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construction of @, a “ chain from k' to an element k'’ of S¥ (note thﬁt
Tic®(k) = <15.(k”), since fi(k") = fi(h) = 1). By the argument of the previous
paragraph £ is “ chained to an element of X with degenerate ®-image. This com-
pletes the proof that condition (iv), d) of the C-monotone Definition 7.1 is satisfied,
and with it the proof of Theorem 7.4

. References

f11 R.H. Bing, Partitioning a set, Bull. Amer. Math. Soc. 55 (1949), pp. 1101-1110. °

[2] — Partitioning continuous curves, Bull. Amer. Math. Soc. 58 (1952), pp. 536-556.

[3] D.W. Curtis and R. M. Schori, 2¥ and C(X) are homeomorphic to the Hilbert cube, Bull
Amer. Math. Soc. 80 (1974), pp. 927-931. J .

[4] — Hyperspaces of polyhedra are Hilbert cubes, to appear in Fund., Math.

{51 E.E. Moise, Grille decomposition and convexification theorems for compact metric locally
connected continua, Bull. Amer. Math. Soc. 55 (1949), pp. 1111-1121.

[6]1 R.M. Schori, Iwerse limit and near-homeomorphism techniques for hyperspace problems,
Proc. of‘ the Second Pittsburgh International Conference 1972, Springer-Verlag, Le;:tu;é
Notes in Mathematics 378, pp. 421-428 (1974). '

71 ?00M7 85((:;19?,;’21;13‘ J‘ioliq\gl;st, 2 is homeomorphic to the Hilbert cube, Bull. Amer, Math.

81 ;31’(/1139 ;z;)im;gfm;lc;j: QI‘g;.closed unit interval is a Hilbert cube, Trans. Amer. Math. Soc.

1[g] ;\; H)we:rspaces of graphs are Hilbert cubes, Pacific . Math. 53 (1974), pp. 239-251,

[10] Fu.n:f(;j[ iz;lzgs(l]c;a és)‘:u'pll)z.z zczgzirzﬂsc:lz'fé des hyperespaces de continus localement connexes,

LOUISIANA STATE UNIVERSITY
Baton Rouge, Louisiana

Accepté par la Rédaction le 5. 4. 1976

A degree theory for almost continueus functions
by

H. Arthur DeKleine and Jack E. Girolo * (San Luis Obispo, Ca.)

Abstract. A degree theory is developed for almost continuous functions. This theory is used to
prove certain fixed point theorems as well as a generalization of the Borsuk-Ulam theorem.

I.' Introduction. In recent years non-continuous functions have been studied
and applied to fixed point theory. :

Let 2 X— Y be a function from a topological space X to a topological space Y.
For C<X, the graph over C is defined to be {(x,f ()): x e C}, a subspace of the
topological space X x Y. The graph of f, denoted by I7f, is defined to be the graph
over X. A function f: X— Y is called a connectivity furiction if the graph over each
connected set is connected. O. H. Hamilton [7] initiated the study of connectivity
functions when he proved the following theorem:

TuEoREM 1. Every conmectivity function from the n-cell I" to the n-cell has a fixed
point.

Let bd(#) denote the boundary of N. In order to prove Theorem 1, Hamilton
defined an additional class of functions: ' .

DazrNITION 1. If f: X—»Yis a function, theri f is peripherally continuous if for
each x e X, each open V< X for which x € V, and each open Uc Y for which f(x) e U,
there exists a neighborhood N of x such that NV and f (bd(M)sU.

He then proceeded to show, for n>2, that every connectivity function is per-
ipherally continuous and every peripherally continuous function has a fixed point.
John Stallings [11] discovered a gap in Hamilton’s argument, corrected it, and
generalized the result to polyhedra. In doing so he defined a third class of functions:

DEEINITION 2. A function f: X— Y is almost continuous if for every open sub-
set U of X'x ¥ with I'f< U there exists a continuous function g: X—->YwithIgeU.

As a consequence of a key theorem in Stallings paper we have:

TrEOREM 2. If f is a peripherally continuous function from either I" or S", n>2,
into R™ then f is almost continuous.

* This paper is dedicated to the memory of William Carroll Chewning, a friend and a bright
young mathematician who was a source of inspiration to the second author.
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Generalizations and related results, to mention a few, are contained in papers
by Chewing [1, 2], Cornette [3, 4], Girolo [6], Kellum [10], Hildebrand and San-
derson [8], and Whyburn [12].

The purpose of this paper is to study almost continuous functions. We develop
a degree theory for almost continuous functions in a natural way such that the proper-
ties of degree theory for continuous functions carry over, at least in part, to almost
continuous functions. We use this theory to obtain certain fixed point theorems
concerning almost continuous functions, as well as a generalization of the Borsuk—
Ulam theorem. We also extend Tietze’s extension theorem to almost continuous
functions. '

II. Local degree theory. Unless otherwise stated, D or D, will always represent
a bounded open subset of R" and g will always denote a point of R".

DerFmnTION 3. Let f: D—R" be almost continuous. Suppose ¢ ¢ f (bd (D)).
We define the local degree, d(f, D, g), as follows. Let % be the collection of all
open sets in D x R” that contain I'f. If U e % then deg(U) consists of those integers n
for which there exists a continuous -function g: D>R" such that Tgc U and
d(g, D, q) = n together with + co (— oo) if there exists an unbounded set of positive
(negative) integers in deg(U). (See Cronin [5] for the definition of local degree for
continuous functions.) Then the local degree of Jf with respect to D and ¢ is

d(f,D,q) = N deg(0).

We proceed to show that d(f, D, q) # @. First let U e%. The set bd(D)x {q}
is closed and g ¢ f (bd (D)) which implies I'f< U— (bd(D) % {g}) an open set. There
exists a continuous function g: D—~R" with T'gc U— (bd(D) x {g}). It follows that
d(g, D, q) is defined (see Cronin [5]). that d(g, D, q) e deg(U) and hence that
deg(U) # @. '

Next we show () deg(U) # @. Toward that end we consider two cases.
Uett

Case 1. Suppose that for each Ue% it is true that + o0 e deg(U) or
—coedeg(U). Let U, Ve%. Then Un Ve and either +owedeg(Un V) or
—oo e deg(U n V) which implies that + oo & deg(U) ndeg(V) or —oo edeg(U) N

N deg(V). So +w e () deg(U) or ~w e M deg(U).
Uet Uedt

Case 2. Suppose there exists a U & % such that deg(U) {0, +1, ..., +m} = M.
Further suppose for each # € M there exists a U, € such that n ¢ deg(U,). Con-
trary to what we have established, the set Ved defined by

V= ﬂM(Un nU)

would have deg(V) = @. Thus in both cases we conclude

d(f, D, q) =Uﬂq‘deg(U) #0.

icm
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Suppose /= D-+R" is continuous and g ¢/ (bd(D)). Then there exists an open set U
with I'f< U such that any continuous function whose graph lies in U has the same
local degree at g. (See Cronin [5].) Thus we conclude,

PROPOSITION 1. If fis a continuous furiction the degree, as just defined, is the
set cbnsisting of the degree as defined by Cronin [5].

THEOREM 3. Let f: D—R" be almost continuous with g¢f(bd(D)). If
d(f,D, q) # {0} then there exists a pe D such that f(p) = q.

Proof. Suppose no such p exists. Let U be an open subset of D x R” contain-
ing I'f. Then ¥ = U (D x R*~Dx {g}) is an open subset of D x R" contailxing If and
hence containing the graph of a continuous function g such that d(g, D, 0) # {0}.
By Theorem 6.6 [5] there exists a p such that g(p) = ¢ contrary to T'g< V.

Let D be the open unit disk in the x, y plane centered at (0, 0) and S the bound-
ary of D. Let

z = rexp[if] = x+iy, z; = exp[ni/d],

Zy4y = expli(n/d) i(1/2)k] = exp[if,]
=

and )
w, = exp(in)/z,, n=1,2,..
ExampLE 1. Select a closed disk E, such that the boundary circle passes
through z, and z,,, and if ze E, n D then 0,<6<80,,,. Set P,=E,nD. We
define f,: D—R> as follows. If r = 1 and 6,<6<6,., set

1@ = expli(0y+(0ys s — 0, +27) (0 —0,)/(Bs 1 —0,)] -

Ifze 3———}’: set f,(z) = z. By Tietze’s extension theorem f, can be extended to all
of D. We set
zeP,,

) {fn(Z),

z otherwise. -

ExAMPLE 2. Define 1: R2—R? by
if x<0.
otherwise

(=x, )
1(x,y) = {
¢ x,)
and g(z) = fe1(z2). '
ExaMpLE 3. Let C, denote the circle with center i and passing through z.
Let i: D—R? be defined by
z if |z] =1,
hz) = g(2) :
g(SnC,;) otherwise.
In each of the preceeding examples the functions are almost continuous and

d(f,D,0) = {+o0},d(g,D,0) = Z U {+oo} and d(h, D, 0) = {0}. We' esfabliszh
the last identity leaving the others to the reader. Let ¢ denote the metric in Dx R?,
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S the boundary of D, B, the continuum in D bounded by C, u C,_,,, ¢ the distance
from (1,0) to C,,, ¥V = {(z,w): z # i and g(h(2), w)<e}, Q the component of
D~C,, containing i, N = @x Q and U=V uN-Sx{0}.

Suppose 'k < U an open subset of D x R%. Consequently there exists a continuous
function a: D—R? with Ta< U. We show d(e, D, 0) = 0. We do this by showing
that a is homotopic to a map.b: D—R?* and d(b, D,0) = 0.

If ze S—Q then g(a(z), b(2))<e<1. Thus,

(i) for each ze S—Q, 0 ¢h(z)a(5; the line segment between /(z) and «(z).

From the continuity of a at z = i we have

(i) there exists an integer M such thatifze {J (B, nS) u {i} then0 ¢ zMa(~)

m=M

Finally,

(111) if for some n<A there exists a we B, n S such that 0 ea(n)h(w) then

O¢t( )a(z) for all ze B, n S.

The validity of (iii) can be argued as follows. Cleally (w a(w)) e N, for if this »

were not the case o (h(w), a(w))<1 would imply 0 ¢ a(w) h (w}) Hence 0 ¢ wa (w)
Now suppose there is some point v € B, n S such that 0 € #(v)a(v). Then (v, d(v)) eV
and h(v) e {exp[if]: —n<0<0}. Set

B={z1"ze C, and C, separates w and v} .

The definition of / implies #(B)< {exp[if]: —~n<OH<0}. If ze B then a(2) ¢ C,,.
For if it was then (z, a(2))e V contrary to the fact that if (z,a(2))e ¥ then
0(a(z), h(z))<e. Then set a(B) has nonempty intersection with {z: y<0} and Q.
This is not compatible with the property that the continuous image of a connected

set is connected. Thus 0 ¢ t(u)a(v) and the conclusion of (iii) follows.
Let

B* = {z: 7€ B,, n<M and there exists a we B, such that 0 e a(w)h(w)}

and

C* = (B, U B,
Then we define b: S—R" by

V..U B, {)—B*,

h(z) fzeC*u(S—0nS),
t(2) if ze(B*n S),

IM+1

b(z) =
otherwise.
We extend b, by Tietze’s extension theorem to a mapping b: D-R2. By (i), (i), (iii)

and the Poincaré-Bohl theorem [5] a is homotopic to b. Clearly d(b, D, 0) = {0}.

We observe that 7S = g/S which shows that the degree is not determined by
the boundary.
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THEOREM 4. Let f, g: D—R" be almost continuous functions such that f |S = g/,
= bd(D) and the restrictions are continuous functions. Thend(f, D, q) = d(g, D, q)

plowded the degree is defined.

Proof. Let F: D>R" be a continuous extension of f/S,

e =inf{o(f(x), g): xe S},

where ¢ is the metric in R", and € = {(x,)) e Sx R", o (f(x),»)=¢}. Then C is
a Closed subset of Dx R", U = Dx R"—C is an open subset of Dx R" and 'F< U.
By the Poincaré-Bohl theorem [5] any continuous function #: D—R" with The U
must have the same degree as F. Thus

d(f5§’q)=d(F3§’q)_-—'_d(g!5’q)'

DEzFINITION 4. An almost continuous homotopy is an almost continuous mapping
F: DxI-R". We set Fy = F/Dx{0} and F; = F[Dx {1}.

The next example shows that the‘degrees of F, and F,; can be different.

ExAMPLE 4. In the plane let D, be the closed unit disk center (0, 0) with bound-

ary S, D, the closed disk with center 7 and radius \/2—- /2, and D = D, U D,.
We define k: D—>R?%, K: DxI—R* and F: DxI—->R> as follows

k(z) = g(2) if ze Dy,
h(C.n S) otherwise,
Kz, 1) = z if ze Dy,
- z(l—0)+zt/]z] otherwise

and
F=kokK,

where g and 4 are defined in Examples 2 and 3 respectively.

It is easy to see that k, and consequently F by Proposition 4 [10], is almost con-
tinuous. Further, F is an almost continuous homotopy with d(F,, D, 0) = {0}
while d(F;, D, 1) = Z u {£ 0}

THEOREM 5. Suppose F: Dx I-R" is an almost continuous homotopy and q: I-R"
such that for each tel, q(f) ¢ F(bd(D)x {f}). Further suppose there is an open set
Vo= Dx R", and an integer m with the property that TF,&V, and if g: D—R" is
a continuous function, Tg< Vy, then d(g, D, q(0)) = m. Then med(F,, D, g(1)).

Proof. Let ¥, = Dx R"be open with TF, = V;. Set C; = DxR"-V;,i =0, 1.
We think of C; and V; as being subsets of Dx {i} x R". Set

C, = ) H (bd(DYx {£} x{g(®}),
C=CyuCuCyand U= DxIxR'—C. Then U is an open subset of D xIx R"
and TF< U. Hence there exists a continuous function G: DxI-R" with TG U.
By construction TG, ¥;, i =0, 1. Since d(Gq, D, q(0)) = m it follows, by the
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continuous homotopy Theorem [5] that d(Gy, D, g(1)) = m. Therefore
med(F;, D, q(1)).

CORROLLARY 1. Theorem5 is applicable provided one end of the almost continuous
homotopy, Fy or Fiy, is a continuous function.

1. The degree of f: S"—S".

TusoreM 6 (). Let f: K—B" be an almost continuous function with K a closed
subset of B", the 1 ball. Then there exists an almost continuous F: B"—B" such that
FIK=f ’

Proof. The technique to construct an extension F is similar to that used by
Cornette in Theorem 1 [3].

Let x,: B"xB'—B" be the projection into the first coordinate map and

% = {H: H is a closed subset of B"xB" and n,(H)—X is the cardinality
of the continuum €},

The cardinality of € is €. We will order € into Hy, H,, ..., H,, ... so that no element
has € predecessors. Using transfinite induction we will select an element from
each H,. Select an element P, from H; such that 7,(P,) ¢ X, and for each ordinal o«
assume that for each ordinal f<a an element Py e Hy, such that m;(Py) ¢ K, has
been selected. We select an element P, € H, such that

nl(Pu) ¢py {711(1),;)} u K.

Such a P, exists since there are € choices and by the well ordering card () =,(Py))<€.
B<a

In each H, a point P, may be chosen by transfinite induction. We set

f(x) if xek,
Flx)=4¥ if (x,y) = P, for some o,
anything otherwise.

Let TF< U an open subset of B"x B". Let C = B"x B"—U.Then C ¢ ¢ and it follows
that 7,(C)~KX is countable. The set ¥ = U n (Kx B") is an open subset of Kx B"
and If< V. Since fis almost continuous there exists a continuous function a: K—B"
such that Ta< V. By Tietze'’s extension theorem a can be extended to a continuous
function A: B"—B". Thus I'4/K< U and by the continuity of 4 there exists an open
set Q with K< Q and T'4/Q < U. Since n,(C)— K is countable, Q can be chosen so
that bd(Q) n =,(C) = @. Then we set C* = n,(C)— Q which is a compact count-
able set. Let C* = {¢,, ¢5, ...}. For each ¢, there exists an open set N, x U, such
that (e, F(c)) € Ny x Uy, Ny x Uy U and bd(U,) n C* = @. By the compactness
of C* there is a finite number of the N,’s say Ny, ..., N, Which cover C*.

() Kenneth Kellum has proven this as well as a more general result which will appear in this
journal.
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We define
F(c,) if xe Ny,
g (\_) — ( k) . ] _k
A(x)y if xeQ.

By Tietze’s extension theorem g can be extended to a continuous function G: B"-B"
and clearly TG= U. Thus F is almost continuous.

DEFINITION 5. Let S" denote the 1-sphere and f: S"—S" be almost continuous.
Then we define deg(f) as follows: m & deg( f), if and only if, there exists an almost
continuous extension F: B"—B" of f such that me d(F, B", 0).

By the previous theorem the definition above is well defined.

DERINITION 6. Let £z §"—S™ be almost continuous. Let % be the collection of
all open subset of S x S" which contain I'f. If U e % then deg*(U) consists of those
integers » for which there exists a continuous function g: §"—S§" such that Tgcs U
and g has degree # together with +co (—- o) if there exists an unbounded set of
positive (negative) integers in deg*(U).

We define the degree of f, deg*(f) as follows:

deg*(f) =UU%deg*(U) .

PROPOSITION 2. If f: S"—S" is continuous then deg(f) agrees with the usual
definition of degree for continuous functions.

THEOREM 7. Let f: S"—8" be almost continuous. Then deg(f) = deg*(f).

Proof. Let m be an integer in deg(f) and suppose U is an open subset of
S"x S with If<U. Set C = S"xS"~U, K = {(x,1): (x,»)eC and o<rgli}
and V = B"x B"—K an open subset of B"x B". Since m € deg(f) there exists an
almost continuous extension F: B'-»B" of f with m e def(F, B, 0). Furthermore
IfcV. So there exists a continuous function G: B"-—B" with TGSV and
d(G, B",0) = m. Let H = G/S". Then I'H/||H||cU and deg(H/||H||) = m. Thus
m e deg*(f).

Let m be an integer in deg*(f) and suppose F: B"—B" is an almost continuous
extension of f as defined in Theorem 6. Let USB"xB" be an open.subset with
TFcU and set ¥ = (S"xS") A U. Then ¥ is an open subset of §"x §" with /'S V.
Since m € deg*(f) there exists a continuous function g: §"—5" with Tg= ¥V and
deg(g) = m. Now one can use essentially the same argument as was used in
Theorem 6 to show that g can be extended to a continuous function G: B"—B"
with TG U. Thus m e deg(f)- :

Similar arguments show oo € deg(f), if and only if, £ e deg*(f)-

DEsNITION 7. A mapping F: 8" x I-S™ that is almost continuous is called
an almost continuous homotopy. We set Fy = F[S"x {0} and F, = F/S"x{1}.

Analogus to Theorem 5 and Corollary 1 we have:

THEOREM 8. Suppose that F: S"x I—+8" is an almost continuous homotopy. Further
suppose there is an open-set Vo=S"x S" and an integer m with the property that
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TFE,cV, and if g: S"—S" is a continuous function, Tg<=V,, then deg(g) = m.
Then m e deg(Fy).

COROLLARY 2. Theorem 8 is applicable provided one end of the almost continious
homotopy is a continuous function.

IV. Applications.

PROPOSITION 3. Let f: X—R" be almost continuous. If g: X—R" is continuous
then f+g: X—R" is almost contimuous. If g: X—R is continuous, then g-f: X—R"
is almost continuous.

Proof. Let % denote either addition or multiplication. Let U be an open subset
of Xx R" with Tf*g=U. Consider the continuous mapping G: X x R'—Xx R"
defined by G(x,y) = (x,y*g(x)). Then G"(U)SXxR" is an open subset and
Tf=G (V). So there exists a continuous function #: X—R" with The G™*(U).
Then G(x, h(x)) = (x, h{(x)xg(x)) e U for each xeX. So h+g is a continuous
function and Thxg< U. Thus fxg is almost continuous.

The next theorem was first proven by John Stallings [11].

THEOREM 9. Let f: I">I" be almost continuous. Then there exists an x € I" such
that f(x) = x.

Proof. We assume that I" is the closed unit ballin R" and for each x & bd (I")
S (x) # x. Consider

F: I"xI-»R* and gq: I-I"
defined by )

F(x,t) =x—tf(x) and q()=0.

It follows from Proposition 3 that F is an almost continuous homotopy. Further
if x e bd(I") then F(x, t) % 0. The homotopy fulfills the hypothesis of Corollary 1
thus 1 e d(x—f(x), I", 0). By Theorem 1 there exists an x € I” such that x—f (x) = 0
or f(x) = x.

In that which follovys ||x]] will denote the Euclidean norm in R".

THEOREM 10. If f2 S"—>S8" is almost continuous, g: S"—S" is continuous and
F(x) and g(x) are never antipodal (f(x) 5 —g(x)), then there exists an almost con-
tinuous homotopy between f and g.

Proof. The homotopy is given by

(A=Dfx)+19(x)
, (=0 f () +gGaI

Application of Proposition 3 and [Proposition 1, 11] show that F is almost
continuous. B

In the corollaries below we assume f: S"—S" is almost continuous.

CORROLLARY 3.1f f sendsno point to its antipode, then there is « homotopy berween f
and the identity map. Therefore 1 e deg(f) and deg(f) # {0}.

Flx, 0=
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CORROLLARY 4. If f has no fixed point then f is homotopic to the antipode map.
Hernce by Corollary 2, (—1)"** e deg(f).

If X is a metric space and x, y € X then the distance between x and y will be
denoted by ¢(x,»). If & >0 then N(x,e) = {y: o(x, y)<se}. .

PROPOSITION 4. Let X be a metric space and f, g: X— R" be functions such that fis
continuous at Xy and g is peripherally contiviuous at xo. Then f+g is peripherally con-
tinuous dt Xx,.

Proof. Let ¥ and U be neighborhoods of x, and f+ g (x,) respectively. Let >0
be such that N(f+g(x,), &)< U. Since f is continuous at x, there exists a y>0 such
that if o (x, xo) <7 then o ( f(x), f(x,))<}e. Since g is peripherally continuous at x,
there exists a neighborhood M of x such that McN(x,,7) and g(bd(M))<S
SN(g(xo), +&). Thus it follows that f+g (bd(M))SN(F+g(x,), &).

LeMMA 1. Let a: S"—>S™ be the antipodal map, i.e. a(x) = —x and let % be a col-
lection of open subsets of S" satisfying

@) if xe S™ and ¢ is any positive number then there exists a Ue % such that
xe U and dia(U)<s, and

() if Ue¥ ther a(U)e.

Then there exists a minimal finite subcover of S" such that a(U) is an element
of the subcover if and only if U is also.

Proof. Let S* = {x = (3, ., Xpus): Xe R |Ix]| =1 and x;=0 for
i>k+2} where 0<k<n. We proceed by induction. Surely S° has such a finite sub-
cover. Suppose S* has a minimal finite subcover Uy, U,, ..., U, such that a(U,) is
a member of the subcover 1<r<m. Let

. m
H! = {xe S x,,20) and C**'=H"*'-U,.
i=1

For each x e C**! we may select, by (i), a U,e% so that xe U, and
U,n{xeS* x,,<0l=0.
Since C**! is compact there exists a minimal finite subcover Uy;, Usa, Uy,. Then
{U1, Uy ooy Upy Uy, Usay vy Usyys @(Usg), a(U) 5 s a(pr)}

is the appropriate subcover of $¥*1. By induction the result follows.

The technique of proof of the next lemma is similar to that used by John
Stallings to prove Theorem 5 [11].

LeMMA 2. Let f: "8, n=2, be an odd, f(—x) = —f (), peripherally continuous
Sfunction and WS S"x S™ an open subset with Tf< W. Then there exists an odd conti-
nuous function g: S"—S" such that Tg= W.

Proof. First, note the fact that there exists a number &°>0 such that if Q,
and 0, are two connected open subsets of " with connected boundaries satisfying
(@) dia(@)<e® fori= 1,2, (il) Qs N @y # ¥ and (i) 02— 0y # D # Q11— Do,
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then bd(Q,) n bd(Q,) # . Since f is peripherally continuous there exi§ts for each
point x & X for each number ¢>>0 a positive number § = d(e)<e an.d a ne'l‘ghborhood
U.=S" such that U,=N(x, ) and f(bd(U))SN (f(x),%e). Since f is odd the
reflection a(U,) = {—y: ye U }SN(—x,8) and f(bd(@(U)) SN (f(—x), Le).
Without loss of generality we may assume U, and bd(U,) are connected [p. 255, 11].
Also, for each x € §" there exists a positive number e* = e*(x) such that

N(x, e)x N(f(x), )= W
and
N(=x,e)x N(f(~x,e¥)sW.

We now define
% = {U,: xe U,=8", U, is a connected open set,
bd(U,) is connected, dia(U,)<min(e°, e*(x)) and
FPAU))EN(f(x), Te*(x))} -

Then % satisfies the hypothesis of Lemma 1. Thus there is a minimal finite subcover
of §”, such that U, is an element of the subcover if and only if a(U,) is too. Denote
such a subcover by {Us;, Usz, -s Usy} Where x; is the point associated with Uy.
Let # be less than the Lebesgue number of the covering and less than g (1, BA(ULD),

© i=1, .., m. Next, let $" be triangulated in such a way that the mesh<%#, each x;is ’

a vertex and if A is a simplex of the triangulation so is a(4). Call the vertices of the
triangulation o, vy, ..., v,. To each vertex v; assign one of the vertices x;, denoted
by p(v;) such that the closed star of v, in this triangulation, is in U(p(v). Also,
make the assignment in such a manner that p(a(v)) = a(p@v)) and p(x;) = x;.
We defined g(v;) = f (p(v;)). It is clear that for the g (v) thus defined g (—v) = —g (v).
Let {09, ..., U3, } be the vertices of an z-simplex 4 of the triangulation. We show that
there exists a vertex of A, which we call ¥, such that

{g(i0)s s g} SN (g (1), e*(p (V))) .
iToward that end we let
e = max{e*(p(v)): v is a vertex of the n-simplex A}

and V" be the corresponding vertex. Letting v be any other vertex of {g(v;0), ..., ()}
It is clear -that

2(g(@), f(bd(Up (M) <te*(p(@))

and .
a(g (M), £ (bd(Up(7))))<te*(p(¥) .
Since bd(Up®)) nbd(Up(V)) = O,

2(g®), g(M)<te*(p@))+1e*(p(M)<es.
Thus g(v) e N(g(V), €b).
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From this and the fact that the mesh size is less than 17 is follows that for all
vertices of the n-simplex A

(Us g(”)) € Uy XN(Q ), 3*(P(V)))g w.
Extend g linearly on 4. It is easy to see that g satisfies the requirements of the lemma.

DEerFmNITION 8. Let £, g: X— Y be functions mapping set X to set ¥, An element x
in X is called a coincidence point iff f(x) = g(x).

LEMMA 3. Let g arid h denote real valued functions defined on the closed interval
{a,b]. If

) (9()=h(@) (9 G)~h(®)<0,

(2) the graphs of g and h are connected, and .

(3) the functions have the common property that at each point of the domain one
of the furictions is contirivous then f and g have a coincidence point.

Proof. Conditions (1), (2) and (3) hold if g and £ are replaced by tan™*(g) and
tan™ (%), respectively. Thus we may assume that f and g are bounded. Assume f
and g have no coincidence point.

A point x4 in the domain will be called a switching point if in every neighborhood
of x, there exists two points x; and x, such that (g (x,)—k(xy) (g (x2) ~h(x,)) <O.
Conditions (1), (2) and (3) imply that if x, and x, are two numbers such
(9(x)—h(x))(g(x)—h(x,))<0 then there is a switching point x satisfying
X <x<x;. Thus the set of switching points is perfect. Clearly, the set of switching
points is closed. The complement of this closed set is the union of a countable collec-
tion of open intervals, UI;, such that on each interval I, either g(x)<h(x) or
9()>h().

We will show that within any neighborhood of a switching point x, there are
switching points at which g is continuous and also switching points at which 4 is
continuous. To accomplish this task we construct a new pair of functions.

Let I; = [ay, b;]. Define on the interval two coincidence free continuous functions
g:(x) and h(x) satisfying the conditions: g(x) = g,(x) and h(x) = k(x) for x = g
and b; and |g—g|, |G—G|, |h—h|, |H-H|<1/i where

g = inf(g(x)), h = inf (h(x)),

g =inf(7(x)), F=inf(h(x)),

G=sup(g(x)), H=sup(h(x),

G= Sup(ﬁ,(x)) , H=sup (Ei(x)) ¥
the supremum and infimum being taken over the interval I;,

Define
' g(x)'_‘- gl(x)’ XEI“
g(x) otherwise,
h(x) = [R(x), xel,,
h(x) otherwise.

4 — Fundamenta Mathematicae CI
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The functions g and f have the same set of switching points as g,and 1and ata switch-
ing point g or Fiis continuous if g or & is continuous, respectively. Suppose the graph
of § is not connected. Then there exists disjoint open sets U and V’ separating the
graph of 7. Let

4= {(x,g(): (x,g))e U},
B={(x,g(): (x,gx)eV}.

“The graph of g being connected implies that

AnB+#@ or AHE#Q.,
Assume A N B #@. Thus there "ei‘(ists a séquence : (x,,g(x))e4 and a point
(x,g(x))eB such’ that -

(xns g(xn).)"»(x: g (X)) ° |

‘C'learly (x, g(x)) is a switching point from which it follows that g(X) = g (x)‘-lch
may assume that x, € I;, for some integer in. Since I'g|l;, is connected it follows

that TG |I,,< U. By the construction of g it is possible to-find a y, € Iy, for each n,
such that )

(5=, 569

a contradiction. Similarly ki has a connected. graph. :

- Now assume that in a neighborhood of some switching point x the same func-
tion, say g, is continuous at all switching points. Then g is continuous on th_is 1_1¢igh—
borhood and provides a separation of the graph of ., which is connected:  Thus
.a contradiction. . B } . e
" Suppose x, is a switching point at which g is continuous. Select positive num-
bers §, and g, such that if |x—xo| <8, then |g (x).—g(xo)|<§0<_1. There exists
a switching point X;, |x;—Xo|<do, at.which A is_continuous. Select positiye
numbers 6, and g, less than 1 such that if |x—x;|<d, . then |x—xo] <& -and
[R(x)—h(x;)|<e,. There exists a switching point x,, |x; —X,] <8, at which g is
continuous. Select positive numbers &, and &,, less than 1 /2% such that if |x—x,| <&,
then [x—x,| <8, and |g(x) —g (¥2)| <e,. Continuing in this. manner we get a sequence
of points x, such that x, conyerges to some switching point at which both g and /s are
continuous. At a switching point both functions cannot be continuous. Thus we have
a contradiction. E ‘ :

TrroreM 11. Let f: S"—R" be a connectivity function such that for each x fiis
contiruous af x or —x. Then there exists an x such that f(x) = f(—x).

Proof. Consider the case n = 1. Define C;: ISt by Cy(f) = exp(int) and
Cy: I-+S* by Cy(1) = exp(in(1+1). Set g = fo Cy and h = fo C,. Then g, 1: I-R
are connectivity functions satisfying the hypothesis of Lemma 3. Thus they have
a coincidence point x. Therefore f (C,(%) = g(x) = h(®), £(C2) =f(=C ().
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Now assume 1>2. Suppose there is no x for which f(—x) = f(x). We think
of R” = {(x15 s Xy4 1)t X301 = 0}. Define F: S"—8" by o

Fx) = (fG)=f (=) f ) =f (=]} «
The function F is peripherally continuous by Proposition 4, [Corollary 2“8‘,-— 8] and
[Theorem 4, 11]. Clearly F(—x) = —F(x) which implies that F is,odd.

We show deg(F) # 0. By Lemma 2 each open set W< S"x S that contains

the T'F also contains the graph of a continuous function G: S"-S" which is odd.
Then deg(G) # 0 and hence deg(W) # {0}.

Suppose there exists an open set U containing the I'F such that

deg(U) = {x;, ... %},

where each x, is an integer. If no such U exists then +co or —oo is in every open
set containing the I'F and hence deg(F) # 0. Suppose for each x; e deg(U), x; # 0,
there exists an open set V; containing the T'F such that x;¢ ;. Then
deg(UnVyn..nV,)={0}, which is a contradiction. Thus we conclude
deg(F) # {0}.

On the other hand F: §"—S" is not onto and hence deg(F) = {0}. Thus we
conclude that there is an x such that f(x) = f(—x). This completes the proof.

The second case of the above theorem also follows from [Theorérn 3.2, 9].

EXAMPLE 5. Let ¢ = tan™'(dnz)+1 and f: S*—R? defined by

(x—sint, y—sint) if z# +1,
Sflx,y,2)=<(1,0) if z=1,
(~1,0) if ze=—1.

Then f is connectivity function and no (x,y,z) exists for which f(x,y,z)

=‘f(_'xa =Y —Z)'
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Ordering probabilities on an ordered measurable space
by

Andrzej Wieczorek

Abstract. Objects considered in the paper are ordered measurable spaces. The space of all
probability measures on such a space X is also an ordered measurable space, denoted by X*, with
naturally defined o-field and order in it. Since X can be considered as a subspace of X*, the order
in X* is an extension of the initial order in X, The paper is devoted to the investigation of connec-
tions between spaces X and X*, in particular we look for classes which are closed under the oper-
ation X—X*. E. g such is the class of absolute measurable sets in the ordered Hilbert cube.

0. Introduction.

The objects considered in the paper are ordered spaces; an ordered space is
a set X with a o-field M of its subsets and with an ordering relation <. The whole
system (X, M, <) will be, for simplicity, denoted by X. In cases where a confusion.
could arise as to what is the o-field and what is the relation in X we also use
subscripts, i.e. My denotes the o-field in X and <y denotes the order in X.

An ordered space X is proper iff it has a base, i.e. a family o/ of subsets of X'
which generates the o-field My and defines the order in the following sense: for
every x,ye X, x<y iff, for every Ae s, xeAd implies y € 4.

For every proper ordered space X we shall define another ordered space X*
(which is also proper) called a probabilistic extension of X. Its elements are all prob-
abilities on My; for the o-field My the only reasonable definition is accepted: it is
the smallest o-field in X* such that for every A € My the function P—P(A) is measur-
able. However, it is not quite obvious what would be a “natural” definition of the
relation < in X'*.

There is a natural embedding § of the set X into the set X* (which associates
with every x the probability 9, concentrated at x). Thus the order in X'* is expected
to be an extension of the order in X in the sense that x<y iff 9,<8,, for every x, .

Consider as an example the real line' # with the Borel o-field and the usual
order <. If “x<y” has the meaning “y is (in some sense) not worse than x”, then
obviously every probability concentrated on an interval [a, b] should be “better”
(in the sense of the extended relation <) than any probability concentrated on [c, d]
whenever d<a. More generally, a probability Q on Borel subsets of the real line


Artur




