_0, ..., X_{n-1}, Y_0, ..., Y_{n-1}$ (see § 2).

Assume, on the contrary, that $a \neq 0$, and denote by N_a^{n+1} the set of all tuples $\langle i_n, ..., i_0 \rangle$ such that the coefficient $c_{l_0...l_n}$ is non-zero and occurs in the expression of the element a above. Clearly N_a^{n+1} is non-empty. If $\langle j_n, ..., j_0 \rangle$ is its maximal element in the lexicographical order, then it is easy to check that the summand c' of

 $\varDelta(c) \text{ which belongs to } \bigoplus_{l=1}^r H_l \otimes H_{2p^m-l} \text{ has the form } c' = c_{j_0\dots j_n} X_n^{j_n} Y_{n-1}^{j_{n-1}} \dots Y_0^{j_0} + f,$ where f contains no monomials of the form $eX_n^{j_n}Y_{n-1}^{j_{n-1}}\dots Y_0^{j_0}$, $e\in K$. On the other hand, c' is a polynomial of $X_{n-1}^{p^n,-1},\ldots,X_0^{p^n,0},\ Y_{n-1}^{p^n,-1},\ldots,\ Y_0^{p^n,0}$ because it belongs to $H' \otimes H'$. It follows that $c_{j_0 \dots j_n} = 0$ and we get a contradiction. Consequently a = 0and hence $l \neq 0$. Thus without loss of generality one can suppose l = 1.

To prove $r_n \geqslant r_{n-1}$ we consider the summand c'' of $\Delta(c)$ which belongs to the direct summand $H'_{2p^{m-1}} \otimes H'_{2p^{m-1}(p-1)}$ of $(H \otimes H)_{2p^m}$. In view of the equality

$$\Delta(X_n^{p^r n}) = X_n^{p^r n} + Y_n^{p^r n} + (-X_{n-1} Y_{n-1}^{p-1})^{p^r n} + \dots$$

it is easy to check that

$$c'' = (-1)^{p^{r_n}} X_{n-1}^{p^{r_n}} Y_{n-1}^{p^{r_n}(p-1)} + g ,$$

where g contains no monomials of the form $eX_{n-1}^{p^n}Y_{n-1}^{p^n}Y_{n-1}^{p^n}$, $e \in K$. Since $c'' \in H' \otimes H'$, it is a polynomial of $X_{n-1}^{p^n}, X_{n-1}^{p^n}, \dots, X_0^{p^n}$. Hence we conclude that $r_n \geqslant r_{n-1}$.

We now prove that $X_n^{p^r} \in H$. Consider the element $h = X_n^{p^r} + b'$, where b' is the sum of all monomials $c_{lo..,l_{n-1},0} X_0^{lo} \dots X_{n-1}^{l_{n-1}}$ in the expression of the element h such that some exponent i_t is not divisible by p^{r_t} . If is sufficient to show that b' = 0. Assume the contrary, i.e. that $b' \neq 0$, and consider a non-empty set N_b^n , of all tuples $\langle i_{n-1}, \dots, i_0 \rangle$ such that $c_{lo...l_{n-1},0} \neq 0$ and occurs in the expression of b'. Let $\langle j_{n-1}, \dots, j_0 \rangle$ be the maximal element of N_b^n in the lexicographical order and fix j_t which is not divisible by p^{r_t} . By our assumptions $\varphi_n^{p^r} \in H' \otimes H'$ and therefore $\Delta(h) - \varphi_n^{p^r} \in (H \otimes H)_{2p^r}$. Furthermore, an easy computation shows that the summand h' of $\Delta(h) - \varphi_n^{p^r}$ which belongs to $\frac{2p^r}{l^n} = \frac{1}{l^n} \| H_l \otimes H_{2p^r} \|_{l^n}$ has the form

$$h' = c_{j_0...j_{n-1}0} X_t^{j_t} Y_0^{j_0} \dots Y_{t-1}^{j_{t-1}} Y_{t+1}^{j_{t+1}} \dots Y_{n-1}^{j_{n-1}} + h''$$

where h'' contains no monomials of the form $eX_t^{l_t}Y_0^{l_0}\dots Y_{t-1}^{l_{t-1}}Y_{t+1}^{l_{t+1}}\dots Y_{n-1}^{l_{n-1}},\ e\in K$. On the other hand, h' belongs to $G\otimes G$, where $G=(X_0^{p'o},\dots,X_n^{p'o})$. This is a contradiction because $c_{J_0\dots J_{n-1}0}\neq 0$ and j_t is not divisible by p^{r_t} . Consequently $X_n^{p^r}\in H$ and therefore $G\subset H$.

In order to prove the required equality G = H, suppose, on the contrary, that $G \neq H$ and choose a homogeneous element $d \in H \setminus G$ of minimal degree. If $\deg d = 2p^s$, then s > m > n, $H_i = G_i$ for $i < 2p^s$ and d has the form

$$\left[d=\sum d_{i_0...i_n}X_0^{i_0}...X_n^{i_n}\right],$$

where the sum is taken over all $i_0, ..., i_n$ such that $i_0 + pi_1 + ... + p^n i_n = p^s$. Let us denote by d' the sum of all monomials $d_{i_0...i_n}X_0^{i_0} ... X_n^{i_n}$ in the expression of d such that a certain i_t is not divisible by p^{r_t} . Since $G \subset H$ and $d \notin G$, then $d' \notin G$. On the other hand, using the same type of arguments as in the previous part of the proof, one can show that d' = 0. We then get a contradiction. Consequently G = H and the theorem is proved.

As an immediate consequence of Theorem 6.1 we have:

COROLLARY 6.2. Every Hopf subalgebra of $k[\underline{X}]$ is of the form $(X_0^{p^n}, ..., X_n^{p^n}, ...)$ with $0 \le r_0 \le ... \le r_n \le ... \le \infty$.

References

- M. Auslander, Representation theory of Artin algebras I, Comm. in Algebra 1 (1974), pp. 177-268.
- [2] and I. Reiten, Stable equivalence of dualizing R-varieties, Advances in Math. 12 (1974), pp. 306-366.

- [3] S. Balcerzyk, On projective dimension of direct limit of modules, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), pp. 241-244.
- [4] P. Crawley and B. Jónsson, Refinements for infinite direct decompositions of algebraic systems, Pacific J. Math. 14 (1964), pp. 797-855.
- [5] M. Demazure et P. Gabriel, Groupes Algébraiques, T. 1, Masson, Paris, North-Holland, Amsterdam 1970.
- [6] P. Fleury, Hollow modules and local endomorphism rings, Pacific J. Math. 53 (1974), pp. 379–385.
- [7] H. Hasse, Zahlentheorie, Akademie-Verlag, Berlin 1949.
- [8] M. Harada, Perfect categories, Osaka J. Math. 10 (1973), pp. 329-341.
- [9] J. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. Math. 81 (1965), pp. 211-264.
- [10] B. Mitchell, Rings with several objects, Advances in Math. 8 (1972), pp. 1-161.
- [11] U. Oberst and H. Rohrl, Flat and coherent functors, J. Algebra 14 (1970), pp. 91-105.
- [12] N. Popescu, Abelian categories with applications to rings and modules, Academic Press, London-New York 1973.
- [13] C. Schoeller, Etude de la caségorte des algébres de Hopf commutatives connexes sur un corps, Manuscripta Math. 3 (1970), pp. 133-155.
- [14] D. Simson, A remark on projective dimension of flat modules, Math. Ann. 209 (1974), pp. 181-182.
- [15] Functor categories in which every flat object is projective, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 22 (1974), pp. 375-380.
- [16] On pure global dimension of locally finitely presented Grothendieck categories, Fund. Math. 96 (1977), pp. 91-116.
- [17] On pure semi-simple Grothendieck categories, Fund. Math. 100 (1978), pp. 211-222.
- [18] H. Tachikawa, Quusi-Frobenius rings and generalizations. QF-3 and QF-1 rings, Lecture Notes in Math. 351 (1973).
- [19] R. B. Warfield, Jr., A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math. Soc. 22 (1967), pp. 460-465.
- [20] Decompositions of injective modules, Pacific J. Math. 31 (1969), pp. 263-276.
- 211 Exchange rings and decompositions of modules, Math. Ann. 199 (1972), pp. 31-36.
- [22] Serial rings and finitely presented modules, J. Algebra 37 (1975), pp. 187-222.
- [23] M. Weidenfeld et G. Weidenfeld, Idéaux d'une catégories préadditive, application aux catégories semi-parfaites, C. R. Acad. Sci. Paris, Série A, 270 (1970), pp. 1569-1571.
- [24] E. Witt, Zyklische Körper und Algebren der Charakteristik p von Grad pⁿ, J. Reine Angew. Math. 176 (1936), pp. 126-140.

INSTITUTE OF MATHEMATICS, NICHOLAS COPERNICUS UNIVERSITY,

Accepté par la Rédaction le 27. 4. 1976