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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

Most directional cluster sets have common values

by

C. L. Belna, M J. Evans and P. D. Humke (Macomb, II1.)

Abstract. Let f be a measurable function from the open upper half plane into the Riemann
sphere, let x be a point on the real line R, and let @(x) denote the set of all directions 0 O<b<m)
in which the essential directional cluster set of fat x contains the total essential cluster set of fat x.
It is shown that @(x) is of full measure for almost every and nearly every x& R; furthermore, if f is
continuous; then ©(x) is residual for almost every and nearly every xe R. Then an application of
this result to regular directional cluster sets is given.

§ 1. Introduction. Let H denote the open upper half plane, and let x be a point
on the rea] line R. For each direction 6§ (0<f<=) and each r (0<r< ), let

Ly(x,7) = {ze H: arg(z—~x) = 6 and |z—x|<r}.

Let S be a Lebesgue measurable subset of H, and let 6 be a direction for which
& N Ly(x, o0) is (linear) Lebesgue measurable. The upper density D(S; x) of S atx
is the limit superior as r{0 of the ratio

(=) . ISn{ze H: |z—x|<r}|/|{ze H: Jz—x|<r}|.

(We note that here and throughout this paper, the symbol |G| denotes the Lebesgue
measure of the set G; as to whether the measure is linear or 2-dimensional will
always be clear from the context.) Should the limit as r 40 of (x) exist, the limit
value is denoted D(S;x) and is called the density of S at x. The corresponding
directional densities D(S; x, 6) and D(S; x, 0) are defined analogously with the
set {ze H: [z—x|<r} in () replaced by Ly(x, r).

Let f be a measurable function from H into the Riemann sphere W. Then
the essential cluster set C,(f, x) of f at x is defiried to be the set of all values we W
for which 5( oy, x)>O for each open set U containing w; the definition of the
essential cluster set C,(f, x, 0) of f at x in the direction 0 is similar with D (7 (U); %)
replaced by D(f~*(U); x, 6). Casper Goffman and W. T. Sledd [5, Theorem 2,
P- 299] have established the following relationship between these two cluster sets.

THEOREM GS. If f: H—R is measurable and 0 is a direction, then

Clfsx)=Clf, %, 0),
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except for a set of measure zero; furthermore, if f is continuous, then

Cf,x)=C(f, x,0),
except for a set of the first category.
To supplement this result, we prove (§ 4)
THEOREM 2. Let f: H~W, and for each x € R let

O(x) = {0: CLf, H=Cf, %, O} .

If f is measurable, then |©(x)| = n for almost every and nearly every x € R; further-
more, if f is continuous, then @ () is residual for almost every and nearly every x € R.

(The expressions “for almost every x € R” and “for nearly every x € R” mean
that the exceptional set is respectively of measure zero and of the first category. Also,
a residual set is one whose complement is of the first category.)

In § 3 we establish a measure-theoretic result (Theorem 1) from which Theorem 2
follows readily; the technical lemmas needed in the proof of Theorem 1 are estab-
lished in § 2. In § 5 we present (Theorem 3) a corollary of Theorem 2 concerning
ordinary directional cluster sets. We conclude (§ 6) by listing several open questions.

§ 2. Lemmas concerning o-trapezoids and vyx-sectors. By an «-frapezoid we
mean a trapezoid T in H with one of its bases I (henceforth referred to as “the base
of T™) being contained in R and having length twice that of the other base and for
which the corresponding base angles are both equal to « (0 <o <}n). An «-trapezoid
whose base is centered at x € R is called an a-trapezoid at x. By a yx-sector at X we
mean the angular region in H lying between L,(x, ) and L,(x, co).

In the interest of expediting both the statements and proofs of our first two
lemmas, we introduce some new notations.: Suppose T is an «-trapezoid with

_base I, suppose xi,%;, ..., X;y€J, and suppose o(x,) denotes the ysx-sector at

X, (n=1,2,...,2N) for some y and x satisfying o <y<x<n—o. Then with each
sector o(x,) we associate a “capped sector”-o*(x;) as follows: o*(x;) = o(x,) N T,
and

n-1

a*(x,) = [o(e,) N T1— U o*(xy)

for n = 2,3, ...,2N (the bar denotes closure in H). Finally, we define the “radial
proportional” of the capped sector ¢*(x,) to be the number

plo*(x,)] = supQ/infQ,

where Q = {|Ly(x,, ) N o*(x,)]: y<O<u}.
We now present our first lemma which will be used only in the proof of
Lemma 2.

LemMA 1. Let T be an a-trapezoid with base I and height h. Let 0 <hi <h, and ser

T={zeT: Im(D)>h} and A = {zeT: Tm(2) = h}.

Most directional cluster sets have common values 3

Let y and x be such that a<y<x<n—a, and let I = (a, b) be the subinterval of I
where a and b are such that L,(a, o) and L.(b, o) contain the left and right endpoint
of A, respectively. Set

N = INT{?.[Z(h/fz)—l]cotoc/(coty-—cotz)}
(INT = greatest integer function) and partition 1 into 2N equal subintervals

I, 1z, ..., Ly. For each index n, let x, be any point lying in the middle half of the
interval I, and let o(x,) denote the yx-sector at x,. Then

2N
@ | szlo*(xn)l>lTl
and
(ii) rplo*(x)]1<8(h/R)osce  (n = 1,2, ..,2N).

Proof. Since |I| = 2(2h—h)cota—h(coty—cotsx), it is easy to see that
1
N = 1+INT r—l[—— .
h(coty—cots)
Hence, for each of the intervals I, (n = 1,2, ...,2N), we have

R (coty—cotx fi(coty—cot

(coty )<II,,I< h(coty otx)
4 2

Let &, be the height of the triangle complementary to o(x,) U a(x,.,) and having

the interval between x, and x,.; as base, ie., let

(€3]

hy = |x,—X,41]/(coty —cots) .

It follows from (1) that
) Fh<h, <3k (n=1,2, ..,2N=1).
For each index n, let m, and M, denote respectively the infimum and supremum
of the values |Ly(x,, c0) n o*(x,)| taken over all @ satisfying y<B<x. Clearly
m,2min(h, s, k) with hy =h,y =k and M,<hcsca; hence, conclusion (ii)
follows from the left-hand inequality in (2).

Now, by the right-hand inequality in (2), we have k,<hforn = 1,2, ..., 2N—1.

2N

Therefore, |J 6*(x,) covers all of T' except for a small triangle 4, in the Jower left

n=1
corner of T and a small triangle 4, in the lower right corner of T Since the base
angles of 4; are « and —x and since the base of 4, has length <3| |, we can utilize
the right-hand inequality in (1) to deduce the inequalities
Areald, 1<%l |*/(cota~cotzx)
coty—cotx | .
<sog(coty —cotz) | ———— | 2 :
ras(coty—cots) l:cotoz——cotx:' " !

<yos(coty—cotx)h? .
1*
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Similarly, L o
. Area[d,]< I (coty +cota)
coty—cotx \
< t3g(coty ~cotx) | ——— | 2
- 128 (coty ) (coty + cotoc>
< 1oy (coty —cotx) A2 .

Conseqﬁentljr,
3 Areald; U 4,]<%(coty—cots)h? .
Finally, since for each n

Areala(x,) N (T—T)] = L(coty—cotx)h?,

conclusion (i) follows from (3), and the lemma is proved.

In the statement of the next lemma and for the remainder of the paper, we
use |G[* to denote the Lebesgue outer measure of the linear set G.

LemMaA 2. Let T be an a-trapezoid at x with base I, let y and x satisfy
ay<w<n—a, and let j be a positive integer. Then there exists a positive integer
N = N(x, y, %, ) for which the following is true: Let Q be any subset of I that is either
dense in I or satisfies |Q n J|*>(1—1/4N)|J| for each subinterval J of I containing x.
Then there exist 2N poinis xy, Xy, ..., Xoy in Q such that

. 2N 1
@ [U o*@x)| > (1 - -2—.> 1T
n=1 J
and
o) IS — o = 1,2,..,20),

2—J4Z3)25
where o(x,) denotes the yx-sector at x,.

Proof. Let / be the height of T, set i = (2~ +/4—3/2j)}, and let T and I be
as in Lemma 1. (Note that |T| = (1—1/2/)|T].) Set

= INT{2[2(#/h)—11cota/(coty —cotx)}

and partition I into the 2V equal intervals I, I, ..., Iy. Let I’ denote the middle-
half subinterval of I,. For any choice of points x, € I, both conclusions () and (i)
follow from Lemma I.

If Qis dense in 1, it is clear that the points x, can be chosen from Q. Furthermore,
since |I| = 4N'|I;], the x, can also be chosen from Q if |Q N I*>(1—1/4N)|1].
This proves the lemma.’

After applying Lemma 2, we will need the next lemma to determine the relative
measure of a certain set in the capped sectors o*(x,).

Most directional cluster sets-have common valies 5
Lemma 3. Let S be a measurable subset of H. Let 0<y<x<m, let ¢ = o(6)
be a positive continuous function on-[y, x], and set
4, = {ré?: y<B<x and O<r<g(9)}.

Let © be a subset of [y, x] with |0 =1(x—7v) for some 1 (0<i<]1), Iffor some £
(0<e<1),

6)) 1SN La(O, 2 ()| =e0(0) for 'each feO,

then
lShAQl>3 [1 (1_1)77 |Ag[ >

where 11 = M[m, M = max{p(6): 6ely, ]}, and m = min{g(0): Oe [y,x]}

Proof. Set 4,(0) = {re’: 0€® and 0<r<g(6)}. Then, letting ys denote the
characteristic function of S, we have

@ IS4 =] j xs(re”’);d;d9> | j vdrd — ¢ ! 5 rardd = ¢ 142(@)[

Where the mequahty is easily deduced from hypothesis (1).
Letting & = [y, %]~ O, we see that

a(0)
() 14,8 =_I | rdrdo = %j O dI<t M*|B|<t M*(1-D(x—7).
& 0 o
Then, since
x p(0) R "
4ol = [ [ rdrdd =] [0(0))d0=1m*(x—y),
g 4
it follows from (3) thaty ’ ’
(©) 14(0)<(M?|m?) (1 =D)14,|
Now, in view of (2), we see that

IS A 4215 0 40)] > 14,0)] = 5*{14 |~ 4B} .

[

The conclusion of the lemma now follows from (4).

§ 3. A preliminary theorem concerning density. For ScH and x e R, we define
the set

O(S;x) ={0: D(S;x,0) =1} ;

and for certain sets .S we will determine the nature of the set of points x at which
D(S; x) # 1 while the set @(S; x) is either of positive measure or of the second
category. In so doing, we will make implicit use of both the decomposition

0(S; x) = ﬂ U@,k(S x)
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where
0;(S; x) = {8: |S N Lg(x, N[=(1-1/3))"?r for 0O<r<1/k},

and the fact that each @,,(S; x) is measurable provided S is measurable. (The measur-
ability of the sets @ ;(S; x), and hence that of the set @ (S; x), can readily be verified
utilizing Fubini’s theorem.)

TreorEM 1. If S is a measurable subset of H, then D(S; x) = 1 at almost every
and nearly every point x of the set

A = {x:10(S; %[>0} ;

Surthermore, if S is closed, then D(S; x) = 1 at almost every and nearly every point x of
the set '

v B = {x: ©(S; x) is second category} .
Proof. For 0<a<im, set
A, = {x:10(S; x) N (&, n~a)| >0} .

For the positive integer j, let 4,(j) be the set of all points x & A4, such that there
exists a sequence of x-trapezoids T,(x) (n =1,2,..) at x with T,(x)-x and

8nT, 1
IS0 .01 >~ for each index 7,
Tl

where § = H—S. For the positive integer k, set

Aa(js k) = {XEAa(j): [@Jk(s: x) N (d, 7‘—'“)|>0} N

Set © = 8csca/(2— \/;—:3/2_}) and choose a value /e (0, 1) for which
@ A=-13p0 -0 =D )>1-1/25.
Then for y and x satisfying a<y<x<n—a, set

AUk, 1y, = {xe A3, ) 10,(S; %) 0 (7, )| 2 1(e—7)} .

To prove the statement in the theorem concerning the set 4, it suffices to show
that the set

Q =40,k 1,y,%)

is a nowhere dense set of measure zero on R provided S is measurable. (This follows
from the fact that the set of points x € A for which D(S; x) # 1 is contained in
4 countable union of sets of the type Q.)

Let N = N(a,y,%,j) be the integer guaranteed by Lemma 2, and suppose
there exists a point xo € R and a §,>0 such that either Q is dense on the interval
Iy = (x4—08g, Xo+8) or -

1@ AI*>(1~1/4N)- 1]

for each subinterval I of J, containing x,. Then let T be an o-trapezoid at xg with
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base I, and height <(1/k)sina. According to Lemma 2, there exist 2NV points
X1s X3, .5 Xay 10 @ N T such that if o(x,) denotes the yx-sector at x,, then

2N .
@ [ U o*Gedl>(1—1/2))-|T|
n=1
and
i) rple*(x)l<t (n=1,2,..,2N).

Since
2N 2N
I8 TI<IS o U a*x)l+1T- Ulﬂ*(x,.)l ,
n=1 n=
it follows from (i) that ‘
2N
@) "8 aTI<I8 A Ut +1/2)IT].
n=1

Furthermore, in view of (ii), it follows from Lemma 3 that for each n
1S 0 o* )= =131~ (1 =D*]-[o* ()] 5
and by (1) we have
1S 0 *(xe,)| > (1 —1/2)- [e*(x,)]

(n=1,2,..,2N).

Hence,
2N 2N 2N 2N
IS " Ue*x)l = 2 1S 0 o*Ge)l>(1-1/2)) led*(x,.)l = (1-1/2j)-| Ulo*(x,.)l .
n=1 n=1 n= n=
That is,

2N 2N .
180 U e*Ga)l</2) ] U o*(x)<(1/2)-1T] .
n=1 n=1

This combined with (2) yields the inequality

ISAaT 1

<-.
Ty J .

Hence x, ¢ 4,(j). This precludes x, € Q; and, in view of the Lebesgue Density The-

orem for arbitrary sets, the statement in the theorem concerning the set 4 is proved.
Now, for 0<a<im, set

B, = {x: O(S; x) is second category on (&, T—a)} .

For the positive integer j, let B,(j) be the set of all points x € B, such that there exists
a sequence of a-trapezoids T,(x) (n = 1, 2, ...) at x with T,(x)—x and
SaT,e) 1

- =1,2,..).
T o ¢ )
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For the positive integer k, set
B, k) = {xeBaCi): 0,(S; x) is second category on (&, t—c)} .

To prove the statement in the theorem concerning the set B, we need only show
that the set B,(j, k) is of the first category and medsure zero on R whenever S is
closed.

If § is closed in H, then the set @,(S; x) is closed in (0, x). Hence, the set
B,(j, k) is a subset of the set 4,(j, k) which we now know to be of the first category
and measure zero on R. This completes the proof of the theorem.

§ 4. Proof of Theorem 2. Let # be a countable basis for the topology on W,
and let % be the collection of all sets expressible as the closure of a ﬁmte union of
sets in 4.

Using the notation introduced prior to the statement of Theorem 1, we associate
with each Ge % the set

E(G) = {x: l@(f“i(G);x)l>0 and D(fYG), x) # 1}
and the set
F(G) = {x: ©(f~!(G); %) is second category and D(f~(G); x) # 1} .

If f is measurable (continuous), it follows from Theorem 1 that each of the sets
E(G) (F(G)) is of the first category and measure zero on R. Now let

E={x:]10(x)] # n} and F = {x: @(x) is not residual} .
-Then, since E< (J E(G) and F< |J F(G), the theorem is proved.
: Gew Gew

§ 5. Applications to ordinary directional cluster sets. Throughout this section,
we let C(f, x, 6) denote the ordinary cluster set of the function f at x e R in the
direction 8. By consolidating results of F. Bagemihl, G. Piranian, and G.<S. Young
[2, Theorem 6] and Bagemihl [1, Theorem 11], we obtain y

THEOREM BPY. Let f: H—W be holomorphic. Then to almost every and nearly
every x€ R, there corresponds a set ©@* = O*(x) of directions whose complement

contains at most one direction and for which C( [, x,0) # Q.
8eo

By combining two results of E. F. Collingwood [3, Corollary 2 and Theorent3}
with a result of P. Lappan [6, Theorem 1], we arrive at the following analogue-of
Theorem BPY for continuous functions.

TaEOREM CL. Let f: H— W be continuous. Then for almost every and nearly every

X € R, there corresponds a set @* = ©*(x) of directions whose complement is of the
first category and for wlnch ﬂ C( f,x,0) # 3.

‘We note that this theorem is also a direct consequence of Theorem 2;,fuf—
thermore, Theorem 2 yields the following result which supplements both of the
theorems cited above.
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THEOREM 3. Let f: H~W be measurable. Then to almost every and nearly every
X € R, there corresponds a set O* = O*(x) of directions whose complement is of measure
zero and for which ﬂ C(f, x, 0)-5 @.

§ 6. Open questions.
QUESTION 1. Does  Theorem 2 remain true when either (a) “continuous” is re-
Placed by “measurable”, or (b) “measurable” is replaced by “arbitrary”?

(For arbitrary f: H—W, Lebesgue onter measure is used to define the essential
cluster sets.)

" REMARK. Theorem 2 does not remain true when “continuous” is replaced
by “arbitrary”. For if so, it would follow that Theorem CL is true for arbitrary
functions; however, P. Erdss and G. Piranian [4, Theorem 3] have- shown thIS not
to be the case by proving

THEOREM EP. There exists a function f: H— W with Ihe property that to’ each
X € R there corresponds a second category set of directions @*(x).such that, for any
three distinct directions 6,, 0,, and 05 in @*(x),

n e, x,0) =0

QUESTION 2. Does Theorem 2 remain valid when the definition of the set O (x)
is changed to O(x) = {6: C(f,x) = C(f, x,8)}?

Added in proof. Since submission of this paper, we observed that the statements of our theorems
could be strengthened with very little change in the proofs. More specifically, in each of our theorems,
the phrase almost every and nearly every can be replaced by the phrase vir tually every, the meaning
of which is given below.

Following E. P. DolZenko [Math. USSR — Izvestija 1 (1967), pp. 1-12], we say that the
subset P of R is porous at the point xe R provided

limsup M >0,
£=0 €

where r(x, , P) is the length of the largest open interval in the complement of P which is entirely
contained in the interval (x—e¢, x+¢). Then P is a porous set if it is porous at each of its points,
and it is a o-porous set if it is the countable union of porous sets. Clearly, a o-porous set is both
of the first category and of measure zero; on the other hand, L. Zajitek [C‘asopls pro péstovani
matematiky, ro€. 101 (1976), Praha, pp. 350-359] has exhibited a perfect set of measure 0 that is
not ¢-porous. *

Now the expression “for virtually every xe& R” means that the exceptional set is a o- porous
set; and, in view of the last sentence in the previous paragraph, we see that this expression is stronger
than the expression “for almost every and nearly every xe R”.

The essential changes needed to improve our results as indicated above are the following:
(1) Change the hypothesis on the set Q in Lemma 2 to read: Let Q be any subset of I such that
r(x, e, Q)<e/4N for 0< &< }|I|. Then the lemma remains valid, as a close examination of its proof
will reveal; (2) In the proof of Theorem 1, suppose there exists a point x, and a J,> 0 such that
r(xo, &, Q)<ef4N for 0<s<d,. Then proceed as before. The contradiction arrived at will now
imply that Q is porous, as desired.
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Ambiguity and stratification
by

Marcel Crabbé (Louvain)

Abstract. E. Specker has proved that simple type theory with additional axioms expressing
typical ambiguity is consistent iff Quine’s “New-Foundations” is. His proof is essentially model-
theoretic. In this paper, the same result is established using proof theory. It is also shown that there
is a recursive procedure that transforms a proof of a stratified formula in a proof in which all for-
mulas are_stratified.

1. Let ST denote sim;;Ic type theory with, as additional axioms, all sentences
of the form:

(1.1

where A" is obtained from 4 by raising all types by 1. Specker [2] has proved that ST
is consistent iff Quine’s NF is. Specker’s proof is model-theoretic. The same result
will be obtained, here, using proof theory.

Moreover, it is provable that:
~ (r.p.) there is a recursive procedure for transformmg a cut-free derivation .o of
a stratified Theorem A of NF (or of a theory all of whose axioms are stratified)
into a derivation 4, such that

1. # is a derivation of 4, all of whose formulas are stratified;

2. of and @ are equivalent in the sense that, removing the cuts from of and & in
the usual way ([1]), one obtains essentially the same derivation.

In fact, the proof ‘of Theorem 2 (below) gives rise to a recursive procedure for
obtaining from a cut-free derivation . of a stratified theorem of the predicate
calculus, a derivation # in type theory with the additional rule:

A
) IR

A At

In (+) it is understood that A is a theorem and that 4* is as 4 except, loosely speaking,
for the type indices. The details of the proof of (r.p.), although they are clumsy,
do. not, however, involve any significant difficulties. For-this reason, the proof will
not be given.
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