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On the category of commutative connected graded
Hopf algebras over a perfect field

by

D. Simson and A. Skowrofski (Torun)

Abstract. Let JC be the category of all commutative, cocommutative, connected, graded Hopf
algebras over a given perfect field % of finite characteristic p. By [13] ¥€ is a locally noetherian Groth-
endieck category of global dimension two. Using functor category methods [10], we prove that

"(a) JC is semiperfect, i.e. each of its noetherian objects has a projective cover.

(b) The endomorphism ring of any noetherian object in JC is a module of finite length over
the ring of infinite Witt p-vectors over k.

(c) Any flat object in JC is a directed union of countably generated pure flat subobjects and has
the projective dimension at most 1.

(d) Every primitively generated Hopf algebra from JC is a coproduct of Hopf algebras of the
form Kk [x]/(x™).

We describe local noetherian objects in JC.

Introduction. Let k be a perfect field of finite characteristic p and let 2 denote
the category of all commutative, cocommutative, connected, graded Hopf k-algebras.
In [13] Schoeller showed that # = o~ x #*, where s~ is the full subcategory
of # consisting of Hopf algebras generated by elements of odd degrees and # *
consists of all Hopf algebras which are zero in odd degrees. Furthermore,
gl.dima#~ = 0 and #* is a product of a countable number of copies of a full
subcategory #; of #* consisting of all Hopf algebras generated by elements of
degrees 2p' where i= 0,1, .. Moreover, #, has enough noetherian projective
objects and therefore #, = #*-Mod, where 2 consists of all indecomposable
noetherian projective objects in #,. Then we can apply to the study of # functor
category methods [10].

Section 1-contains the basic results on semiperfect functor categories needed
in the paper. In Section 2 we recall some fundamental facts concerning the cat-
egory 2. Tn Section 3 we define a useful W(k)-category structure on 5, and on
#-Mod, where W(k) is the ring of infinite Witt p-vectors. Using this fact, we show
that Home (N, N*) is a W(k)-module of finite length for any noetherian objects N
and N' in 4#,. 1t is also proved that the category #-Mod is locally noetherian of global
dimension two and the set of one-sided ideals in £ is countable.
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Section 4 contains a generalization of the results in [14] and [16] concerning the
projective dimension of flat objects in a-functor category. As a consequence, we infer
that the projective dimension of any flat object in 2, as well as of any flat #-module
is at most 1. In Section 5 we study primitively generated Hopf algebras from a7,
Our main result asserts that every such Hopf algebra is a coproduct of Ho pf algebras
of the form k[x]/(x”"), which is a generalization of well-known Milnor-Moore result
in [9]. In the Jast section a complete description of all local noetherian objects in Hy
is given. :

Throughout the paper k is a perfect field of finite characteristic p22 and R
denotes a commutative ring with an identity element. If & is a locally finitely presented
Grothendieck category, we denote by fp(s) (resp. fg(of)) its full subcategory con-
sisting of all finitely presented (resp. finitely generated) objects.

§ 1. Semiperfect functor categories. Let % be a skeletally small additive category
{not necessarily with coproducts). A #-module is a covariant additive functor
from % to the category of abelian groups. The category %-Mod of all ¥-modules is
a Grothendieck category and #-modules of the form

KX = Homy(X, -), Xe¥,

form a set of finitely presented projective generators of @-Mod.
. A %‘Iflodlﬂe is free if it is isomorphic with a coproduct of modules A%, A left
ideal in € is a ¥-submodule of an 4¥, X e ¥ ; a right ideal in % is a submodule of

an @**-module hy = Homy(—, X), X' %. A two-sided ideal in % is a subfunctor
of the functor

Homgy: °°x —atb ,
If I'is a two-sided ideal in %, then we define the quotient category %/, which
has the same objects as ¢ and
Homg (X, Y) = Home(X, Y)/I (.X" , Y).
The Jacobson radical of an additive category % is a two-sided ideal J (%) defined by
J( @) (4, B) = {feHomy(d, B), 1,-gf has a two-sided inverse for every g}

(see [10]). It is not difficult to check that J(€]J(%)) = 0 and that ‘ i
| F = t (@YX, X) is 11
+ Jacobson radical of the endomorphism ring ) (K Ly e

Endy(X) = Hom,(X, X)
for every object X from %. Moreover, the following simple lemma holds:

Lemva L1, If X and Y have local endomorphism rings, then J(€)(X, Y) is
@ group of all non-isomorphisms from X to Y.

A small adc}itive category € is semi-simple if each %-module #*, Xe %, is
a coprod.uct of sm}ple left ideals. % is regular in the sense of von Neumann if for
each of its morphisms f there exists a g such that f = fyf.
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A Grothendieck category is semiperfect (tesp. F-semiperfect) if each of its
finitely generated (vesp. finitely presented) objects has a projective cover
(see [1], [8], [16] and [23]). .
Recall that an object is called local if it has a unique maximal proper sub-
object [22].
"For a functor category we have the following results:
TreoreM 1.2. Let G be a skeletally small additive category. The following condi-
tions are equivalent:
(2) ¥-Mod is semiperfect.
(b) Every simple %-module has a projective cover.
(©) %I (%) is semi-simple and idempotents can be lifted modulo J(%).
(d) Every finitely generated projective (free) €-module has a semiperfect endo-
morphism ring. ’
(&) Any €-module h*, X € €, is a finiite coproduct of local left ideals generated by
idempotents. . :
(f) Any projective €-module P is a coproduct of local left ideals generared by
idempotents.
@), (b9, (d), (", () for €°*-Mod and right ideals.
 Proof. The equivalences (a)(c)—(d) are proved in [16], Theorem 5.6 and-
() (b)>(e) may be proved as in Theorem 2.1 in [18]. Since (f}—(e) is trivial and
since () is left-right symmetric, it remains to show that (&) implies (f).
Assume (e) and let P be a projective ¥-module. Then there exists a Q such

that P@Q = @ L;, where L, are local left ideals generated by idempotents.
iel

By (d) the endomorphism ring of any L, is semiperfect and hence it is local because L,
is indecomposable. Then (f) is a consequence of the following theorem:

THEOREM 1.3. Suppose that M is an object of a Grothendieck category which is
a coproduct of countably generated objects M, i & I, each with a local endomorphism
ring. Then :

(@) any two such decompositions are isomorphic.

(b) a direct summand of M is again a coproduct of subobjects, each isomorphic
10 one of the original summands M;.

Proof. See [4], Th. 4.2, [12], Th. 1.3, [19}, Th. 1 and [20], Th. 7.

COROLLARY 1.4. If -Mod is semiperfect, then any projective ¢-module is a co-
product of local left ideals generated by idempotents and any two such decompositions
are isomorphic.

Generally, we can prove the following: .

THEOREM 1.5, If ¥-Mod is F-semiperfect, then any projective €-module is a co-
product of left ideals generated by idempotents.

Proof. In view of Theorem 5.6 in [16] the theorem may be proved as Theorem 3
in [21].


Artur


140 D. Simson and A. Skowroxiski

An object M in a Grothendieck category is hollow if the equality M = X+ vy
implies either X' = M or ¥ = M (see [6]). It is clear that any local noetherian object
is hollow. If M is noetherian and hollow, then M is also local. In fact, the family
of all proper subobjects of M has a maximal element which is a unique maximal
subobject of M.

LemMA 1.6. Let P be a projective finitely generated object of a semiperfect cat-
egory /. Then the following conditions are equivalent:

(a) P is indecomposable;

(b) P is hollow;

(©) P is a projective cover of a hollow object.

Proof. First we remark that if /* M—N is an essential epimorphism, then M is
hollow if and only if N is hollow. So (b)«(c). Since (b)~>(a) is trivial, it remains to
prove (a)—(b). '

Suppose that P = M, +M,, where M;, M, are proper subobjects of P. Then
the natural morphism vi P—P/M, ®P/M, is an epimorphism. The non-zero objects
P[M;, P|M, are finitely generated; let 7, : P'—P[My, vy P"—P|M, be their projec-
tive covers. Then P'@P" r—fr-;P/M 1@ P[M, is also the projective cover and hence there
exists an epimorphism P—P'@P". But this is impossible because P is indecomposable,

§ 2. Preliminary results on graded Hopf algebras. Recall that o is a locally
noetherian Grothendieck category and H e # is a noetherian object if H is finitely
generated as a k-algebra (see [9] and [13]). Denote by " the full subcategory
of o consisting of all noetherian objects, k

Throughout this paper we assume that & is a perfect field of characteristic
+ p22. Let k[X] = k[X,, Xy, ..., X,, ...] be the polynomial algebra on varjables X,
neN, with degX, = 2p" and the comultiplication given by

4(Xp) = Xo®1+10X,,
1
4(Xy) = X1®1+1®X1+5 XIR1+1Q0XE~(4Xp)"],

.................................

1
4(x) = Xn®1+1®Xn+1*)[X,‘.’—1®1+1®Xl’.'—1“(4}f]—1)"]'f-
1
o 2@+ 19X~ (4X, )+

1 e 1t .
+E T @1+1®@XE ~(4X,)"

Next denote by "P the Hopf subalgebra of k[X ] gencrated by Xo, ..., X, and
consider the Hopf algebra map

Jom' "P~"P
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defined as follows: If m>n, then j,, is the natural injection, and if m<n, we put

0 for r<n—m
o (Xy) = - ’
T Xr) Xrh, for rzn—m.-

Finally, let "S = k[XT/(X7), where degX = 2p" and A(X) = 10X +X®1.

By W (k) we denote the ring of infinite Witt p-vectors over k and by W, (k) we
denote the ring of Witt p-vectors of legth n (see [5], [7] and [24]).

We recall that W(k) is a discrete valuation ring with the unique maximal ideal »,
W [(N~k and W, (k) = WE)(P.

It follows from [13] that

(H1) gldim# = gl.dim#, = 2.

(H2) *S,28, %S, ... is a complete list of simple objects in ¢, "P is a projective
cover of S, and P, 2P, %P, ... is a family of generators of 4.

(H3) Endk[X] & W(k) and End"P = W,, (k).

It follows from (H2) that there is an equivalence 4#; x#°*-Mod, where 2 is
the full ‘subcategory of ', consisting of all "P (see [13] p. 152). Henceforth we
identify #; and 2°°-Mod. '

In view of (H3) the results from Section 1 yield

COROLLARY 2.1. (a) o, is a semiperfect locally noetherian category.

(b) Any indecomposable projective object of #, is isomorphic with a certain "P.

(¢) Any projective object in #  is a coproduct of indecomposable ones and any two
such decompositions are isomorphic. :

As an immediate consequence of Lemma 1.1 we get

COROLLARY 2.2,

\ Homy("P,"P) forn#m,
g8 (1 " -
TP, "F) {meU@ forn=m;

Remark. The statement (d) of the theorem on page 140 in [13] is false. I.n fe.tct,
by (H3) k[X] is indecomposable, and in view of Corollary 2.1 it i§ not projective.

§ 3. On #-Mod and #°"-Mod. We now make some observations on the cat-
egorics #-Mod and #°°-Mod. We start with some general facts.

Let R be a commutative ring. Recall that an additive category % is an R-categPry
if Homy(X, ¥) is an R-module for any X, Y e % in such a way that the morphism
composition is R-bilinear (see [2] and [10]). A functor T: ¥—%" between R-cat-
egories is an R-functor if the natural morphism Homg(X, ¥)—Home.(TX ,_TY)
given by fT'(f) is a homomorphism of R-modules for each X, Ye . If ¢ is an
R-category and Fis a ¢-module, then F(X) is, in a natural way, an R-module for
any X'e 4. Moreover, if f: X—~X"' is a morphism in %, then F(f) is an R-homo-
morphism. It follows that ¥-Mod is equivalent to the category of all. R-functors
from € to R-Mod (see [2], § 1).

4 — Fundamenta Math, CI
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An R-category € is called hom~finire if Home(X, ¥) is an R-module of finite
length for any X, Ye%.

An example of a hom-finite R-category is any finite R-variety in the sense of 2
where R is an artinian ring.

In what follows we need the following result:

ProposITION 3.1. Let R be a commutative ring and let 4 be an R-category.
Then there is a unique R~ category structure on €-Mod such that the Yoneda embedding
is an R-functor. Furthermore, if € is homfinite, then so is fg(@-Mod).

The proof is straightforward and it is left to the reader.

The following useful lemma gives us an important example of a W(k)-category.

LemmA 3.2. 2 is a homfinite W(k)-category such that for any pair n, m
Homg("P,"P) is a cyclic W(k)-module -generated by j,, and isomorphic with
WE)(p***) where s = min(n, m).

Proof. Since Homg("P, "P) is, in a natural way, a right End ("P)-module as
well as a left End("P)-module and by (H3) End(P) = W, (k), in virtue of Prop-
osition on page 151 in [13] a W (k)-module structure on Homu("P, ™P) is given by
the formula

(3.3) wf = wf = fiy,

where f'e Homa("P, "P), we W(k) and w, denotes the image of w by the natural
projection W(k)—W,..,(k). Using (3.3), it is easy to check that the morphism com-
positiom~ is W(k)-bilinear, Then in view of the proposition on page 151 in [13] the
lemma follows.

As an immediate consequence we get

_ COROLLARY 3.4. The hom-finite W (k)-category structure on @ defined by (3.3) may
be uniquely extended to a W(k)-category structure on 1 = P"=Mod and on #-Mod
such that the corresponding Yoneda embeddings are W(k)-functors. Moreover,
fp(#-Mod) and the full subcategory N 1 of 3y consisting of all noetherian objects
in  are both hom-finite W(k)-categories. ‘

COROLLARY 3.5. (a) Any indecomposable object in Ny has an artinian local endo-
morphism ring.

(b) Every object of A’ is a finite coproduct of indecomposables and an y bwo such
decompositions are isomorphic.

. (c) A pure-projective object in oy is a coproduct of indecomposuble noetherian
objects.

Proof. Apply the results of Section 1.
We are also able to prove
THEOREM 3.6, The category #-Mod is locally mnoetherian.

Prmo oIT, Fix n and let M be a 2-submodule of A", It follows that, for any
m, M("P) is a submodule of the cyclic W (k)-module Homa("P, "P). Hence M("P)
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is also cyclic and is generated by p7,, for a certain r<min(m, n). Let r(m) be a such
minimal ». Then we have
1° M("P) = P W) Jums
2° r(m)=r(s) provided m<s.
In fact, if m<s then the natural injection j,,: "P—°P induces a commutative
diagram
M("P) C» Hom("P, "P)
M(Jum) Gramdy
MCP) Cs Hom("P, *P)

Hence Im M(j,) = ("™, is a W(k)-submodule of M('P) = (p"®)j,, and
therefore r(m) = r(s).
Choose such a t2n that r(m) = r(f) for mzt (this is possible by 2°) and assume
M = | M; with I directed. Then M("P) = {J M("P) for every m and each M,("P)
iel iel
is a submodule of the W(k)-module M ("P). Since’by 1° M("P) is finitely generated,
there exists an 7, € J such that M("P) = M, ("P) for m =0, ..., t. Now if m>¢
then the W(k)-bilinearlity of the morphism composition in & yields

r(m

r )jmu = ]7rmjmljm = jml(prmjtn) € Mio(mP)

because M, is a left ideal in 2 and PP € M(CP) = M, (P). Tt follows by 1° that
M(P) = M, ("P). Consequently M = M;, and the proof is finished.

In view of Theorem 3.6 and (H1) we obtain

CoRrROLLARY 3.7.

gl.dim?-Mod = w.gl.dim#°*-Mod = gldim#’, = 2.

COROLLARY 3.8, The set of one-sided ideals in 2 is countable.

Proof. By assertions 1° and 2° in the proof of Theorem 3.6 with any left ideal
McSh*™ the sequence 7(1)27(2)...2r(m)>... of natural numbers is associated;
itis in fact finite. This defines an injection of the set of left ideals contained in 4™ in~
to the set of finite sequences of natural numbers. The proof for right ideals is similar.

§ 4. On flat % -modules, We recall that a @-module M is flat if Tor§(X, M)=0
for every “"-module X. By fl.d (%) we denote suppd M where M runs through all flat
%-modules [16]. Finally, let m be an infinite cardinal number. An R-module is
m-noetherian if each of its submodules is generated by at most m elements.

The main result of this section is the following

THEOREM 4.1. Let R be a commutative §,-noetherian ring, n>0, and let € be
an R-category such that Homg(C, C') is an 8,-generated R-module for any C, C* € 6.
If € has at most 8, finitely generated right ideals, then f.d(®)<n+1.

Observye that the theorem is a generalization of [14] and Corollaries 3.7 and 3.13
in [16]. ~ .

4%
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Tn view of Lemma 2.15 and Theorem 2.12(¢) in [16], Theorem 4.1 is a conse-
quence of the following proposition:

PROPOSITION 4.2. Let R be a commutative m-noetherian ring where m is an
infinite cardinal number. Assume also that € is an R-category such that Hom,(C, C")
is m-generated for all C, C' e %. If € has at most m finitely generated vight ideals,
then any flat €-module is an m-directed union of Ww-presented pure submodules.

To prove the proposition we need some definitions and technical lemmas, Let
Fr = {F;, fi;}i,5er be a. direct system over a directed set /. A set J& I is called
Fy-closed if

Ukerfiy = Ukerfy forany jeJ.
kzJ s2)
kel selJ

LemMa 4.3. Let F; be a direct system in a locally finitely presented Grothendieck
category. If JI is Fy-closed, then the wnatural morphism colim Fy-—colim Fy is
injective.

Proof. See Lemma 3.5 in wflG].

LemMA 4.4, Let I be a directed set. If Gy = {GY, g} 1 e ¥ € 4, 14]<1Y, are
direct systems consisting of m-noetherian R-modules, then every JSI with |J| < is
contained in a directed subset J' of I such that J' is Gy-closed for every ye A.

Proof. By our assumption for every i e I there exists a subset ; of I with |,[<m
such that

Ukergl, = Ukergl, for all yed.
s2i kzi

sel kely

Since the set L =jUJIJ- has a cardinality at most m, by Lemma 1 in [3] there exists
€

. adirected set J; =1 such that L.J; and |J;| <. Continuing this procedure, we define

. o0

directed sets J=J, SJ, ... with |J}/<m, such that J' = |J J, satisfies the required

conditions. i

. Proof of P‘roposition 4.2. Let M be a flat #-module. By Theorem 10.1

in ’[1‘0] M = colimF; for a certain direct system Fy = {F}, f})}; jur consisting of

finitely generated free 4-modules, To prove the proposition it is suflicient to show

that every subset J of I with |J|<m is contained in a directed set J' &1 with [V sm

such t‘hat the nas;lral map @: colim Fy~colimFy is a pure monomorphism.
Since ®¢: #**-Mod x #-Mod—»R-Mod is an R-functor (see [10], p. 52), by our

assumptions hy/N®¢F; = F(X)/N(X) is an m-generated R-module for every -

finitely generated right ideal N<hy, X e 4. Let J<1, |J| <, Since & has at most it
ﬁmt_ely generated right ideals Nehy, it follows from Lemma 4.4 that there exists
a directed sF:t J'SI containing J such that |J'|<m and J' is [(hy/N )@WF,]-closed‘
for each finitely generated right ideal N Shy. Then the required result follows from
Lemma 4.3 because the natural morphism ¢: colim Fy— colim Fy is a pure mono-
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morphism if (hx/N)@¢ is a monomorphism for any finitely generated right ideal
Nchy, Xe®.

CfROLLARY 4.5. Every flat object in 3y as well as every flut P-module is an
wo-directed union of wy-presented pure flat subobjects.

Proof. In view of Corollary 3.8 the corollary is a consequence of Prop-
osition 4.2.

COROLLARY 4.6, {Ld(#) = (Ld(#") = L. )

Proof. Together with Corollary 3.8, Theorem 4.1 gives fl.d(#)<1 and
f.d(@"™ < 1. Then, by Theorem 5.4 in [16], to prove the corollary it is sufficient to
show that the Jacobson radical J(#) is neither left nor right T-nilpotent. For this
purpose we consider two sequences from J(#) (see Corollary 2.2),

Jinwtn

Fa
) R A e

: J'n,n+1
«_1734_,_wn+1])§_‘"

ip _.{f;_ 2P

which are non-T-nilpotent because the first is a sequence of monomorphisms and for
the second one we have jia jaz o Junse 1(X0) = X'\

As an immediate consequence of Theorem 3.6 in [L6] and Corollary 4.5 we
have: ‘ ' ,

COROLLARY 4.7. Any ‘direct system as well as any inverse system consisting of
finitely generated projective objects in #y are So-fuctorizable (in the sense of [16, § 3]).

COROLLARY 4.8. An inverse limit of flat objects in ' is flat.

Proof. Since o, & P™Mod and #-Mod are locally noetherian categories
of global dimension two, the corollary follows from Corollary 4.5 in [11].

§ 5. Primitively generated Hopf algebras. One of the main theorems of this
section is the following generalization of a well-known Milnor-Moore result [9]:

THEOREM 5.1. Every. primitively generated Hopf algebra from 3 is a tensor
product of Hopf subalgebras of the form k[X1/(X 7, 0<r< oo (1), and any two such
decompositions are isomorphic. '

" It follows from the remarks in Section 2 that it is sufficient to prove the theorem
for primitively generated Hopf algebras from ;.

Let & be the full subcategory of #; consisting of all primitively generated
Hopf algebras. It follows from [9] that 2 is locally noetherian Grothendieck category
‘and each of its objects of finite type is a coproduct of objects K. = k[X 1/x™),
where degX = 2p", 1<r<oo, n = 0,1,2, .. Let us denote by 2" the full subcat-
egory of & consisting of all objects K. ‘

We start with the following simple lemma.

[

(1)‘ X% = 0.
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LeMMA 5.2. For any n, m=0,1,2, .. and 1<r, IS0 we have

k  if 0OSn—m<Igr+n—m,
HOMmyr (Kyrs Kot) = {0 in the opposite case.

Proof. Let f: K,,—,; be an arbitrary morphism in 2. It is clear that f = §
whenever n<m, and f(X)=aX" ", ack, in the opposite case. Hence
0 =F(X?) = aX"""™ and the lemma follows because f is uniquely determined
by £ (X). :

Recall that a Grothendieck category is pure semi-simple if each of its objects
is a coproduct of finitely presented subobjects (see [15]-[17]).

It follows from the above-mentioned Milnor-Moore result that Theorem 5.1
is a consequence of the following “

THEOREM 5.3. & is a pure semi-simple category.

- Proof. By Theorem 6.3 in [16]1.% is pure semi-simple if and only if the category
fp(£)**-Mod = A°"-Mod is perfect, or equivalenty, if the endomorphism ring of

any object in fp(2) is left artinian and the Jacobson radical J(#") is right T-nil-

potent. But in virtue of Corollary 3.4 it is sufficient to prove the last statement. For
this purpose consider a sequence
Krs —;fi)' K, = o = Ko, —{; Kogitrons = o

where each f; belongs to J(X), It follows from Lemmas 1,1 and 5.2 that
J(A) (K, K,) # 0 if and only if either () n = m and r>1 or (i) 0<n—m<I<r+
+n—m. Assume that each f; # 0. Then ny>n,>n,>.., and there exists an s such
that ny = #,,, = ... It follows that r,>ry s >re,>... and we get a contradiction.
Consequently f,, = 0 for a suitable m and the proof is complete.

As a consequence of Corollary 2.4 in [17] and Theorem 5.1 we have

COROLLARY 5.4. Every primitively generated Hopf algebra from 3# has an F-semi-
perfect eridomorphism ring. '

We end this section with

COROLLARY 5.5, ﬂ.&(&f }=1.

Proof. It is not hard to check that ¢ has at most % principal (and so finitely
generated) left ideals. Then by Theorem 4.1 fld ()< and to prove the equality
itis sufficient to show that J(#) is not left T-nilpotent. For this purpose we consider
a non-T-nilpotent sequence of natural projections

, LX)~k [X 1) [X (X )e.
with deg X = 2p, ’

§ 6. Noetherian local objects in 2 1Tt follows from Lemma 1.6 that a noetherian
object in 5, is local if and only if it is a quotient object of an object "P. Then. the
next theorem gives a complete description of all noetherian local objects in #,.

TREOREM 6.1, Every Hopf subalgebra of "P has the form &ze, ., X,
0<ro<r .S, S0, i.e, it isgenerated as a k-algebra by elements X5°, ..., XF™,

icm
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Proof. Let H be a non-zero Hopf subalgebra of "P. If n = 0, then H is primi-
tively generated because so‘is P, Since every primitive element of °P has the form
XY, te K, then H = (X}'), where ro >0 is a minimal number such that X%°e H.

Let 731 and suppose that the theorem is proved forn—1. Then H' = H~ *~1p
= (XB, ..., X027 £6r certain 0<ro<ry <. <y < 00, I H= H', we put r, = oo.
In the opposite case choose a homogencous element ¢ € H\H' of smallest degree
and put r, = m—n where 2p" = degc. We shall show that H = (X3°, ..., X™).

First we prove that r,2>r,... For this purpose we observe that each element d
of "P of degree 2p* may be uniquely expressed in the form

o ! i
d = Z (](0_"1" ‘(Yloo,X‘lL '™ X,," N

where the sum is taken over all natural numbers iy, ..., i, such that iy+pi;+...
ot p'i, = p*. In particular the element ¢ has the form

¢=IX""4a+b,
where
= ('o...op"""!
i i
a = Y, oty X0 o Xa®

fotitin- >0
Iy>0

f i .
b = z C'[o_"i"Xoo wae ){,,"..1_x .

lotetlnmy>0
=0

We now prove that @ = 0. Note that
2pm=—1

(H@H)zpm = 1{217"“ ® k® k® Hzpm @ Sel H;@Hépm_i

because H, = H, for i<2p” by the minimality of degc. Recall also that
A(X) = X+ Y+ @y, where on the right side X and ¥; denote elements X, ®1 and
1QX, in "PQ"P, and ¢, is a polynomial of variables Xo, ..., Xy—1, Yo, s Yot
(see §2). .

Assume, on the contrary, that a # 0, and denote by Nitt the set of all tulfles
iy er g SUCh that the coefficient ¢y, is non-zero and occurs in 'the? expression
of the element « above. Clearly N'** is non-empty. If (j,, ..., Joy is its maximal
element in the lexicographical order, then it is easy to check that the summand ¢’ of

2 "‘-.‘1 .
4(c) which belongs fo p@ H\@®Hypn.; has the form ¢ =cjq,,.; Xa" Yin . }’{," +f,

‘ fwt
where f contains no monomials of the form eX,,': Yinnd.. Ii{)", ee K. Qn the other
hand, ¢' is a polynomial of XIpt, ., X5°, YIit, ., Y'S o hecause it belongs to
H'®H', It follows that ¢j,,;, = 0 and we get a contradiction. Consequently ¢ = 0
and hence / % 0. Thus without loss of generality one can suppf)se I=1.

To prove r,2r,-, we consider the summand ¢’ of A(.c) which belongg‘to ’the
direct summand Hym-s® Hym-1(p-1y of (HQH)zpm. In view of the equality

AKX = XV YO (= Xy VI
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it is easy to check that

¢ = (=D YT g
where g contains no monomials of the form X7, yIm{r=1
it is a polynomial of X¥p*,.
7 n>r n—=1- @
We now prove that X} " e H. Consider the element 4 = X215, where /' is
the sum of allmonomials ¢y, .1, ,,0 X¢ ... Xyof in the expression of the element b such
that some exponent i, is not divisible by p™. If is sufficient to show that ' = 0,
Assume the contrary, i.e. that &’ # 0, and consider a non-empty set Ny of all tuples
=15 o5 Bpp such that ¢y, ;0% 0 and oceurs in the expression of 4. Let
(j,,‘_l, or Joy be ‘Ehc maximal element of Ny, in the lexicographical order and fix Je
which is not divisible by p™ By our assumptions ¢! e H'@H' and therefore

A()— ™ e (H®H),,»,. Furthermore, an- easy computation shows that the
. . 2P -y
summand A" of A(h)—¢}™ which belongs to @ A, 1@ Hjptaq has the form
i=1

» ¢€ K. Since "' e H'Q ',
P o " ; i
v X6 % YiITY, o, YT Hence we conclude that

’ -
LEKTIRNNY b (D ¢ CLANINS e Y

n={

where %" contains no monomials of the form eXlv ... Yie i Wiy eek.
On the other hand, ' belongs to G® G, where G = (X%, ..., X ), This is a contradic-
tion because ¢y, ;,_,0 # 0 and j, is not divisible by »" 1
e y p". Consequently X" e

and therefore G H. g 1 v e

In order to prove the required equality G = H, suppose, on the contrary, that
G#H ansd choosp a homogeneous element de HNG of minimal degree. If
degd = 2p°, then s>m>n, H; = G, for i<2p*® and d has the form

[d =Y g, X oo X,
where the sum is taken over all Igy «ny Iy SUCh that 7,

d;note by at' t].ae.sum of 'a‘ll‘monomjals Ay, X ... X inthe expression of d such
that a certain Iy is not divisible by p™. Since G H and d ¢# G, then d' ¢ G. On the
other hand, using the same type of arguments as in the previous part of the proof,
ong can show that d’ = 0, We then {

get a contradiction, squent = J and
the theorem is proved, : Consequently G = H :mdl

+piy o pti, = p* Let us

As an immediate consequence of Theorem 6,1 we have:

COROLLARY 6.2. Every Hopf subalzebra of kX 1is of " '
/ e \ p o D'
i AT 62 By g f k[Xis of the form (XB, ..., XI'™, ..)
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