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Ordering probabilities on an ordered measurable space
by

Andrzej Wieczorek

Abstract. Objects considered in the paper are ordered measurable spaces. The space of all
probability measures on such a space X is also an ordered measurable space, denoted by X*, with
naturally defined o-field and order in it. Since X can be considered as a subspace of X*, the order
in X* is an extension of the initial order in X, The paper is devoted to the investigation of connec-
tions between spaces X and X*, in particular we look for classes which are closed under the oper-
ation X—X*. E. g such is the class of absolute measurable sets in the ordered Hilbert cube.

0. Introduction.

The objects considered in the paper are ordered spaces; an ordered space is
a set X with a o-field M of its subsets and with an ordering relation <. The whole
system (X, M, <) will be, for simplicity, denoted by X. In cases where a confusion.
could arise as to what is the o-field and what is the relation in X we also use
subscripts, i.e. My denotes the o-field in X and <y denotes the order in X.

An ordered space X is proper iff it has a base, i.e. a family o/ of subsets of X'
which generates the o-field My and defines the order in the following sense: for
every x,ye X, x<y iff, for every Ae s, xeAd implies y € 4.

For every proper ordered space X we shall define another ordered space X*
(which is also proper) called a probabilistic extension of X. Its elements are all prob-
abilities on My; for the o-field My the only reasonable definition is accepted: it is
the smallest o-field in X* such that for every A € My the function P—P(A) is measur-
able. However, it is not quite obvious what would be a “natural” definition of the
relation < in X'*.

There is a natural embedding § of the set X into the set X* (which associates
with every x the probability 9, concentrated at x). Thus the order in X'* is expected
to be an extension of the order in X in the sense that x<y iff 9,<8,, for every x, .

Consider as an example the real line' # with the Borel o-field and the usual
order <. If “x<y” has the meaning “y is (in some sense) not worse than x”, then
obviously every probability concentrated on an interval [a, b] should be “better”
(in the sense of the extended relation <) than any probability concentrated on [c, d]
whenever d<a. More generally, a probability Q on Borel subsets of the real line
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should be “preferred” to any other P whenever the graph of the distribution func-
tion Fy lies below the graph of Fp; however, there is no objective reason why
$90+4%9, should be “preferred” to 9, or conversely. This suggests the following
definition of < in X*: P< Q iff P(4)< Q(4) for every set 4 of the form (a, + 0)
or [a, +o0). A similar definition will be proposed in the general case: P<Q iff
P(A)<Q(4) for every measurable increasing set 4 (4 is increasing iff
A ={xeX| Jaeda<x}). An additional -justification  of this . definition will
be given below and in Section 4 (cf. also the Open Problem at the end of
the paper). . .

For every isotone (*) measurable function u: X'+, there is a natural way to
compare probabilities on My, namely P< Q- iff fudP< [ udQ (for the time being

we neglect integrability questions); in economic applications, when u is considered
to be a utility function, this rule of comparison is called the Expected Utility Hypo-
thesis — cf: Borch. [4]; p. 30. In Section 4 we shall find, for a proper - ordered
space- X, some classes @ of real-valued measurable-isotone functions on X (e.g. all
such functions, bounded functions, etc.) for which the following proposition holds;

for every P, Qe X*, PLQ iff [PSQ for every function u e a].

Our attention will mainly be restricted to the examination of properties of

ordered spaces which are related to the notions of a base and a superbase of ah ordered
space. A superbase of a space X is a family & such that the family of all; sets
{PeX* a<P(A)} with ac [0, 1], A o is a base of X* ‘

In Section 2 we study elementary properties of ordered spaces. We also find
some classes of ordered spaces which are closed under the operation X—X*, Sec-
tions 3 and 5 are. devoted to the investigation of the extended relation < in X* and
of properties of superbases of ordered spaces.

In Section 6 the notion of a semi-regular - ordered space is introduced (Defi-
nition 6.1). A very important property of semi-regular spaces is that for every absolute
measurable subspace X, of a semi-regular space X and for every superbase & of X’

the restricted family |, is a superbase of X, (Corollary 6.5). It is also proved that

the ordered Hilbert cube H (with the o-field of Borel subsets and coordinatewise
order) is semi-regular and that an absolute measurable subspace of a semi-regular
space .is semi-regular (Theorems 6.6 and 6.9).

In Section 7, the last, we consider regular ordered spaces, i.e., spaces which have
a-countable base and which, considered as measurable spaces, are almost Borel (the
definition in Subsection 1.C). A space is regular iff it is (up to an isomorphism)
an absolute measurable subspace of H (Theorem 7.3). It is also proved (Theorem 7.7)
that for every base «f of a regular space X the lattice .o/, generated by & is a super-

base of X. Finally, it follows (Theorem 7.8) that the class of all regular spaces is
closed under the operation X— X*. ‘

(*) Le., for every x, ye X, x<y implies u(x)<u(y).
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“" 1. Preliminaries.

1.A. Notions and notation. All the notions used in the paper are standard ekcept'
fof ‘the notions concerning ordered spaces and the following: “exhaustive family
of : sets”, “almost Borel measurable spaces”, “increasing part of a set” and “dcﬁhing
family”. These notions will be explained in the present section. ' o

Throughout we shall use the following notation:

4" = the set of all nonnegative integers;

‘= the interval [0,1]; ‘

& = the set of all reals;

& =R0U{—0,+w}; _

A" = the n-dimensional Euclidean space;

2 = the set of all rationals in .£;-

M .= the Hilbert cube; .

% = the Cantor set (understood as the product of &, copies ‘of the two-element:
set {0, 1} and with the product topology).

For a family & of subsets of a fixed set X, the symbols by o(sf), o, .,
K4 ;,, Ay, A D‘ will denote the o-field generated by o/, the family of all finite unions,
é'o'ﬂntable unions, finite intersections, countable intersections and the family of-all
complemenis of sets in &, respectively. If X, = X, then o[, will denote the restriction
of & to Xy: {ANn X,y Adeo). :

Given any family of sets <7, we define &/, = =/ and inductively for all countable
ordinals a: &, = (#,-y), or A, = (ﬁU ), according as « is odd or even.

. <o

We say that a family &/ of subsets of a set X is exhaustive iff o/ ,= (o), for some
countable ordinals «, f. . :

' We say that a family & of subsets of a set X separates points iff for every’pair
(x, y) of distinct points in X there exists an A4 e .o such that the set 4 n {x, y} has
exactly one element. ) }

By %\ we denote the o-field of Borel subsets of a topological space M. If
a topological space has to be understood as-a measurable space, the ¢-field under
consideration is that of Borel subsets.

The symbol (x); stands for the ith coordinate of the vector (sequence) x.

For measurable spaces we shall use the following notation: a measurable space
(X, M) will usually be denoted by the single letter X; the o-field in X is then assumed
to be denoted by M, sometimes with an appropriate subscript (here: My). When
speaking about a o-field My, we understand that it is a o-field in. the set X.

A subspace of a measurable space X is any set XocX with the o-field
My, = Myly, = {4 " Xo| 4eMyl. )

Given two measurable spaces X and Y, we call a function f: X— Y an embedding
iff fis an isomorphism (!) from X onto f(X) which is a subspace of ¥, We say that

(*) Here and elsewhere in the paper isomorphisms are understood as one-to-one functions.
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a measurable space X can be embedded into a space Y iff there exists an embedding
fi X-Y. .

A measurable space X is said to be separable iff My is countably generated and
separates points in X. Obviously, for every separable space X, the o-field Iy contains
all one-point sets.

It is known (see Marczewski [9], §§ 2, 3 and Halmos [6], Thms 1.5.D and
1.5.E) that:

L.A.1. Every separable measurable space can be embedded into (S, B4). Every
measurable space X with an m-generated o-field My, which separates points in X can
be embedded into the measurable space 2™, which is the product of  copies of the two-
element space 2 = {0, 1} with the o-field {&, {0}, {1},2}. m

LA2. If a family o generates an w-generated o-field M (for m=x,), then
there exists a family of y=of with Card(sf)<m generating M. B ‘

LLA.3. Let X be a measurable space and let X, be its subspace. If a family of
Sets o generates My, then of|x, generates My . M

Probabilities and measures are always understood as countably additive func-
tions defined on o-fields.

For a measurable space X and a measure u on My, p (resp. f) will denote the
inner (resp.: outer) measure of u (i.e. for AcX, p(4)=sup u(B) and

Befx
Bed

B(4) = inf p(B)).
Bex
Ac<B .

For a measurable space X, a set 4 <X is said to be absolute measurable (in X)
iff p(4) = f(A) for every finite measure i (equivalently: for every probability u)
on My. :

For a given measurable space X and for ae S, 4 e My, we shall denote by
[a] 4] and [a|[ 4] the set of all probabilities P on My such that a<P(4) and such
that a<P(d4), respectively. For S,=f and /<=My we shall write [F,|e/]
= {[a|d]|ae Fy, Ae ot} and [Fo||#] = {[a||d]lae Sy, d e oA}

For a measurable space X we denote by X* the measurable space of all prob-
abilities on My with the o-field M. generated by the family [#]9y]. Clearly, the
same obtains if we let My. be generated by one of the families [2|My], [# [|My] and
[2]|My]. Observe that all sets of the form {PeX*| P(4d)e B}, where A eMy,
Be @B, are measurable in X* (%)

Let X be a measurable space and let §" < S S’ be its subspaces. For a measure
 on Mg we denote by u||* the measure on My, such that 254 = p(4 n S) for
every 4 €Ms.; and by plls. the measure on M. such that g (A4) = fi(4) for
every A € M.

If u is a probability, then also u||¥ is a probability; if fi(S') = 1, then plg. is
a probability.

(*) Suppose that X is a compact metric space and My = Px. Then M. is equal to the o-field
of Borel subsets with respect to the weak * topology in X* (cf. Dubins and Freedman [5]).
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Obviously, for every §''<S” and every measure pon Mg.and v on My, such
that ¥(8"") = v(58") we have: p||¥||g»= pand v]|s.|[S = v. It is easy to check that.

L.A.4. For every measurable space X and its subspace X, the function p—u||*
is an embedding of X into X* and moreover the image of Xg by this embedding is
equal to {Pe X*| P(X,)=1}. m

1.B. Elementary properties of probabilities. The space of probabilities on a given
o-fiedd. The following lemmas are needed for proving the theorems which will be
considered in this subsection:

1.B.1. LEMMA. The o -field generated by an exhaustive and multiplicative family of
coiricides with the smallest class of sets & satisfying the following conditions: (i) £ ,= &;
(i) & = &5; (iil) if (4;) is an increasing sequerice of elements of &, then \) A ¢ &.

1.B.2. LeMMA. The o-field generated by a family o coincides with the smallest
class of sets D satisfying the following conditions: (i) o, D; (i) 9 = D; (iii) if (4,)
is a sequence of mutually disjoint elements of @, then \J A; € 2.

The proof of Lemma 1.B.1 is easy and will be omitted ; the Lemma is analogous
to a well-known theorem on Borel sets in metric spaces, cf. Kuratowski [7], § 301L
The proof of Lemma 1.B.2 can be found e.g. in Bauer [1] (Ch. I, Theorem 2.3). m

‘We shall now prove a theorem of which many versions may be found in the
literature (e. g. in Neveu [11], Ch. II § 7 or Meyer [10], Ch. III T 32). Since, however,
we need it in a special form, we shall formulate another version:

1.B.3. THEOREM. Let M be a o-field generated by an exhaustive and multiplicative
Samily <. For every probability P on M, every set A € M and every £>0 there exists
a set Be o s contained in A and such that P(A\B)<e.

Proof. Denote by & the class of all sets 4 € I which satisfy the following con-
dition: “for every probability P on 9 and every £>0 there exists a set Be o,
contained in 4 and such that P(4\B)<e¢”. We are going to show that & satisfies
conditions (i), (ii) and (iii) of Lemma 1.B.1. Since (i) is satisfied trivially, we begin
by proving (ii). Let A;e & for ief; denote A = ()A;. Choose a prob-
ability P and &>0. By assumption, for every i there exists a set B;esf,;
contained in 4; with P(4A,\B;)<e/2"*1. Clearly B = () B; belongs to 7, is con-
tained in A, and we have P(4A\B)<¢; hence 4 € &. Finally, in order to prove (iii),
let 4, & for ie.# and let 4, 4. Choose a probability P and ¢>0. There exists
an iy € A such that P(4\4;)<%e By assumption there exists also a B e o/, con-
tained in 4;, and such that P(4,\B)<4ie. Now B A and P(4A\B)<¢ and hence
Aded.

It follows from Lemma 1.B.1 that every set in M belongs to & and this com-
pletes the proof of the theorem. W

1.B.4. COROLLARY. If @ o-field M is generated by an exhaustive and multiplicative
Samily o, then for every probability P on I and every set 4 €M there exisis a set
Ce oA 4, contained in A and such thar P(4) = P(C). B
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‘We 'aré now going -to study some relations between ‘families genelatmg
a 'o-field" My and families generatmg SDIX* :

1.B.5. THEOREM. If a family of sets o genez m‘es q o- ﬁeld My, then the famzly

[2]s2,] generates the o-field Miys.

Proof. By definition My, = a([f]*l’tx]) Let us denote & = a([.@l&f,,])
Since # cSDIX*, in order to prove that # =M., it ‘suffices to show that [a|X,] € &
for every ae & and every X, e My. Let-2 = {DeMy| [¢| D] e F for all ae £}.
Thus we have to prove that 25y, In view of Lemma 1.B.2 it suffices to check
that=@ satisfies conditions (i), (ii) and (iii) -of -this lemma.

The. Condition (1) follows from the -obvious equdhty [aIA] U [q1 Al, where

. €2

q?a

aef, Ae eid In order to prove (11) choose D e g..Since for every ae ./

WD =X U [gIDleF (),
. ged
g<l-a

we have D"e 2: Finally, we shall check (iii). Let (D) be a sequence of mutua]ly
disjoint elements of . Since for every de ¥,

[a]U D] U V) U[%ID:],
qe2ned” (qo,- ,qn)c.z"“ i=0
q>a
uqi<q

0

we have also |) D;e @. Thus the family 2 satisfies conditions (i), (ii) and (iii) of
Lemma 1.B.2 and hence 2 =M,. m

1.B.6. COROLLARY. If a family of generates a.c-field My , then the fumily (2| oﬁ/}]
generdates Mys.

Proof. Since o generates My, also o7, generates My. Apply Theorem 1.B.5to
the family o/.. Thus [2|#/,,] generates My and so does the family [2].,
which is equal to

rd]m

{lgl4ll ge 2, de .0} = {[1~qll4°]|ge 2, de .} = {[ql|4°]|q € 2, A € £ 3}
= {[QHB]I‘]G—@:BE'MMC} = [‘QI]‘MN’C] = ["@”‘9]\]

Abecause o7y, = o). But obviously the families [2|].«7,] and [2]&/,] generate the
same o-field. W

ObserYe that in Theorem 1.B.5 the family [2|,] can be replaced by any of
the following: [2||#,], [#]|«/,] and [£ |#,4], and similarly in Corollary 1.B.6.

(® D° denotes the complement of the set D.
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«+ Now we shall investigate some other connections between a measurable space X
and-the space X*. It follows from 1.A.5 that for every PeX* S

Py = {QeX* o) = P(A)},
Aesda .

where 7 is any family generating My. This statement and Theorem 1.B.5 give us
1.B.7. If My is countably generated, then X* is separable. @

“ : For .a fixed measurable space X, we.shall denote by § the function from X
mto X* which maps each point x into.the. probability 3, concentrated at x
(. e "9,(4) = 1.if xe 4 and 0O otherwise). We have

1.B.8. If My separates points in X, then $ is an embedding of X in X*.
" 1.B.9. If My is countably generated, then (X)) € My..
The proof of 1.B.8 follows from the definition of X*. For the proof of 1.B.9
choose a family {4} generating My. It suffices to show that ’

(X)) = N {QeX* Q) Q(X\4)) = 0}.

is obvious. Let

Pen {gex 0(4)- QX A) = 0}.

The - inclusion "<

Let B, = A; if P(4) = 1 and B; = X\A; if P(4) = 0. Clearly () B, is nonempty
and P = 3, for any x € ) B;; this completes the proof of the inclusion o. m

Finally, the following proposition completcs Theorem 1.B.5 and Corollary 1.B.6
and follows from 1.B.8 and 1.A.3¢

1.B.10. Let a family s be contairted in a o-field My which separates points in X.
If ‘the family [F| 4] generates My, then of generates My. M

1.C. Almost Borel measurable spaces. A measurable space X is said to be almost
Borel (vesp. : standard analytic, standard Borel) iff it is separable and for every metric
separable complete space M and every embedding f of X into (M, %), f(X) is an
absolute measurable (resp.: analytic, Borel) subset of M.

Clearly, every standard Borel space is standard analytic, every standard analytic
space is almost Borel. We have, moreover, the following:

1.C.1. THEOREM. A measurable space X is almost Borel (resp.: standard analytic,
standard Borel) if and only if there exists an absolute measurable (resp.: analytic,
Borel) subset A of some metric Separable complete space M such that the measurable
spaces X and (A, #B,) are isomorphic.

Proof. The implication <= follows in all cases from the definition and 1.A.1.
The implication <= follows in the standard Borel and standard analytic cases from
known theorems (see Kuratowski [7], § 39V, Th. 1 and Blackwell [2], cf. also
Meyer [10], Ch. III § 1 T 16). S .
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Let us now prove the implication <= in the almost Borel case. Let 4 be an
absolute measurable subset of a metric separable complete space M, let £ be an
embedding of (4, 8,) into (N, By), where N is a metric separable complete space
and let P be a probability on %y. Define a probability P, on %), by the formula

Py(Xo) = P(f (X, 0 4)) XoeBy .

It is easy to check that P, is a well-defined probability (in fact, if for a probability u
on %y, we denote by u’ the probability on 4, such that u'(4,) = 1(f (o)), then
we shall have Py = [P||;¢,)]'[I") and Py(4) = P(f(4)). Since Po(A) = Py(4), we
find a Borel subset M, of M contained in 4 with Po(M,) = Py(A). The set f (M),
as a one«to-olxe measurable image of M, is Borel in N; thus P ( j'(Mo)) is defined
and equal to P(f (Mo)) = Po(My) = Po(d) = P(f(4)); hence P(f(4D) = P(f(4)).
Since P was arbitrary, f(A4) is absolute measurable in N. m

1.C.2. For every standard Borel subspace X, of a separable measurable space X,
X, belongs to My.

Proof. Asfollows from 1.A.1, the space X can be embedded into the measurable
space (5, B,); let us call such an embedding ¢. Since ¢lx, is also an emdedding
(namely, of the measurable space X, into (#, 4,)), we infer by the definition of
standard Borel spaces that ¢(X,) € 4. Thus ¢(X,) B 4xy and consequently, by
the definition of an embedding, X, ;. m

The proofs of the next statement and Theorem 1.C.4 will be omitted, because

they need only standard methods, very similar to those already used in the proofs of
Theorem 1.C.1 and 1.C.2.

1.C.3. A subspace X, of an almost Borel measurable space X is almost Borel
iff Xo is an absolute measurable subset of X. m

1.C.4. THEOREM. Let a medsurable space X be separable. Then X is almost Borel

if and only if for every P e X* there exists a standard Borel subs e
that P(X,) = 1. m pace Xy of X such

1.C.5. THEOREM. If @ measurable space X is almost Borel (resp.: standard analytic
standard Borel), then also X* has this property. ,

for

Proof. The standard Borel case is well known (see e.g. Parthasarathy [12],
Ch. 1). The standard analytic can be found in Blackwell, Freedman, Orkin [3],
Lemma (25) .and Proposition (4). Let us present here a short proof of the almost
Borel case, given by C. Ryll-Nardzewski [13].

It* iollows from 1.B.7 that X * is separable. Thus it suffices to find, for an arbitrary
weX** a sFandard Borel subspace Z of X* such that n(Z) = 1 (cf. Theorem 1.C.4).
Let us consider the probability Py on My given by the formula

Py(4) =Xj: P(A)n(dP) for A eM, .
From the hypothesis we obtain a standard Borel subs

pace E of X wit} E) = 1,
Consequently, n({P e X*| P(E) = 1) = 1. Write Z Wwith Py(E) = 1

= {PeX* P(E) = 1). Since

icm®
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the spaces Z (considered as a subspace of X*) and E* are isomorphic (cf. 1.A.4),
it follows from the standard Borel case of our theorem that Z is standard
Borel. &

A measurable space X is said to be a Blackwell space iff it is separable and such
that, for every o-field &' =My which makes the space (X, &) separable, there is
an & = My. It is known (Blackwell [2], Corollary 1) that every standard analytic
space is a Blackwell space. However, an almost Borel space need not be a Blackwell
space (see Maitra [8] and Example 2.7).

1.D. Ordered sets. The order in an ordered set X” will be denoted by < (or
by <y if a confusion could arise). Subsets X, of an ordered set X are considered
as ordered sets with the ordering relation <y, defined as x<y, y iff x<,y for
every x,y € X,.

For a set A<X we define

Ad={xeX|Jaeda<x}, Ad={xeX|JaecAdx<ad}.

In cases where a confusion could arise we shall write 4%, A% instead of Z, A.
A set 4 will be called increasing (decreasing) iff A = 4 (A = A). For a family & of
subsets of X, we write & = {4] Ae s} and & = {d]|de }.

Clearly, ?4 =A4>A4 and ;1 = A>A. Moreover we have,

1.D.1. A set AcX is increasing iff A° is decreasiig. W

1.D.2. The union and the intersection of any family of increasing sets is an in-
creasing set. B

1.D.3. If A is an increasing subset of X, then for every Xo=X A n X, is in-
creasing in Xo. R

By the increasing part of a set AcX we shall mean the set 4 = (49)*°. The
sense of this definition explains 1.D.4:

1.D.4. For every AcX, A® is the greatest increasing set comtained in A
(i.e. (i) A® is increasing, (i) A® < 4, (iii) if B is increasing and B< A, then B=A®).

Proof. (i) follows from 1.D.1. Since A°c e, we have A® = (49) cA* = 4
and this gives (ii). Finally, let B be increasing and contained in 4. We have A°< B°
and hence A< B¢ = B, Thus B = B“c(ﬁ)‘: A® and this completes the proof. m

1.D.5. LeEMMA. Let an increasing set C be of the form: C = tﬂTA ., where A, are
any subsets of X. Then C = [} A

Proof. A2<=4, for all teT; hence N A%< () 4, = C. On the other hand,
Cc A, for every teT; thus C = C®<=AP for every t and Cc NA4°. m

A family of of subsets of an arbitrary set X defines the following pre-order =<
in X(%: :

xSy iff for every A e of, x€ A implies y € 4.

() By a pre-order we mean a relation: which is reflexive and transitive.

L3


Artur


62 A. Wieczorek
The pre-order defined by a family « is an order if -and only if o separates
pomts oo

A defining family in an ordered set X is any family of subsets of X such that the
pre-order defined by it is just <y. It is very convenient to think of defining families
in an ordered set X in the following way: a family « is a defining family iff it consists
of increasing sets and has the following ‘separation property”: for every x,yeX
with x#£y there exists an 4 € & such that xe 4 and y ¢ A

We call an ordering relation m-definable iff there exists a defining l'fum[y ol‘
cardinality <.

The following facts are easy to check:

1.D.6. For every ordered set, the family of all increasing sets is a defining Sfamily;
the union of a defining family and a family whose every member is an increasing set is
also a defining family; every defining family separates points. @

1.D.7. If o is a defining family in an ordered set X, then sy, is a def ning fumily
in the ordered set X, for any XocX. B

Some trivial examples show that in general a family consisting of increasing sets
which separates points need not be a defining family.

2. Ordered spaces. In the Introduction we have defined the notion of ordered
spaces. Here we shall introduce some further notions concerning these spaces and
give some examples.

By an isomorphism between ordered spaces X and Y we mean any ‘one-to-one
function mapping X onto ¥ which is simultaneously an isomorphism in’ the sénse
of measurable spaces and an isomorphism in the sense or ordered sets. Two Spaces
are isomorphic iff there exists an isomorphism between them.

- A subspace of an ordered space X is any subset X, <X with the o-field m,m and
ordering relation <y,.

An embedding of an ordered space X into an ordered space Y is any functlon
Jf: X—'Y which is an isomorphism between ordered spaces X and f (X)),

The product of a family {X,| &e &} of ordered spaces is the ordered space

B = X X, with the product o-field My = ® My, and the coordinatewise order <y
- CE . v

(le. x<p yiff (x)p<x, () for every £ € E). If X = X for every £ € Z we shall also
write X", where m = Card(Z), instead of >< X.

Observe that for every countable family {X .} of ordered spaces which are simul-
taneously topological spaces with My, = Hy, we have My = H,, where B = X X.
. i

For an ordered space X we shall denote by &y (or simply by &) the family of
all measurable increasing subsets of X (i.e. & = iﬁix N My,

Sometimes we shall not distinguish between subsets and subspaces of an ordered
space, e.g. we shall say that X, is an absolute measurable subspace of X, which
means that X, considered as a set, is absolute measurable in X l

We shall also use for ordered spaces qualifications which have been defined for

icm®

Ordering probabilities on an ordered measurable space

63

‘measurable spaces, e.g. we shall say that an ordered space X is almost Borel, which

means that X, considered as a measurable space, is almost Borel.

The following ordered spaces are of special interest.for.our further purposes:

R, which is the real line with the o-field M, = &, of Borel subsets of % (£ is
the real line considered as a topological space) and the usual order < = <;

I, which is the unit interval [0, 1] considered as a subspace of R; thus I, is
equal to #, and < is also the usual order <;

2, the two-element set {0, 1}, considered as a subspace of R.

We shall also consider powers of already introduced spaces, e.g. R", I,
I6, 2%, etc. We also write C = 2™ and H = I'®. Obviously M, = B, where €
is the Cantor set and My, = #,, where # is the Hilbert cube.

An ordered space is in fact a combination of two abstract systems: a measurable
space and an ordered set. Mathematical routine in such cases requires some connec-
tions between those systems. The natural condition:

X0 is measurable for every measurable X, would be too strong here, becausc

it rejects the spaces R" for n3, as is shown by the following:

2.1. THEOREM. The relation < in R" for n2>3 does not satisfy the follms ing
measurability condition: for every C ejm also Ce Ban -

The proof will be given for n = 3; the constructed example can easily be trans-
ferred to higher dimensions; its idea is similar to that of the construction (due to
Dubins and Freedman [5]) of a Borel set whose convex hull is not Borel. ‘

Let 4 be a Borel subset of #2 whose projection 4’ on the axis y = 1 is not
Borel (4 can even be a Gy).. Define a .mapping ¢: L3 by o((x, )
= (x,y,1—x). Since ¢ is a one-to-one function, C = ¢(4) €& Bas.

Suppose that € is Borel. Then also B = ¢(#%) n Ce '@9!35 and ¢~ (B)eZ 2
Any section of (p‘i(B) for instance {(x, ») € @™ }(B)| y = 1}, would also be Borel
‘but just this one is equal to A’. The contradiction shows that C is not Borel. @

However, some weaker condmons of this kind will be cons1dered They are the

generablhty and definability plopemes which are defined below. ‘
" 2.2. DEFINITION. A d-base of an mdered space is a defining family composed
of measurable sets; a g -base of an ordered space X'is a family composed of increasing
sets which generates the o-field “Dlx; a base of a space is its d-base which is also
its g- -base.

‘We say tlmt an ordered space has the definability property (n- deﬁnabzlzry
property, generability property, m-gener abl/ny property) il it has a d-base (a d-base
of cardinality <w, a g-base, a g-base of cardinality <m, respectively).

" 'We call an ordered space m-proper iff it has the ut-definability and -
generability plopcmes for wt being an infinite cardinal. A space is proper 1ﬁ' it
is w-proper for some m.

We see that a d-base, as well as a g-base is a family, whose every element is
a measurable increasing set; however, a d-base defines the order and a g- -base gene-
rates the-a-ﬁeld; a base must have both these properties.
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It is obvious that if we take a union of a d-base, g-base or a base with any
family consisting of measurable increasing sets, we obtain again a d-base, g-base
or a base. Thus we have (cf. 1.D.6):

2.3. If 9 is a d-base and % is a g-base of the same ordered space, then 3 LU 4
is its base. M

Thus, for m> 8, an ordered space is ni-proper if and only if it has a base of
cardinality <m. A space is proper iff it has a base.

Obviously, for m<nt, the m-definability property implies the w'-defin-
ability property and the m-generability property implies m'-generability property;
if a space is m-proper then it is m’-proper.

An ordered space X has the definability property iff the family &y is a defining
family; X has the generability property iff &y generates the o-field My; X is proper
iff &y is its base.

For every ordered space X and m2x, the m-definability property is equivalent
to the following condition:

(*) there exists a family {f,| £ € Z} with Card(Z) = w of isotone measurable
functions f;: X— & such that for every x, y € X with x £y there exists a & such that
Sdx)> fLy).

In fact, if {fy £€Z} is such a family of functions, then the family
{Z: ] E€E,qe 8}, where Z;, = {xeX| f{x)>q}, is a d-base of X. If
{S;l AeA} is a d-base of X, then the family of indicators {ys,] 1€ A} clearly
satisfies ().

In general, it may happen that an ordered space X has the definability property
and the relation <y is m-definable, but X" does not have the m-definability property.
However, on the other hand, we have (cf. 1.A.2):

2.4. If a space X has the generability property and the o -field My is m-generated,
where m=N,, then X has the m-generability property. &

Immediately from the definition of Blackwell spaces we obtain also:

2.5. For every ordered Blackwell space, the w,-definability property implies
the Ro-generability property. In this case every countable d-base is a base. W

Obviously, in general the generability property does not imply the definability
property.

There are spaces with xo-generability property and definability property which
do not have the &;-definability property. Such a space can even be standard Borel.
We present below an example given by C. Ryll-Nardzewski [13]:

2.6. ExampLE, Consider the ordered space (%, B4,(), where x(y iff x<p
and y—x is rational. One can prove that every increasing set which belongs to % is
of the form

[(a, + ) U DIN\C,

where ae & and D, C e &, are sets of Lebesgue meastre zero. Suppose there exists
a countable d-base; let us call it {4;} and let 4, = [(a;, +o0) U DN\C;, where

«
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a,eZ and D;, C; are sets of Lebesgue measure zero. Write
T = {(x,y) e #*| x<y,y—x is irrational and I, xe d;, y¢ 4} .
Since {4;} is a d-base,
T = {(x,)) e #*| x<y, y—x is irrational} ;

thus 7'is equal to a halfplane without a countable number of lines and A(T) = + oo
(4 denotes the 2-dimensional Lebesgue measure). On the other hand, Te |J 7

i

where
Ty={(x,0)e R x<y,xed;,y¢ A} ;

observe that, for every i, Ty (D;x &) U (# x C,); hence
AMT)KAD;x B)+A(AE=C) =0

and consequently A(7) = 0, a contradiction.

There are also ordered spaces X with the 8y-definability property (being almost
Borel), which do not have the generability property:

2.7. ExampLE. Consider the ordered space (#, K, <), where K= (B, u {K}),
and K does not belong to # . The set K can be chosen so that the measurable space
(#, K) becomes almost Borel, e.g. if K is an absolute measurable subset of .#, then
(#, K), as a direct sum of two almost Borel spaces, (K, Zx) and (F\K, Ba k)
is almost Borel itself. Clearly, the family {{Ej}[ ge .9,} is a countable d-base but no
family of increasing sets generates K.

From Examples 2.6 and 2.7 if follows that in general neither a d-base nor
a g-base need be a base. ;

‘We shall formulate now a useful fact which follows from 1.A.3, 1.D.3 and 1.D.7:

2.8. LEMMA. If a family of is a d-base (resp.: g-base, base) of a space X and X,
is « subspace of X, then |y, is a d-base (resp.: g-base, base) of Xo. Thus, every
subspace of u space with definability (resp.: m-definability, generability, m-generability)
property has the sume property and every subspace of an m-proper (resp. proper)
Space is also W-proper (resp. proper).

The following theorem shows that ordered spaces I and 2" are in some sense
“universal” for all m-proper spaces:

2.9. THROREM. For every ordered space X dnd every cdrdinal w2 s, the following
conditions are equivalent:

i) X is wm-proper,

(il) X is isomorphic with « subspace of 2",

(iiiy X is isomorphic with a subspace of I™.
5 — Fundamenta Mathematicae CI
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Proof. ()=>(ii) Let & be a base of X of cardinality <mt. Arrange & into
a soquence (4;)zez with Card(E) = m (elements of s may be duplicated in this
sequence if needed) and define a function h: X—2° by the formula

1if xed,,
(h(®))s =

0 otherwise,

for £e 8, xe X (V).

Since & is a defining family, it separates points in X’; thus h is a one-to-one function.

The function 4 is an isomorphism between X and h(X), considered as measur-
able spaces. In fact: the family &/ generates My; My xy Is generated by the family
{T:n h(X)| &€ Z}, where Ty = {xe 2] (x); =1} (see 1.A3); finally, 1 maps the
set A, onto Ty n h(X), for every &.

Let us now prove that / is an isomorphism between X and h(X), considered as
ordered sets. Let x,yeX. Suppose first x<y. Since every set Ay is increasing,
x € Ay implies y'e A;, for every ¢ This means that (R ()< (R(3))¢ for every £ and
consequently 2(x)</(y). Suppose now that x&y. Since & is a defining family,
there exists a &, such that x € Az, and y ¢ dy,. Thus (£(x))g,> (213)), and A (x) €A ().

The implication (if)=(iif) is entirely trivial. The implication (iif)=-(i} is also easy:
without loss of generality assume that X is simply a subspace of I, where
Card(E) = m. Since I? is wm-proper (the family

(U ¢eE,qe ), where Ui={xel’| (>4},
is a base of I), it suffices to apply Lemma 2.8. ®

In fact, when proving Theorem 2.9, we have proved something more than was
formulated in it, namely:

2.10. For every proper space X and its base {4,| & € E} there exists an embedding
hof X inio 2 (and into I%) such that, for every &, h(dy) = Ty n h(X), where
Ty={xe2® (x);=1}. m

Let us note an interesting consequence of Theorem 2.9. Namely, there exists
an embedding ¥ of the measurable space (#, %) into (£, &) which. is isotone,
ie., for every x,yed#, x<y implies ¥(x)<¥(y). To show this let ¥, be any
embedding of the ordered space H into C. Define ¥,: C—J by the formula
P,(x) = Z(x);/3"*. The function ¥ = W, ¥, is the desired embedding.

One could object that our definition of ordered spaces is too general, and
propose the following “natural” approach: to begin with an ordered set X and con-
sider it as an ordered space with the “interval o-field”, which is the o-field generated
by all sets {¢} and {a} with ae X. Let us call ordered spaces of this formnarural.

—_— [

(*) The function % isactually the Marczewski’s [9] characteristic function of a sequence of
sets.
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In the author’s opinion, however, this approach would be too restrictive: usually
subspaces of H are not natural in this sense (an example: the set

'{(J\T,y)GRZI X,y?O, x+y= 1}

considered as a subspace of R%).

The theory presented in the paper covers the case of natural spaces. It is easy
to check that every natural space X is proper (the family of all sets {i} and (@) is
its base). Moreover, for every sy-proper ordered space X, the o-field M, contains
the interval o-field.

3. Extension of an ordering relation.

Our objective now is to define for every proper ordered space X a natural
extension of the relation < to the set X™* of all probabilities on My. We use the word
“extension”, because X can be considered as a subspace of X*, when x € X is
identified with 9.

For a proper ordered space X we define below an ordering relation in X*.
The sense of this operation can best be seen on the example of the ordered real
line R. Probabilities P, @ can be represented here by their distribution functions
Fp, Fy. Then P< @ if and only if the graph of F, lies entirely below the graph of Fp.

3.1. DemNiTiON. The probabilistic extension of a proper ordered space X is
the ordered space X™* of all probabilities on 9y with the o-field generated by
the family [#|&y] and with the order defined by the same family. This o-field will
be denoted by My« and the order in question will be denoted by <y« (or sometimes
simply by <).

Since the space X under consideration is assumed to be proper, this definition
of My, coincides (because of Theorem 1.B.5 and 1.D.2) with that given in Sec-
tion 1.A.

For any two probabilities P, @ € X* we obviously have P<Q if and only if
P(A)<Q(A) for every measurable increasing set 4 or, equivalently, if and only if
Q(B)SP(B) for every measurable decreasing set B.

The first thing we should check is that X* is in fact an ordered space, i.e. that
the defined relation in X is antisymmetric. This will be done if we show that the
defining family [#]%y] separates points in X*. It is known (see e.g. Bauer [1],
Ch. I, Thm. 5.5) that, for every o-field ¢ and every family & which generates it,
two probabilities on 9t are equal iff they are equal on all sets in «7,. But, in fact,
the family &y is multiplicative and generates My (X is proper!); thus whenever
the probabilities P, Q € X* are different, they are different on some set 4 € Px
and hence for some a e &, Pela|d] and Q¢ [a|A), or conversely, Q € [a| 4] and
P¢[a)A]. )

Obviously, [#]%x] is a base of X* and hence X* is proper. Also the families
[2]%x], [£]1%] and [2]|4] are bases of X™*.

5%
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We can prove even more:

3.2. THEOREM. For every m-proper ordered space X, the space X* is m-proper
if m>c¢ and c-proper if m<e.

Proof. Let & be a base of X with Card(o/)<m. Since evely nt-generated
o-field has at most %, ™ = m-¢ elements, we have Card(&y)<n-e. But [£]|Fy]
is a base of X* and hence X* is ¢-m-¢ = m-c-proper. B

We shall now show that the relation < in X is in fact an extension of < in X.

3.3, THEOREM. For evety proper ordered space X, the function §: X—X* is an
embedding of X into X,

Proof. It follows from 1.B.8 that 9 is an embedding in the sense of measurable
spaces. We shall now prove that it is an embedding in the sense of ordered sets.

Choose x,pe X let x<y. Since &y is a defining family, for every A e Py,
xed implies y e 4; thus 8,(4)<9,(4) for every 4 e &y and hence 9,<9,.

Suppose now that x £y. Since ¥y is a defining family, there exists a set 4p e &
such that xed, and p¢A,; hence 1= 9.(4p)>9,(4;) =0 and 4,49, m

From this Theorem and 1.D.7 we obtain:

3.4. Let X be a proper ordered space and let of <M. If [F| L] is a defining
Sfamily in X*, then of is a defining family in X,

4. Connection of the order in X* with some ways of comparing probabilities
related to isotone functions.

For a given proper ordered space X, we denote:

M = the class of all measurable isotone functions /= X-—%;

M® = the subclass of . consisting of all bounded functions;

I = the subclass of .#° consisting of all functions f which are strictly isotone
(ie. x<y and yg€x implies [ (x)<f(»)).

For every function ue 4 we define w*: X*—% by the formula

fudP  if the integral is finite or diverges to —oo or +co;
—o0,  otherwise.

w(P) = {

For every u € # we define also a pre-ordering relation < in X*: for P, Q € X*,

P30 iff uX(P)<u*(Q) (Y. "

() In the economic applications the class AG can be interpreted as the class of all utility
functions on the ordered space X. Sometimes utility functions are assumed to be bounded or strictly
isotone and this assumptions correspond, respectively, to classes MG" and B,

The rule which associates with a utility function  the relation < in the set of probability

u
distributions (prospects) is in the economic literature referred to as The Expected Utility Hypothesis
(cf. Borch [4], pp. 30-31. If X = R and u = idg, we simply obtain here the classical rule of com-
parison of probabilities on $Bz by means of their expectations.
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The following theorem shows connections between the relation <y, and the
relations 5 in X*:

u*
4.1. THEOREM. For every proper ordered space X and every P, Q € X* the following
conditions are equivalent:
(i) P<Q;
(i) PZQ for every function ve M,
.

)
(i) PXQ for every function ue M.
u¥

Proof. (i)==(ii) Let u e 4" Tt suffices to consider the case where u(X)c s,
Let us denote B} = {x € X| u(X)2i/2"} forne &, i = 0,.., 2" . Let off = 27"y

2 ]

(xpy are indicator functions) and u" Z u;. Every set By is increasing, and hence
i=0

WH*(P)<@WH*(Q) for all n, i and W"Y*(P)<W)*(Q) for all n. The inequality
w*(P)<u*(Q) follows from the Monotone Convergence Theorem.

(ii)=(iii) Let v & 4. Suppose first that u is bounded from below. Each of the
functions u, = min{n, u} is bounded and isotone, and so ¥¥(P)<u¥(Q). The se-
quence (u,) is nondecreasing and converges to . Using the Monotone Convergence
Theorem, we obtain u*(P)<u*(Q), i.e. P<Q.

If v is bounded from above, the proof is analogous. Let u be an arbitrary function
in .. Let u" = max{0,u}, u~ = max{0, —u}. Obviously u =u*~u". The
functions u™ and —u~ are isotone, first of them being bounded from below and the
second from above., Thus we have (u*)*(P)<u™)*(Q) and (—u"Y*(P)< (~u")*(Q).
Then w*(P)<u*(Q) (observe that we do not simply add the terms of these inequalities,
but also use the definition of u*, setting u*(P) = — o0 if (u™)*(P) = (—u")*(P) = +00).

(iii)=>(1) Let 4 € &y. The indicator function y, belongs to 4 and hence
P(4) = LUP)SLUQ) = 0(4). m

4.2, If for u proper ordered space X the corresponding class I b is nonempty,
then for every P, Q € X* euch of the conditions (i)=-(iii) of the previous theorem is
equivalent to:

(Av) P50 for every function ue J°.
wh

Proof. The implication (ii)=(iv) is trivial, and so we shall prove (iv)=-(i).

Tt suffices to consider the case when there exist x, y € X with x<y and y&x (the

opposite case is trivial), Then there exists a function pe J b with infp(x) = 0,
X

supp(x) = 1. Let 4 & &y and consider the sequence of functions
X

gu(%) = _}»_»-]—x,l(/\) for ned .

Since each g, belongs to ﬂ' L’, we have

[ g, () Pdx)< [ g,(x) Q(dx) .
X X

p( )+ -
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Now from the Monotone Convergence Theorem we obtain

Pd) = ){ 1a(X)P(dx)< ‘j' 24(¥) Q(dx) = 0(A).

Since 4 was arbitrary, we find that P<Q. @

Every wy-proper space X satisfies the assumptions of 4.2. Tn fact, as follows
from Theorem 2.9, X can be assumed to be a subspace of C. The function p: X —~4%,
where p(x) = 3 (x)i/3'"1, clearly belongs to 77,

5. Superbases of proper ordered spaces.

‘We shall now be interested in studying bases (y-bascs, d-bases) in spaces X*,
In particular, we shall look for bases of especially simple form [2|.s/] for some
Ay,

5.1. DerNitioN. A d-superbase (g-superbase, superbase, respectively) of
a proper ordered space X is any family &/ =&y such that the family [2].7] is
a d-base (g-base, base, respectively) of X,

In the definition above, the family [2]s#] can be replaced by any of the following:
[2112], [£1#], [£]|o#].

Clearly, the family & is always a superbase of X.

Let us formulate an equivalent condition for a family of sets to be a -superbase:
For an ordered space X and P, Qe X™ we denote by p(P, Q) (or yx(P, Q) the
family of all sets 4 e & such that P(A)< 0(4). Now we see that

5:2. A family of = Py is a d-superbase if and if for every P, Q € X* the Sollowing
implication holds:

S <y(P, Q) = P<Q.

Thus a d-superbase is such a family o that, for all probabilities P, 0, their
values on the elements of & determine whether P and Q are in the relation < or not.
Proposition 5.2 will very often be used in considering d-superbases.

Observe also that:

5.3. In every ordered space X the class y(P, Q) is monotone i.c. if A, y(P, Q)
and A; 74 or ANA, then 4 ey(P, Q), for every P, Qe X*. m

‘We are now in a position to prove the following theorems concerning superbases:

5.4. THEOREM. Every d-superbase (g-superbuse, superbase) of a proper ordered
spdce is its d-base (g-base, base, respectively),

5.5. THEOREM. For every g-base o of a proper ordered space X, each of the
Jamilies o2, and s is a g-superbase of X.

The proof of Theorem 5.4 follows from 3.4 and 1.B.10, while the proof of
Theorem 5.5 follows from Theorem 1.B.5 and Corollary 1.B.6. m
We shall also prove

5.6. THEOREM. For every proper ordered space X and its subspace X, if ufamily of
is a g-superbase of X, then oy, is a g-superbase of X,,.
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Proof. The fa-mily [2]5] geperates My; thus by virtue of 1.A.3, the family
12| #]1l;; where Z = {PeX*| P(X,) =1}, generates the o-field M, in the

subspace Z.
As follows from 1.A.4, the function ¢: X&—Z, where ¢(1) = ul|%, is an isomor-

phism between measurable spaces (X, My*) and (Z,M,). Since for every ge 2,
Adest, o g4l nZ) = [q]4 n X,] and the family {[g]4]n Zige2, de}
generates My, we find that the family {[g]4 n Xo]| €2, de o} = [2](]x,)]
generates Myk, which means that of|y, is a g-superbase of X;. W

However, we are still unable to tell much about d-superbases and superbases
of an ordered space. We give below an example of a base & such that even the
family &7, is not a superbase:

5.7. ExampLE. Let us consider the ordered space R®. The family &/ consisting
of all sets of the form

Aq = {xe R2| (x)I?Q)}’ Br = {x ERZI (x)2>r} 3

where g, » are rational, is a base but not a superbase of R®. Define probabilities
P, Q on %4 by the formulas

PO, 1)) = P({(L,OY) =02, P{O,0}) = ({1, D) =03,
00, D) = QUL 0N =0, Q(O,0}) =04, ({1, DY) =06,

It is easy to check that for all A e .o/, P(4)< 0(A), and hence «Z,=y(P, O),
but P< @ does not hold, because P(C)> Q(C), where C = {x € R?| (x);+(x),>%}-
Thus o, is not a d-superbase of R”. B

‘We now. turn to considering methods of contruction of d-superbases of proper

ordered spaces.

5.8. LeMMA., Let X be a proper ordered space. If an additive family Z <y
satisfies the conditions " \ .

(W) Z=2,

(i) for every Pe X*, AeMy, £>0 there exists a set Be Z, Bc A such that
P(ANB)<z.

Then the fumily & is a d-superbase of X. ‘

Proof, Let P, O be any probabilities on My and let P(i)sQ(Z) for every
Ze Z. We have to prove that P(4)<Q(d) for every Ae Fx. i

Fi‘rst, letAe oA Pyie.d= |4, where d; e Z;let usdenote W, = jL;JoAJ-.

Obviously W; n4, and hence also W, 4. Since & is additive, P(W)<0(W)
for every i. The family (2, Q) is monotone (cf. 5.3); thus P(A?s o).

Let 4 be any element of &y. It follows from_‘(ii) that there exists a s.et Be %,,
Bc 4, with P(B) = P(4). From (i) we obtain Be &, N Fx, and obviously also
Bed. Heice P(4) = P(B)<Q(B) = 0(4). m
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5.9. THEOREM. For a proper ordered space X let « family sf =My satisfy the
conditions v
(i) « is multiplicative and exhaustive and generates My,
(i) o =My,
(itl) ooy ot o5
Then the family (J/)M is a d-superbase of X.
Proof. As follows from Theorem 1.B.3, the family .« satisfies the assumptions
of Lemma 5.8 (o, is additive, because o is multiplicative), Hence A gy = oA o5 S x
is a d-superbase of X. Let P, O be any probabilities on 9ty Thus it suffices to prove
the implication ]
(D)ea=y(P, Q) = 50 Ix=y(P, Q).

Let A € of .5 0 Fy; then A = () 4, where 4; € &4/ . As follows from Lemma 1.D.5,

A =42 (recall that 4P = (49)°). Let B, = m AP. Then BN A. Since every

A,e s, we have A{e o/ and A® e (), hence eve1y B, e (s#),4. Thus every
B;ey(P, Q) and, by virtue of 5.3, Aey(P, Q). W

5.10. COROLLARY. If a family s of subsets of a proper ordered sjmca X sutisfies
the conditions

(1) &7 is multiplicative and exhaustive and generates My,

(@) o =My,

(ill) 5o,
then the family (), is a d-superbase of X.

To show this, let us consider the same ordered space, but with the inverse order:
X = (X, My, =) (e x=yiff y<x) All the assumptions of Theorem 5.9 are
satisfied. Thus the famlly (%), = [¥)..is a d- superbase of X. It is easy to see
that

[Aeyx(P, Q) iff ASey3(P, Q)] for AdePy,
[Py Q iff Q=5.P] for P,QeX*.
Thus for every P, Q e X* we have

(A= 1x(P, Q) Il [F¥]ycyz(P, Q) il QZ3.P i P10, W

6. Semi-regular ordered spaces.

Semi-regularity is an auxiliary notion which is particularly helpful in investi-
gations of %;-proper spaces. There are two very important properties of semi-regular
spaces. The first is that the restriction of a d-superbase of a semi-regular space X to
an absolute measurable subset X; is a d-superbase of the space Xo-

The second important property of semi-regular spaces is that every absolute
measurable subspace of a semi-regular space is semi-regular. This, together with the
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fact that H is semi-regular, will give us a broad class of semi-regular spaces, namely
that of all absolute measurable subspaces of H.

6.1. DErNITION. An ordered space X is said to be semi-regular iff it is proper
and, for any probabilities P, Qe X*, P<Q implies that, for every A €My,
P(A)<QA).

The next three theorems show some connections between a semi-regular space
and its absolute measurable subspaces:

6.2. Tarorem. Let X, be an absolute measurable subspace of a semi-regular
ordered space X. Then for all the probabilities p, v on My,.

sy i plF<l|*

Proof. (A) Let us assume first that Xy € My . We have to prove that the conditions

(2 WA v(Ag) - for every 4, e Py,
and
(b) A <v][¥(4)  for every Ae Py

are equivalent.

The implication (a)=-(b) is obvious: for every 4 € &y we have 4y = 4 N Xy € Py,
and p|[X(A) = p(4e)<v(dg) = v]|*(4).

Now, (b) implies (a): Let dye Py, Since X, ey, we have A, eMy.
From (b) and the definition of semi-regularity we obtain u||*(40)<v|[*(4%). But
VIIXCAX) = v(dy) and p])¥(4y) = u(d,), and so we find that u(do)<v{4y).
_—(B) Let Xy be any absolute measurable subspace of X. For any probabilities y, v
on My, there iza set Ke My, K= X, with u(K) = v(K) = 1. Applying our theorem
twice in the already proved case (A) (first u|[x]l* = u|l*, v||gl|¥ = v[I¥, second
.“”KHX“ = [, \/HKHX" = v), we obtain (K will now be considered as a subspace)

=y

Mol A6 pl*<guvll*
and

Wl vl i /Lg\'f;"'

Thus pyer iff p)|* <y v||¥ and this completes the proof. m

From this theorem and 1.A.4 it follows that

6.3, For every semi-regular spuce X and its absolute measurable subspace X
the. function @i Xa—X*, where o(u) = u||%, is an embedding and, moreover,
(X8 = {Pe X PXy) =1} m

6.4. THEOREM. Let X be a semi-regular ordered space and let Xo be an absolute
measurable subspace of X. If u family o is a d-superbase of X, then flx, is
a d-superbase of X,.

Proof. (A) First let X, € My. Suppose that oy, is not a d-superbase of Xo-
Then there exist probabilities i, v on My, such that &7|x, = yx,(1, v) but not p<x3
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We shall now show that in this case & cannot be a d-superbase of X. Let ug
consider p|¥ and v}|*. Since u(4 A X)<v(4 N Xy), we have MHX(A)SVHX(A)_
Thus o <yl vI[%)-

Since p<ytv does not hold, there exists a Ze Py, such that p(Z)>v(Z).
This means that p||X(Z)>v||*(Z¥). Since Z & My, the semi-regularity of X implies
that pl[¥ e v]]*. This contradicts our assumption (& should be a d-suptrbase
of X).

(B) Let X, be any absolute measurable subspace of X. Let p, v be any probabilities
on My, such that o cyg,(u, v). We have to prove uS V. There exists a set (which
will be also considered as a subspace) KeMy, KeX, with w(K) = v(K) = 1.
Ttis easy to see that the condition & < yx (i, ¥) implies o | g = yx(it] gy v x) (ef. 1.D.3).
As follows from the already proved case (A), &|x is a d-superbase of K. Hence
pllgS vk Tt follows from Theorem 6.2 that u<yjv. &

From this theorem and Theorem 5.6 we obtain

6.5. COROLLARY. For every semi-regular ordered space X and its absolute measur-
able subspace X, if « family & is a superbase of X, then of|x, is a superbase
of Xy W

Let us now prove the last theorem of this series:

6.6. THEOREM. An absolute measurable subspace Xy of a semi-regulur space X is
also semi-regular.

Proof. Let the probabilities u, v on My, satisfy the condition u< v and let
Z &My, We should prove that /,L(Z)sg(Z”‘"). It follows from Theorem 6.2 that
pll¥ < xev|¥. There exists a set K e My, K< Z, with u(K) = u(Z) and v(K) = v(Z).
By the semi-regularity of X we have LX<V (R mwv_(]’ex"). Hence
w(Z)<v(Z*) (because K*°=Z¥),

Now the theorem follows from Lemma 2.8. B

We are now going to prove that the ordered space H is semi-regular. For this
purpose the following lemmas are needed:

6.7. LEMMA. Let X be a proper ordered space. If there exists a family % <My
such that

(i) Z <My,

(ii) for every P e X*, every A € My and every ¢>0 there exists a Be &, BeA
such that P(ANB)<e.

Then X is semi-regular.

Proof. Choose any probabilities P, O on My with P Q. What we need to
prove is that P(4)<Q(d) for every A eMy. First let de,, ic. 4 = | 4,
where 4; € %. Then obviously 4 = {J A, &My and we have P(A)<P(A)< Q)
= Q(4) (because A e Fy).

Let 4 be any element of M. From (ii) follows the existence of a set B' € %,
B'cA with P(4) =P(B). Thus we obtain P(4) = P(B)<Q(B)<Q(4). m

e © '
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6.8. Lemma. If Z is a closed subset of the Hilbert cube o#, then Z (considered
in the sense of H) is also closed.

Proof. Let (') be any sequence such that y'e Z and y'~y. We have to prove
that y € Z. For every i there exists an x* € Z with x*<y". Since Z is compact, there is
a convergent subsequence x*-»x & Z, Since ¥ <", we have x<y; hence yeZ m

Now we can proceed to the following:

6.9. THEOREM. Lvery absolute measurable subspace of the ordered Hilbert cube H is
semi-regular.

Proof. As follows {rom Theorem 6.6, it suffices to prove that H is semi-regular.

The family of all closed subscts of # satisfies assumption (i) of Lemma 6.7.
Let o be any countable base of open sets (in the topological sense) of #. We can
assume &/ to be multiplicative, Since of , = o 5, (every open setis an F,), o is exhaus-
tive. Thus, as follows from Theorem 1.B.3, the family & = of,; satisfies assump-
tion (ii) of Lemma 6.7 (in fact, it is not necessary to use Theorem 1.B.3 in its general
form here; its usual, topological form would be sufficient). Thus from Lemma 6.7 it
follows that H is semi-regular, m

7. Regular ordered spaces.

We shall define here a class of ordered spaces which have some “nice” properties:
these spaces have countable bases and superbases; for regular spaces there
is a very simple rule of construction of a superbase from a given base; finally, the
class of regular spaces is closed under the operation X-— X,

7.1. DeFNrTioN. An ordered space X is regulur il it is Ro-proper and almost
Borel. . ' )

7.2. Every absolute measurable subspace of a regular ordered space is regular.

7.3. THEOREM. For every ordered space X the following conditions are equivalent:

@) X is regular, '

(i) X is isomorphic with an absolute measurable subspace of C,

(i) X s isomorphic with an absolute measurable subspace of H.

Proof. 7.2 follows from Lemma 2.8 and 1.C.3, while Theorem 7.3 is
a consequence of Theorem 2.9 and 1.C.l, m

From Theorems 7.3 and 6.9 we also obtain:

7.4. COROLLARY. Every regulur ordered space is semi-regular.

We shall now use the results of Section 5 for the construction of a countable
d-superbase of H. Consequently, we shall be able to find a countable superbase of
an arbitrary regular space.

Let us denote by % the family of all cyllinders in o over finite products of open
intervals with rational end-points, The family & is a base of open sets (in the topo-
logical senss) of the Hilbert cube; clearly % is countable. The family of all open
subsets of & is then equal to @, and the family of all closed subsets of # is equal
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to %,5. Finally, let us define % as the family of all sets U,', with i €4, q € 2, where
Ui = {xe#| (x);>q}. ~ R :

Tt is easily seen that (%), = (9), = Uy = Uy,.

7.5. LeMMA. The countable family () = Uy is a superbase of the ordere
space H.

Proof. Since ¢ is countable, also ((?)ﬁ, is countable. Tn order to show that ({?)M
is a d-superbase of H, we shall check that @ satisfies all the assumptions of
Theorem 5.9. In fact:

() ¢ is multiplicative and exhaustive (every open set is an /7, i.c. #,c%
and generates %,,; .

(ii) is obviously satisfied:

(iif) follows from Lemma 6.8.

Thus the family (%), is a d-superbase of H.

From Theorem 5.5 it follows that ({?)M is also a g-superbase of H. m

7.6. CoROLLARY. Every regular ordered space X has a countable superbase,
If g is an embedding of X into H, then the family {g~*(U)| U e U} is a superbase of X.

In fact, without loss of generality we can assume that X is an absolute measurable
subspace of H and g = idy. From Corollaries 7.4 and 6.5 it follows that the
family %,y = (Ix)s is a superbase of X, m

We now obtain the following:

o 1)

7.7. THEOREM. For every countable base o of a regular space X, the fumily 7y
is a superbase of X.

Proof. Let h be an embedding of X into H such that for every i€,
h(4) = h(X) " T;, where T, = {x e C| (x); = 1} and (4)) is any arrangement
of the family & (of. 2.10). It follows from Corollary 7.6 that the family
N0 Uew),y = {41y feN}y = oy is a superbase of X. m

The next theorem is an analogue of Theorem 3.2 for the case of Rg-proper
spaces:

7.8. THEOREM. The regularity of an ordered space X implies the regularity of X*.
Proof. It follows from Theorem 1.C.5 that X* is almost Borel and from
Theorem 7.7 that X* is xg-proper. m

It also follows from Theorem 3.3, 1.B.9 and 7.2 that Theorem 7.8 can be inverted
in the following way:

7.9. For every proper ordered space X with « countably generuted a-field My,
the regularity of X* implies the regylarity of X. m

Theorem 7.8 can also be strengthened as follows:

7.10. THEOREM. For @ regular

space X with a countable base {4}, the function
h: X*—H defiried by the Sormula

(h(P)),- =P(4) for ied, PeX* s
is an embedding. B

) ©
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From Theorem 1.C.5 it follows that also the class of all 8,-proper standard
analytic ordered spaces and the class of all 8,-proper standard Borel spaces are
closed under the operation X'—X*,

An open problem.

Tn Section 4 we have shown that, if a proper ordered space X is given, the or-
dering < y» in X* can be defined in an equivalent way by means of isotone functions.
This is a formalization of some intuitions arising from economics, in the case where
the ordering <y is understood as reflecting human preferences. However, one could
try to define the cxtension of €y formalizing some mechanical intui.tion’s. Assume
a spacc X to be given. Every probability on My represents a- distribution of the
unit mass on X, Suppose that “x< ¥ is understood as “there is a possibility of a flow
from x to »". One could introduce the relation €° in X saying: “P<°Q iff the
mass represented by P can be shifted, according to the directions of a possible flow,
so that it will represent Q™.

This informal “definition” of < described above can be formalized in many
ways. We now give a simple formal definition of <O

Given measurable spaces X and ¥, a measurable function f on X into ¥ and
a probability P on My, we define P~ as a probability on My such that
PFYY) = P(f~(%) for Yy ey, o

Let X be a proper ordered space. By <9 we denote the smallest relation g in X*
satisfying the contitions:

@I PeX* and fi X-X is a measurable function such that
P({x] x<f()}) = 1, then PoPf™".

() If PeX* and g: X-X is a measurable function such that
P({x| g(x)<x}) = 1, then Pg~'oP.

(i) If the probabilities P, Qe X* can be represented in the fom:
P=oP +(1—)P;, Q=aQ +(l—0)Q,, where 0<a<l, Py, Pz, Q1) Q,eX
and PioQ and Py0Q,, then P Q. o

The question arises whether the relations <% and <y, which is given by
Definition 3.1, are equal, '

The author knows only some partial answers: clearly <lex x5 if X =R,
the answer is obviously posilive; generally, if My contains all one—pm'nt sets, then
the relations €° and € y« coincide on the set of all probabilities on M with countable
supports (the lust is o consequence of the Min-Cut Max-Flow Theorem).
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Shape properties of hyperspaces
by

J. Krasinkiewicz * (Warszawa)

Abstract. Using some ideas from shape theory several results on the hyperspaces of subcontinua
are obtained. The hyperspaces of circle-like continua are studied in great detail,

0. Introduction. By a continuum we mean a compact connected metric space.
Given a continuum X by C(X) we denote the hyperspace of nonvoid subcon-
tinua of X with the Hausdorff metric dist(-,7) (see for instance [11] where several
facts about C(X) arc proved). A map f, i.e., a continuous function, from X into Y
defines a map f: C(X)~C(Y) given by f(4) = f(4), which is called the map
induced by f. Throughout this paper maps with hats above will always denote the
induced maps, By X we denote the base of C(X), that is the set of all singletons
in C(X). This space is isometric to X and occasionally is identified with X. Con-
tinvum X regarded as a point of C(X) is called the vertex of C(X). For every two
continua 4, Be C(X) such that A<B there is a maximal monotone collection of
continua between them which forms an arc in C(X). Such a collection will be denoted
by AB and called a segment in C(X). If A is a singleton and B = X, then 4B is
called a maximal segment. A map u from C(X) into reals R is called a Whitney
map on C(X) provided the conditions arc satisfied:

(%) AdcB and A # B = p(d)<u(B),
(%) p({a}) =0

Whitney maps always exist [23]. We take the opposrtunity to show how we can
construet many Whitney maps on C'(X).

Let Uy, Uy, ... be an open base for X and call a palr « = (U;, Up) normal
if U, U;. For such a pair let £, denote the Uryshon map from X into the unit interval
I'=[0,1] sending U, into 0 and JN\U, into 1, and let 0 C(X)—R be given by

1, (A) = diam f,(A) .

for each xe X .

* This paper has been wrilten in the spring of 1975 when the author was visiting the University
of Georgia, Athens, Georgia 30602,
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