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Proof. Assume f (I) is nondegenerate. By Theorem 5 f () is atriodic. Since f(I)
is also locally connected, f(I) is an arc or a simple closed curve. :
To show that a simple closed curve can be obtained as the wee}kly cm?ﬂuent
image of I, and also to show that the weakly confluent image of an arc-like continuum
need not be unicoherent, consider the following example.
ExAMPLE 3. A, weakly confluent map from I = [0, 1] onto the unit circle, J, in
the plane. ‘
If el let £(6) = ™. Cleatly f is a weakly confluent map from I onto J.
COROLLARY 8. If f is & weakly confluent map defined on « simple closed curve J,
then f(J) is an arc, a simple closed curve or a point.
ExAMPLE 4. A confluent map from the unit circle, J, in the plane onto [~1, 1].
If (x,y) is in J, let £((x, ) = x. Clearly f is a confluent map from J onto

[—1,1L
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A generalization of right simple semigroups
by

F. E. Masat (Glassboro, N. J.)

- Abstract. An element s in a semigroup S is called a right simple element if 5§ = S. This paper
developes the notion of right simple clements, and uses it to generalize right simple semigroups.
A non-right simple semigroup with right simple elements is called a right siinple element semni-
group and denoted as RSE. The subset of S of right simple elements is denoted by R, and the non-
right simple elements by N. If R is a right simple subsemigroup (right group, subgroup) of S,
then S is called a partial right simple semigroup (partial right group, partial group) and denoted
by PRS (PRG, PG). While a PRS semigroup is by definition an RSE semigroup, the converse is
shown to be false. )

The structure of RSE semigroups is determined, and a decomposition found for R. The exist-
ence of a maximum right ideal is found to be a necessary, but not sufficient, condition for right
simple elements to exist. A partial converse is given,

The structure theorems are then applied to RSE semigroups possessing other properties, such
as the descending chain condition on right ideals of N, finiteness, or left (right) cancellativity. It is
shown that, if §'is a RSE and left simple. (left cancellative), then §'is a PG (PRG). For right cancel-
lativity, the development parallels that of the Baer—Levi Theory.

1. Introduction. Recall that a semigroup S is called right simple if for all s in S,
$8 = §. An element x in a semigroup S will be called a right simple element if xS = S.
Note that a semigroup is right simple if and only if each of its elements is a right
simple element. A

This paper uses the concept of right simple elements to generalize right simple
semigroups, In particular, semigroups containing right simple elements are investi-
gated, with some of the results obtained analogous to those obtained for right simple
semigroups. Throughout the paper, a semigroup containing right simple elements
will be called a right simple element semigroup, and it will be denoted by RSE. The
class of RSE semigroups therefore contains the class of right simple semigroups.

In Section 2, various structure theorems are presented for RSE semigroups.

. The results of Section 2 are then used in Section 3 to discuss homomorphisms on RSE

semigroups, and to extend group homomorphism results. In Section 4, applications
of Sections 2 and 3 are developed for RSE semigroups where other conditions such
as right (left) cancellativity, left simplicity, finiteness, are also present. Examples
appear in various parts of the paper.
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The subset of S of right simple elements will be denoted by R, and the non-
‘right simple elements by N. Additionally, if N' % [ and R is a right simple subsemi-
group (right group) of S, then S will be called a partial right simple semigroup
(partial right group), and will be denoted by PRS (PRG). Note that a PRS semigroup
is by definition a RSE semigroup. The converse will be shown to be false.

The basic definitions and notations are that of [1]. Also, the symbol B denotes
the end of a proof, \ denotes set difference, |X| denotes the cardinality of the set X,
and < denotes a proper subset.

2. Structure theorems for right simple element semigroups. We consider first
the structure of RSE semigroups, and then apply the results in the remaining
sections of the paper. :

Before proceeding further, some examples are provided. Let § = RUN,
where R and N are distinct semigroups, and define 1 = nr = nfor all ¥ in R, nin N.

If Ris a right simple semigroup, a right group, or a group, then S is a PRS, PRG, or °

a partial group respectively.

ProrosITION. If S| and S, are right simple element semigroups, then S xS,
is also a right simple element semigroup.

The proof is straightforward and, moreover, in S, R = R, X R,.

TreoreM 2.1. If S is a right simple element semigroup, then:

(1) The set R of right simple elements is a subsemigroup.

(2) The set S\R, if nori-empry, is the maximum: right ideal of S, and is prime.

Proof. Suppose that S is not right simple, and denote the proper subset S\R
of S'by N. Then N is a right ideal of S, since ae N, s S, and as ¢ N imply that
S = asS<asS, contradicting that a € N. Suppose next that Iis a right ideal of § and
that I is not contained in N. For x in I\N, x8 = § implies that § = xS</, i.e.,
I=S. Thus N is the maximum right ideal of §.

Since aS = bS = S for 4, b in R, then abS = a§ = § implies that R is a sub-
semigroup of S. It follows then that when N # [J, N is a prime ideal of S. B

Remark 2.2, The above theorem is originally due to . B. Grimble, [3], and
also appears as Exercise 7, p. 40, in [1]. In that exercise, Grimble calls a right simple
element a universal left divisor, and accordingly, S\R is called the universal maximal
right ideal. The development there is in the ideal theory direction, as compared to
a generalization of right simple concepts as presented in this paper,

The following shows that the existence of a maximum right ideal is not enough
for S to be a RSE semigroup. Let S be the semigroup defined as follows:

a b ¢

a | a b a

o o
Qo
o 8
] o
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The unique maximal right ideal of §'is {, b}, but ¢is not a right simple element of ,
i.e., {a,b} is not prime.

The next theorem is then a converse for Theorem 2.1.

TuEOREM 2.3, If @ semigroup S has a unique proper maximal right ideal A4 such
that S\A contains more than one element, then the set (subsemigroup) of right simple
elements of S is precisely S\4. ,

Proof. Since 4 is a right ideal of S, no element of A can be a right simple el-
ement of S. Thus if § & S\4, then by hypothesis, sSE.4 or ¢S = S. If sSc 4, it follows
then that 4 U {s} is a right ideal of & properly containing 4, and hence it must be
that 4 U {5} = S. But this contradicts the fact that [S\4|>1. Hence s in S\4
implies that s is a right simple element and therefore N = 4 and R = S\4. ®

‘We next consider the structure of R and its relationship to N and S.

THEOREM 2.4, If S is a right simple elemeni semigroup, with R the set of right
simple elements and N = S\R # [, then for each r in R, rN =N or rN = §.
Moreover, if ¥R 5 R, then rN = 8. . .

Proof. If # e R, then S = § implies that »R U rN = R U N, where the union
on the right is disjoint. By Theorem 2.1, rRER and hence N=rN. However,
Theorem 2.1 also implies that !'JVQN or rN = §. Thus rN = N or rN = S.

If ¥R # R, then rRcR implies, that NerN, i.e, tN =8, B

The preceding theorem thus yields a decomposition of R, viz.,

B={reRirN=S} and C={reR:N=N},

The next theorem relates B and C to the structure of R and N, and finds necessary
and sufficient conditions in order that N be a maximum ideal of S.

THEOREM 2.5. Let S be a right simple element semigroup, denoting the right simple
elements by R. For N = S\R # [, define

B={reR:rN=58} ad C={reR:rN=N}.

Then R = B U C, and the following conditions are equivalent:

B =0.

(2) NV is the (unique) maximum ideal of S. )

(3) R is a right simple subsemigroup of S such that C # [l.

Proof. That R = Bu C follows directly from Theorem 2.4. (1)—>(2)5 If
B = [7, then R = C and hence for all 5 in S, sN=N. By Theorem 2.1, Nis a ngl‘ut
ideal of 8, and therefore N is an ideal of §. By a similar argument as used in
Theorem 2.1, N is the maximum ideal of S. ' .

(2)-+(3): For a, b in R, there exists x in S such that ax = b. Since N is an ideal
of S, ax ¢ N implies x ¢ N. Thus x & R and R is a right simple subse_mfgroup of S
Next, if ¢ = [J, then there exists an 7 in R such that rN = S, contradicting that N is
an ideal of S.
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(3)—(1): Proceeding indirectly, suppose B is not empty. Leb b€ B and reR.
By Theorem 2.4, rN = S or rN = N implies that brN = bS = S or brN = bN = S.

Thus br € B, and B is a right ideal of R. Since R is right simple, B = R and C = I,
a contradiction. B

The above Theorem 2.5 also says that a RSE semigroup with N a non-empty
ideal of S'is a PRS semigroup. Also, in light of Theorem 2.5, it is logical to consider
the situation where B # []. When this is the case, the next result demonstrates that
the structure of § is very complex. In-particular, B is infinite, S is factorizable [9] in
terms of N and left magnifying elements [4] from B, and there exists an infinite de-
scending chain of right ideals of S in N for each element in B.

THEOREM 2.6. Let S be a right simple element semigroup, with R, N, B and C as
in Theorem 2.5.

If B # [, then:

(1) B is an idempotent-free infinite ideal of R.
(2) S is factorizable.

(3) For each b in B, there exists N;e N, for i= 1,2, 3, such that the N; are necess-
arily distinct and bN| = N, bN, = B, and bN; = C.

(4 For each b in B there exists an infinite descending chain of right ideals of S,
N;, j=1,2,3,.., such that . .
2.7 N = NyoN,oN,>..,
and for all j = 1,2,3,...,bN;.y = N; and BN, = N.

If C % O, then:

(5) C is a right simple subsemigroup of R.

(6) For each ceC, ¢cR = R and ¢B = B.

(7) If B is also non-empty, then B is a proper ideal of R.

Proof. (1) Consider the proof of (3)—(1) in Theorem 2.5 and note that for r in R
and b in B, rbN = rS = § implies that rbe B. Thus, B is an ideal.of R.

Next let Ep denote the set of idempotents of B and let e e Ep. Forany n in N
there exists x in S such that ex = 7. Thus en = n, and therefore eN = N. But then
€€, contraditting that ee B. Hence E, = [J. Clearly, if B is finite, Ej, % [,
i.e., a contradiction. Thus B is an idempotent-free infinite ideal of R.

(2) Any b in B is left magni

fying element. By [9; Theorem 4.1, p 532] Sis
factorizable.

(3) This follows directly from the definition of B; when C = O, let Ny = .

(4) Let be Band let N, = {aeN:bae N}. Since bN = § # N, then Ny # N.
If se S and ae Ny, then ase N and bN,sSNsc N imply that base A, Therefore,
ase Ny, and Ny is a right ideal of § in A. ’

Now letn e N. Since N = S, there exists x e N such that bx = n. Bvidently
geN, and hence by definition, xeN,. Thus N <bN;, and since bN, <N, then
N1 = N
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To generalize, we proceed in an inductive manoer. Define

Ny ={aeNji baeN} for j=1,2,3,.,

and note that N;S Ny..y for all j, Suppose that ij.-—= Nj_lifor.some J ﬁy&hﬂ c;Z{:;
;ition of Ny I)NJMQNJ. If neN;, then n is alsq in Nj.q an ﬁlered "
BN, = N,_, implies that there exists an x in N such .that bx = n. Thus x and bx
in JNj imjpljr that x & N4y and therefore Nj;ijZ}\; ie., bbjy\}l'+1 T\r N;. S
, if for some f, Nj.q = Ny, then Nj = Njs1 = BN = Nj-r. Bu
bN, Ncglt\} : = Nj.gy ir{lplicjs"that N; = Nj.,. Continuing in this manner plOd}Icesl
J jm ! j—l - ~ . 0
= N, = N, a contradiction. ‘ i )
i Laszly, let’ N, be a right ideal of S, a&Njyy, and se 8. Since ¢ € N21+ 11\; their;
we N;and there‘l;‘bre as € Nj. Also, bas € NieN;. Tl?ere‘l:'ore as € N’;} ];n_— Nj+ ;nd
a riglit ideal of S in ;. It follows directly that for j = 1,2,3, ..., ;= N,
hence part (4) is established. . . |
(‘5;9 If e, de C, then ¢dN = ¢N = N implies C'is a subsemgrou'p ogv S._F;frcco,nc_l
in C there exists an x in S such that cx = d. Wlll\trare }:g E.N, ;E‘llzllt]i;tlr; c~ c} N con
imilarly, if N = S implie =cS =
adicts that d e C. Similarly, if x € B, then x . S= o
Elj; i— N, which is a contradiction, Thus x & C, and therefore C is a right simple
subsemigroup of R. o E CvueR
(6) Let ¢ce Cand consider the followings § = ¢(N U R) = cN u ;:RB Rt
= N u R. Tt follows that ¢R = R, since cRER and N and R are disjoint. By
argument on B, ¢B = B. . i
is { i . :
(7) This follows directly from ( . B "
The following illustrates Theorem 2.6 and gives 2 1.1011-tr1v1a} e.xamplrei o}i;tas ls; o
group which is a RSE, but not a PRS semigroup. A trivial example is any Iig
semigroup. ' "
EXAMI’LE 2.8. Let S be the bicyclic semigroup generated2 by p ir];dcqzw{ll}
dg =1, gp # 1. Tt is straightforward to show that]? = {l,p,0% }, v;lr s
: [1 BL {p,p* ..}, and that N = {¢'p’: i>0,j20}, wher.e i, j g
‘;}“ 'm— klE’B 'the sets Ny={q"*U=1%p": m>k,n>0}, for j=0,1, 2,....i)jca>jky
tl::c:)llziit];ons c;[’ Theorem 2.6. Tn particular, since m >k implies thatm+(j— A
. r r X J - N
it then follows that (%N, = N. | . o
Lastly, since pR % R, R is not right simple and therefore S is 2 RSE gemigroup
ich i t a PRS semigroup. . . ) i
wmc}"’fl:i ?aost result -of this section generalizes the fact th’at in a right simple se
group S, all of §is an A-class under Green’s # relation. 1 of vight sl
THEOREM 2.9. If S is a right simple element semigroup, then the ;e i
elements is an R -class of S. Moreover, each right simple element is aiso a Igi
iy ; i ined in
elem?roof If o, be R, then 'aS =bS = § implies aZtb. 1Thuss.zt is ;o;:ftaani O
some .‘%-cl'z;ss. C;mversely, if xdla such that ¢ € R, then xSt =aS" =45,
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x e R If N # [1, then x ¢ N since x in N implies that {x} U xS< N, contradicting
xS = S. Thus in either case x e R.
For r in R, there exists x in S such that r®x =r, ie, r is right regular. B

The converse to.the second part of the above theorem is an open question.

3. Homomorphism on right simple element semigroups. In [8], R. R. Stolt
describes group homomorphs of a semigroup. Since a group is left and right simple,
it is natural to seek a generalization of Stoll’s work by factoring a group homo-
morphism into a right simple and a left simple homomorphism. While the work
in [6] pursues this notion for semigroups in general, this section extends Stoll’s
results for group images with zero, to right simple images with zero. In particular, we
investigate right simple (right simple with zero) homomorphisms on RSE semi-
groups. Moreover some of the results consider the preservation of the right simple
elements in a one-to-one manner under the homomorphism, and the effect the homo-
morphism has on N. A lemma is needed.

Lemma 3.1 [6; Theorem 2.7]. If v is a right simple homomorphism on a semi-
group S, then y maps every right ideal of S onto Sy.

A difficulty related to the concept of preserving the right simple elements under
a right simple homomorphism is illustrated by the next result: Additionally, it shows
that the maximum right simple homomorph may preserve none of the right simple
elements and may in fact preserve (isomorphically) some of the non-right simple
elements.

THEOREM 3.2. There exists a class of semigroups having right simple elements such
that the maximum right simple homomorph of the semigroup does not separate any of
the right simple elements. Moreover, there exists a subset of the non-right simple
elements which is isomorphic to the maximum right simple image.

Proof. Let G be a group with identity e, and let 7 denote the full transformation

semigroup on X = {1, 2, 3}, such that G and 7 are disjoint. Define S as G U 7 with
multiplication in S given by the following. For g, hin G and s, ¢ in 7, let ghe G,
steJ, and gf = tg = g in G, i.e., G is an ideal of S. Recalling that the symmetric
group G is contained in J, it can be verified that G, = R and hence that
N =Gu(T\Gy).
. It is evident that S is a regular semigroup, so let E, denote the set of idem potents
of S and let ¥(c) denote the set of inverses of ¢ in S. Recall that S is called con-
ventional if cEc’SE; for each ¢ in § and each ¢’ & V(). By [5; Proposition (2),
Pp. 398], 7 is a conventional semigroup, and it follows that cEc'cE foreach cin S
and ¢’ in V(c), i.e,, S'isa conventional semigroup.

The minimum group congruence on S will also be the minimum right simple
congruence on §, since Lemma 3.1 implies that G will be mapped onto the homo-

morph of S. By [5; Theorem 3.1, p. 396], the minimum group congruence on S is
given by:

B ={a,b)e'SxS: iai = ibi for some ie Eg}."
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This reduces in the case of S to:
(33) B={(ab)eSxS: ea= eb}.
1t follows from equation (3.3) that the induced homomorphism, 84 maps all of R
to ef, and maps G isomorphically onto S/f.

Thus the right simple elements of § are collapsed under 4, and G, a proper
subset of N, maps isomorphically onto the minimum right simple image of S. W

Remark 3.4. Tn the previous theorem, G is a group ideal of $ and so S is also
a homogroup. Therefore by [6; Cor. 3.22] it can also be shown that the minimum
group congruence on S is given by f, and that ¢ = S/p.

The next result shows that some RSE semigroups possess a right simple with
zero homomorph.

THEOREM 3.5. Let S be a right simple e/eme/zf semigroup. Denote the set of right
simple elements by R and let N = S\R. If' N is an ideal of S, then:

1) S/N = Ru {0},

= (2) SIN is a right simple image with zero.

Proof. If N = [, the results follow trivially. If N s¢ [, then the Rees factor
semigroup is isomorphic to R w {0}, and (1) is true. Also, by Theorem 2.5, R is
a right simple subsemigroup and (2) is true. W

While the next theorem is stated for right 0-simple homomorphs, it also applies
to right simple with zero homomorphs. Additionally the following results generalize
the group with zero results of Stoll, [8; Theorem 1, p. 476]. Note that in [8 ; Theorem 2,
p. 476] Stoll calls (0)y~* the residue of (€)y~*, where e is the identity of the group
image. By residue, Stoll means, in the notation of [2; § 10.2, p. 182], that the left
and right residues of (¢)y~! are equal. Recall that the right residue of a subset &
of §is Wy = {se8: ss"UH = [}, where s/~ H = {xe 8: sx e H}.

THEOREM 3.6. Let S be as in Theorem 3.5, and let y be any non-trivial right
0-simple homomorphism on S, and denote (0)y~* by I. Then:

T MW Iisa prime ideal of S contained in N.

(2) Iis a proper subset of N if and only if Ny = Sy.

() I is the right residue of S\I.

Proof. For any xeI and se S, it follows that (x)y = (sx)y = 0, and there-
fore I is an ideal of S. By Theorem 2.5, I<N, so let xye I for x,ye S and assume
that x,y ¢ I. Then xS and yS are right ideals of § such that xS/ and pSE,
i.e., were xS, then under y there exists u € S such that xuy = xy But then xu e’
wou]d imply that xy = xuy = 0, contradicting that x ¢ I

Since (xS)y = (pS)y = Sy, Sy = S)y = (xyS)y=U)y =01is a contradic-
tion. Hence x or yel, and [ is a prime ideal of S.

In (2), Ny-Sy = (NS)y <Ny implies that Ny is a right ideal of Sy and therefore
Ny =Sy or Ny =0, If I N then Iy = 0 and Ny = Sy. Conversely, if I = N
then Ny = 0, .
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To prove (3), let H = S\L If i€ Tand =1 # [, then there exists a e "
such that 7z € H. But this contradicts part (1) since iae I Thus =1 F = and
ISWg. ; _ |

Conversely, suppose that we Wy and let he H, i.e, Ay = 0. If wé¢l, then
there exists x e S such that wxy = hy. Since hy # 0, then wx e H and therefore
x e w11 H, contradicting that WU H = 7. Thus WysT and I = Wy, B

It can be shown additionally that J< W, the left dual of Wy. In order t.hat
I = zW,y would also need to be left simple, i.e., a group with zero homomorphism
as in Stoll’s paper.

Tn the following, 7 is restricted to being a right simple homomorphism as com-

pared to right simple with zero. By Lemma 3.1 and Theorem. 2.5, it is evident that
for a right simple homomorphism y on S, Ny = Sy, i.e., elfﬂnents ?f N may not be
collapsed to a single element under y as they are under a right 0-simple h‘omomot-
phism. If p also preserves R ina one-to-one manner, then we have the following result.

TueoreM 3.7. Let S be a right simple element semigroup, and denote the right
simple elements by R. If y is a right simple homomorphism on S which preserves the
set R in a one-to-one manner, then for N = S\R # [,

(1) N is a disjoint union of right neat subsets.

(2) Ny = R if and only if Sy = R.

(3) RysNy.

Proof. By Lemma 3.1, Ny = Sy. Thus by [6; Section 2, Theorem], (1) is true.

Also, Ny = Sy = R implies (2) is true. Part (3) follows since Ry=Sy = Ny. B

Tn considering a possible converse for Theorem 3.7, we show that one can have
R & Ny, where y is not a right simple homomorphism, nor is Sy isomorphic to R.

ExaMPLE 3.8. Let S = G U H, where G and H are disjoint isomorphic finite
groups, and § is the Clifford semigroup with multiplication homomorphism &: G—H
any isomorphism of G onto H. Finally, let y be the identity map on S. Then R = G,
N = H, and Ny & R, but § is not right simple nor isomorphic to R.

Lastly, one can. consider the image of R under a homomorphism of S.

TeorEM 3.9. Let S be a right simple element semigroup. If y is a homomorphism
on S, then Ry is a subset of the right simple elements of Sy.

Proof. If tye Sy and x e Ry, then there exists an r in R such that x = ry.
For r, there exists s in S such that rs == t. Thus x.sp = ry-sy = rsp = 1y, 80 X is
a right simple element of S. M )

Note that the containment in Theorem 3.9 may be proper as demonstrated
by Theorem 3.2.

4. Further results and applications. The theorems of the preceding sections are
now applied to RSE semigroups where various other conditions exist, such as -
niteness, left cancellativity, the existence of'idempotents, or.the descending chain condi~
tion on right ideals of S. In particular, the results of [1; p. 39] are generalized for RSE
semigroups.

icm

A generalization of right simple semigroups 167

The first theorem combines some earlier results and the concept of descending
chain conditions (DCC), [7]. i

THEOREM 4.1. Let S be a right simple element semigroup, and let N denote the
right ideal of S of non-right simple elements. If N is non-empty and satisfies the descend-
ing chain condition, then N is an'ideal of S, and S is a partial right simple semigroup.

Proof. If the DCC holds in N, then by the contrapositive of (4) of Theorem 2.6,
B is empty. Thus by Theorem 2.5, N is an ideal of S, and S is a PRS semigroup, H

COROLLARY 4.2. If' S is a right.simple element semigroup such that N [ and
Sfinite, then S is a partial right simple semigroup.

Proof. By the DCC on N, Theorem 4.3 applies. It can also be shown directly
that B = . M ‘ ,

Recall that if a semigroup S has idempotents, the set of idempotents will be
denoted by Eg. Also, for right simple semigroups, we have the following result.

Lemma 4.3 [1; Theorem 1.27, p. 38]. A semigroup S is a right group if and only
iff S is right simple and contuins an idempotent.

The generalization is evident if R is a right group, i.e., S is then a PRG. However,
Example 2.8 shows that Ep % [ or E¢ 5 [] does not necessarily imply that S is
a PRG. The same example shows that C finite is also not strong enough for § to
be a PRG. Thus the following are some conditions in order that a RSE semigroup
be a PRG. .

TacoreM 4.4, Let S be a right simple element semigroup, and let N % [ denote
the right ideal of S of non-right simple elements of S. If R = S\N is finite, S is a partial
right group. Moreover, N is an idedl of S.

Proof. By Theorem 2.6 (1), B = [J. Thus Rs= C and therefore by Lemma 4.3,

" R is a right group and S is a PRG. H

The previous theorem therefore implies that any finite RSE semigroup is a PRG.
Additionally, it says that if S is an infinite RSE semigroup with R finite, then R must
necessarily be right simple. ‘

A result related to the preceding theorem is the following:

THEOREM 4.5, Let S be a right simple element semigroup. If Sx = Syx for all x, y
in S, then S is « right group.

Proof. Suppose B # [J, C # [, and let be B, ce C. Then Sc = Sbe, so
that ¢? = xbe for some xeS. Clearly x & R, since x in N would imply that
xbe = ¢*e N, contradicting that C'is a subsemigroup of S. Next, N = xbeN,
ie, N = xbN = xS = S, a contradiction. Thus one of B or C is empty.

Let r & R. By hypothesis, Sr = Sr? so that r*> = sr* for some s € S. Also, since
%8 = 8, it follows that s is a left identity for S, i.e., Eg # [1. Again, s € R, and,
since SN = N, we have that s C. Thus B = [] and therefore by Theorem. 2.5,
N is an ideal of S.

Suppose N s [ and let n e N. Then Sr = Sar for r & § implies that 2 = ynr
for some y in S. But since X is an ideal of S, then r? € N, a contradiction. Thus N is
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in fact empty, and §'= C, i.e., S is a right simple semigroup. By Lemma 4.3, § is
a right group. W

The preceding result also generalizes [2; Exercise 4, p. 85), viz., if S is right
simple and satisfies Sx = Syx for all x, y in S; then S is a right group.

We now consider RSE semigroups possessing a cancellative property. Recall
from [1; p. 39] that if a semigroup is right simple and left cancellative, then it is a right
group. A similar result holds for RSE semigroups:

THEOREM 4.6. If S is a left cancellative, right simple element semigroup such that
the set N of non-right simple elements is non-empty, then:

(1) Nis an ideal of S.

(2) S is a partial right group.

(3) SN is a right group with zero.

Proof. If B # [0, then for be B, bN = S implies bn = b* for some n in N.
But by left cancellation, n = b, a contradiction. Thus, B = [] and therefore by
Theorem 2.5, N is an ideal and R is a right simple subsemigroup of S. Since left
cancellativity also holds in R, then by [1; p. 39], R is a right group, and S is a PRG.
By Theorem 3.5 (1), part (3) is true. M

While the preceding theorem generalizes right simplicity with left cancellation,

the following development considers right cancellativity and thus extends some of
the Baer-Levi theory.

LevMA 4.7. Let S be aright simple element semigroup without idempotents. T hen:

(1) The equation xy =y cannot hold for x in S and y in the set of right simple
elements of S.

(2) If S is also right carcellative, then the equation xy = y cannot hold between
any two elements x, y in S.

Proof. (1) If xy = y for some y in R, then there exists s in S such that y§ = X.
Thus x? = x, a contradiction.

(2) Suppose that xy = y for some x, y in S. For r in R, there exists s in S such
that rs = y. Thus xrs = rs, and cancelling on the right implies that xr = r, contradict-
ing part (1). B

Note that Lemma 4.7 is not quite as strong as [2; Lemma 8.3, p. 83]. However,

since right cancellativity is a precondition for the Baer-Levi theory, Lemma 4.7
(2) suffices.

Lemma 4.8. Let 8 be an idempotent free, right cancellative, right simple element

Semigroup such that N # [1. Then, for any s in 8, [S\Ss]+|N| = |S|, where N de-

notes the set of non-right simple elements of S. Moreover, if |N|<|S\N|, then
[S\Ss| = |S].

Proof. Let s& S and define & on S by:

0 = {x', §uch that xx' = s if xe R,
x, if xeN.
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When x € R, x' exists since x is then a right simple element of S and we choose one
of these to be x@. If x, ye R and x& = y@, then x(xQ) =5 = y(y&) = y(x@),
and thus x = y since § is right cancellative. Hence Q is one-to-one on R.
Suppose next that R& n S5 # [1. Then there exists z such that z = r@ = ps
for some r in R and ¢ in S, But z = r@ implies that rz = r(rd) = 8, and ’Fllerefore
rys =1z =8, contradicting Lemma 4.7(2). }Ietl?e RQ A Ss =[], and therefore
RO SN\Sy. Since neither R nor N can be finite, i.e., E, =[], then we have

S| = |R|+|N| = |RD|+|N|<IS\Ss|+|N|<|S] .

Thus |[S\Ss|+[N] = |51, and if |N|<|R], it follows that [S\Ss| = [S|. W .

TugoriM 4.9, Let § be as in Lemma 4.8. If |N|< |R], whet:e R is the set of right
simple elements, then S can be embedded in a Baer—Levi semigroup of type (p, p),
where p = |S] . . ' o

Proof. The proof follows that of [2; Theorem 8.5, p. 83] since |N|<|R| implies
by Lemma 4.8 that |S| = [SN\Ss|. W

Remark 4.10. Note that in Lemma 4.8 and Theorem 4.? abc.)ve, tye case of
|N|<|R| implies that rN 5= S for any r in R.'Thx';ls B = ;R isa right simple S}I\.’lrb-
semigroup, i.e., S is a right cancellative, partial right simple semigroup. If |[R| <IN,
it is an open question whether or not Theorem 4.9 holds. ’

ExaMpLE 4.1, Let A be an infinite set, and let H be a permutation group on A.
Denote the Bact-Levi semigroup BL(l4|, [4]) by M and define the semigroup
U = H u M. Lastly, define the semigroup S by § = Mx U. One can now show, by
using Exercise 10, page 86 of [2], that R = MxH an‘d N = MxM. Mdreo;ef,
both R and N are right cancellative, right simple, and.1dem1.)oteut free. Thus S is
right cancellative and idempotent free, but § is not rl'gt.xt simple.

The next property considered is that of left simplicity. ' '

Treorem 4.12: If S is a left simple, right simple element semigroup, then S is

FOUP.

’ gnl)’foo[’. Let re R. Since Sr = S, there exists e € S such that er = r. For any

= =yt = 8 1 i ft
* seS, there exists #& .S such that rt = . Thus, es = ert = rt =& Le, e1sa les

identity for §. Also, Se = § and therefore for any € S,.s = ye for somtc;1 u ; ,Zl
It follows that e is an identity for S. In particular, e is an 1dt.*,mpote.nté B)tr o Z Euof
of Theorem 1.27 of [1], S is a left group and must be the d1recfg ploGuc-
-a group and a left zero semigroup. Bvidently, E = {e} and so S = G. i
Theorem 4.12 also says that S ==‘R = C,Ii. e,, N = []. By the contrap
of Theorem 4.12, we have the following rosult. ' '
COROLLARY :1.13. If S is an idempotent free, right simple element semigroup,
then S contains left ideals. .
To conclude this section, we compare some of the results obtain
Iisted in [1; p. 391 ,
1. (RS) and (LS): S is a group, [1; p. 391

ed here, to those
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(RSE) and (LS): S is a group, Theorem 4.12, above.
I (RS) and (LC): S is a right group, [1; p. 39]. ‘
(RSE) and (LC): S is a partial right group, Theorem 4.6, above. '
1. (RS) and (RC): The Baer-Levi theory, [2; Chp. 8].
(RSE) and (RC): Theorem 4.9 and its lemmas, above,

Lastly, there now exist obvious generalizations utilizing the left and right duals
qf the.results of this section, e.g., one should now consider semigroups haﬁ;@
right simple elements and left simple elements, and so on,

®
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