

Table des matidade du tome CI, fascicule 2

		Pages
H. Toruńczyk, Concerning locally homotopy negl	sets and characterization of	
l_2 -manifolds		93-110
Z. Čerin, Hilbert cube modulo an arc	1	11-119
H. Nonas, Stronger topologies preserving the class of	continuous functions 1	21-127
D. P. Bellamy, Indecomposable continua with one and	l two composants 1	29-134
P. Flor, Eine Bemerkung über lokalkompakte abelsche	Gruppen 1	35-136
D. Simson and A. Skowroński, On the category of c	commutative connected graded	
Hopf algebras over a perfect field	1	37-149
E. E. Grace and E. J. Vought, Semi-confluent and weak	dy confluent images of tree-like	
and atriodic continua		51-158
F. E. Masat, A generalization of right simple semigrou	ips 1	59-170

Les FUNDAMENTA MATHEMATICAE publient, en langues des congrès internationaux, des travaux consacrés à la Théorie des Ensembles, Topologie, Fondements de Mathématiques, Fonctions Réelles, Théorie Descriptive des Ensembles, Algèbre Abstraite

Chaque volume paraît en 3 fascicules

Adresse de la Rédaction:

FUNDAMENTA MATHEMATICAE, Śniadeckich 8, 00-950 Warszawa (Pologne)

Adresse de l'Échange:

INSTITUT MATHÉMATIQUE, ACADÉMIE POLONAISE DES SCIENCES Śniadeckich 8, 00-950 Warszawa (Pologne)

Tous les volumes sont à obtenir par l'intermédiaire de ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Pologne)

Correspondence concerning editorial work and manuscripts should be addressed to: FUNDAMENTA MATHEMATICAE, Sniadeckich 8, 00-950 Warszawa (Poland)

Correspondence concerning exchange should be addressed to:
INSTITUTE OF MATHEMATICS, POLISH ACADEMY OF SCIENCES, Exchange
Śniadeckich 8, 00-950 Warszawa (Poland)

The Fundamenta Mathematicae are available at your bookseller or at ARS POLONA, Krakowskie Przedmieście 7, 00-068 Warszawa (Poland)

© Copyright by Państwowe Wydawnictwo Naukowe, Warszawa 1978

DRUKARNIA UNIWERSYTETU JAGIELLOŃSKIEGO W KRAKOWIE

Concerning locally homotopy negligible sets and characterization of l_2 -manifolds *

by

H. Toruńczyk (Warszawa)

Abstract. Let $A \subset X$ be a set such that for every open subset U of X the inclusion $U \setminus A \to U$ is a weak homotopy equivalence. The following two facts are shown: (A) If X is an ANR (M)-space, then so is $X \setminus A$; (B) if A is closed in X, X is complete-metrizable and $X \setminus A$ is an l_2 -manifold, then so is X. We apply (B) to prove that if X is a separable complete ANR (M) without isolated points, then the space of paths in X forms an l_2 -manifold.

Initially the paper was intended to present the proofs of the following two facts, which had been announced, or employed, in [31] and [32]:

- (A) If X is a complete separable ANR (M)-space and A is a countable union of Z-sets in X, then $X \setminus A \in ANR$ (M), and
- (B) If X is as above, A is a Z-set in X and $X \setminus A$ is an l_2 -manifold, then X is also an l_2 -manifold.

By a Z-set in X we mean here any closed set $A \subset X$ with the property that every map $f: [0, 1]^{\infty} \to X$ is a uniform limit of $X \setminus A$ -valued maps.

If we use results of infinite-dimensional topology, (A) has a very short proof: by [31], the space $X \times I_2$ is an I_2 -manifold which clearly contains $A \times I_2$ as a countable union of Z-sets; thus, by [2], $X \times I_2 \setminus A \times I_2$ is homeomorphic to $X \times I_2$ and hence $(X \setminus A) \times I_2$ and $X \setminus A$ are ANR(\mathfrak{M})'s. However, the assumption of (A) seems to be too restrictive: for instance, (A) does not include the fact that if A is any subset of the boundary of the square $[0,1]^2 \setminus A$ is an ANR(\mathfrak{M}). (See Fox [13].) Therefore we prove here in § 3 a result more general than (A), namely

(A') If $X \in ANR(\mathfrak{M})$ and $A \subset X$ is locally homotopy negligible in X (i.e., for every open set $U \subset X$ the inclusion $U \setminus A \to U$ is a weak homotopy equivalence), then $X \setminus A \in ANR(\mathfrak{M})$.

^{*} This paper was completed while the author was visiting the Amsterdam University and the Mathematical Centre, Amsterdam. It is registered as Math. Centre Report ZW 23/74, April 1974.

^{1 -} Fundamenta Math. CI

Since the properties of non-closed locally homotopy negligible sets have never been explicitly formulated, we devote a section of the paper to presenting the basic facts concerning such sets (see § 2). We note that most of these facts and also of the methods used in their proofs are similar to those of Anderson [14], Eells and Kuiper [11] and Henderson [19] (see also Eilenberg and Wilder [12], Smale [29], Haver [16]); however, several technical changes have to be made if one wants to dispense with the assumption that A is closed and X is an ANR(\mathfrak{M}). The material of § 2 allows us to strengthen the results of [4], [22] and [23] on cell-like mappings of metric spaces (see the Appendix); also, we hope that the study of non-closed locally homotopy negligible sets in concrete spaces can be used to prove that these spaces are ANR(\mathfrak{M})'s or infinite-dimensional manifolds.

The result (B), stated before, is proved in § 5 and then applied to show that, for Y a complete separable connected ANR(\mathfrak{M}) and K a polyhedron, the space of maps $K \rightarrow Y$ is an l_2 -manifold.

In the paper we discuss also an elementary characterization of ANR(\mathfrak{M})'s which is used in the proof of (A'). (See § 1). Let us note that (A') can also be established by using a characterization of Dowker and Hanner [10]; nevertheless the result of § 1 seems to be of independent interest (for instance, it unifies earlier results of Wojdysławski [34], Dugundji [9], Himmelberg [20] and others).

Notation. By I we denote the interval [0,1], by N the set of integers; continuous functions are called "maps". A homotopy $h\colon X\times I\to Y$ is often denoted by $(h_t)\colon X\to Y$, where $h_t(x)=h(x,t)$. All spaces are assumed to be normal, and if X is a metrizable space then ϱ usually denotes a metric which induces the topology of X. $p_X\colon X\times Y\to Y$ denotes the natural projection. By $\operatorname{cov}(X)$ we denote the family of all open coverings of X. If K is an (abstract) simplicial complex, then |K| denotes its standard geometric realization, endowed with the CW-topology. By i, k, n we denote elements of $N\cup\{0\}\cup\{\infty\}$ and i< n+1 means " $i\leqslant n$ if $n\neq\infty$ and $i\neq\infty$ if $n=\infty$ ".

§ 1. A characterization of ANR(\mathfrak{M})'s. If \mathscr{A} and \mathfrak{V} are families of subsets of X then by $\mathscr{A}_{\mathfrak{V}}$ we denote the family of all sets $A \in \mathscr{A}$ which refine \mathfrak{V} .

Suppose that X and Z are spaces, $\mathscr A$ is a family of subsets of X and that to certain sets $A \in \mathscr A$ we have assigned a map f_A from a non-empty set $\mathrm{dom}(f_A) \subset Z$ into X. Given $\mathfrak U \in \mathrm{cov}(X)$, we say that $(\{f_A\}, Z)$ is a $\mathfrak U$ -fine admissible approximation to $\mathscr A$ if there is a $\mathfrak B \in \mathrm{cov}(X)$ such that the following conditions are satisfied:

- (i) if $A \in \mathscr{A}_{\mathfrak{D}}$ then f_A is defined, $A \cup \operatorname{im}(f_A)$ refines \mathfrak{U} and $F_A = \operatorname{dom}(f_A)$ is a homotopy trivial subset of Z;
 - (ii) if A, $B \in \mathcal{A}_{\mathfrak{D}}$ and $A \subset B$ then f_B is an extension of f_A .

We sometimes say that $(\{f_A: A \in \mathscr{A}_{\mathfrak{D}}\}, Z)$ forms an approximation. An approximation $(\{f_A\}, Z)$ will be said to be *continuous* if it is \mathfrak{U} -fine for all $\mathfrak{U} \in \operatorname{cov}(X)$. If Z = X and each f_A is an inclusion, then we say that the approximation is *trivial*; trivial approximations will be denoted by $\{F_A\}$, where $F_A = \operatorname{dom}(f_A) \subset X$.

The aim of this section is to prove the following:

- 1.1. THEOREM. The following conditions are equivalent for a metric space X:
- (a) $X \in ANR(\mathfrak{M})$,
- (b) there exists a space E such that $X \times E$ has an open basis with all finite intersections of its members being homotopy trivial.
- (c) there exist continuous admissible approximations to the family of all finite subsets of X,
- (d) there exist arbitrarily fine admissible approximations to the family of all finite subsets of $X \times (0, 1]$.

For simplicity the family of all finite subsets of X will be denoted by $\mathscr{F}(X)$ and the family of all subsets of X by $\mathscr{S}(X)$.

Remark. The implication (c)=(a) of 1.1 generalizes earlier results of Dugundji [8] and Himmelberg [20] stating that metric spaces which admit "nice" equiconnecting functions are ANR(\mathfrak{M})'s; see also Milnor [24]. In fact, if λ is an equiconnecting function on X, then, letting $A_1 = A$ and inductively

$$A_{n+1} = \{\lambda(x, y, t) \colon x \in A, y \in A_n, t \in I\}$$

and $F_A = \bigcup_n A_n$, we get a trivial approximation to $\mathcal{S}(X)$ which is continuous in the situations considered in [8] and [20]. (Note that F_A is contractible whenever it is defined.)

Remark. Admissible approximations to $\mathscr{F} = \mathscr{F}(X)$ can be obtained as follows. Let $\mathfrak{U} \in \operatorname{cov}(X)$, let K denote the simplicial complex of all $\{x_1, ..., x_n\} \in \mathscr{F}_{\mathfrak{U}}$ and suppose that there is given a map $f \colon |K| \to X$. Then, letting Z = |K| and $f_{\sigma} = f_{|\sigma|}$ for $\sigma \in K = \mathscr{F}_{\mathfrak{U}}$, we get an approximation to \mathscr{F} which is continuous if for each $x \in X$ and a neighbourhood U of x there is a neighbourhood $V \subset U$ of x such that $f(|\sigma|) \subset U$ for all $\sigma = \{x_1, ..., x_n\} \subset V$.

In particular, the "convex structures" of [26] yield continuous approximations of this type and therefore 1.1 generalizes the results stating that spaces which admit convex (or similar) structures are ANR(M)'s (see Himmelberg [20] and Wojdysławski [34]).

In the proof of 1.1 we need the following lemmas:

1.2. Lemma. Let Y be a metric space and Y_0 its dense subset. If there are arbitrarily fine admissible approximations to $\mathcal{F}(Y_0)$, then there are also arbitrarily fine admissible approximations to $\mathcal{S} = \mathcal{S}(Y)$.

Proof. Fix $\mathfrak{U} \in \operatorname{cov}(Y)$, let $\mathfrak{U}_1 \in \operatorname{cov}(Y)$ be a star-refinement of \mathfrak{U} and let $(\{f_A \colon A \in \mathscr{F}_{\mathfrak{P}}\}, Z)$ be a \mathfrak{U}_1 -fine admissible approximation to $\mathscr{F} = \mathscr{F}(Y_0)$. We assume without loss of generality that \mathfrak{V} refines \mathfrak{U}_1 . Let $\mathfrak{W} \in \operatorname{cov}(Y)$ be a locally finite star-refinement of \mathfrak{V} and let $\mathfrak{N} \in \operatorname{cov}(Y)$ be a refinement of \mathfrak{W} such that each element of \mathfrak{V} intersects only finitely many elements of \mathfrak{W} . For each $W \in \mathfrak{W}$ pick an $y_W \in Y_0 \cap W$ and, given $S \in \mathscr{S}_{\mathfrak{V}}$, let $g_S = f_{\widehat{S}}$, where

$$\hat{S} = \{ y_W \colon W \in \mathfrak{W} \text{ and } W \cap S \neq \emptyset \}.$$

It is easy to see that $(\{g_s: S \in \mathcal{S}_{\mathfrak{N}}\}, Z)$ is a \mathfrak{U} -fine approximation to the family \mathcal{S} .

1.3. LEMMA. Let (Y, ϱ) be a metric space such that there exist arbitrarily fine admissible approximations to $\mathscr{S} = \mathscr{S}(Y)$. Then, given $\alpha \colon Y \to (0, \infty)$, there are a simplicial complex K and maps $f \colon Y \to |K|$ and $g \colon |K| \to Y$ such that $\varrho(gf(y), y) < \alpha(y)$ for all $y \in Y$.

Proof. Replacing, if necessary, ϱ by $\tilde{\varrho}(y_1,y_2)=\varrho(y_1,y_2)+|\alpha(y_1)-\alpha(y_2)|$, we may assume that $|\alpha(y_1)-\alpha(y_2)|\leqslant \varrho(y_1,y_2)$ for $y_1,y_2\in Y$. Let

$$\mathfrak{U} = \{B_o(y, \frac{1}{4}\alpha(y)): y \in Y\}$$

be the cover of Y by open balls and let $(\{f_S\colon S\in\mathscr{S}_{\mathfrak{V}}\},Z)$ be a \mathfrak{U} -fine admissible approximation to \mathscr{S} , \mathfrak{V} being locally finite. Let K denote the nerve of \mathfrak{V} and for each $\sigma=\{V_1,\ldots,V_n\}\in K$ let

$$I(\sigma) = \{ (f_{V_1 \cap \dots \cap V_n}(z), z) \colon z \in \text{dom}(f_{V_1 \cap \dots \cap V_n}) \} \subset Y \times Z.$$

Clearly, I is an anti-monotone function from K to the non-empty homotopy trivial subsets of $Y \times Z$ (i.e., if $\sigma_1 \subset \sigma_2 \in K$ then $I(\sigma_1) \supset I(\sigma_2)$).

Now let K' denote the barycentric subdivision of K and let $i: |K| \rightarrow |K'|$ be the subdivision map. For each $\sigma \in K$ we denote by $\hat{\sigma}$ its barycenter; $\hat{\sigma}$ is then a vertex of K'.

Sublemma. There is a map $\tilde{g}: |K'| \rightarrow Y \times Z$ such that

(*)
$$\tilde{g}(|\{\hat{\sigma}_1, \hat{\sigma}_2, ..., \hat{\sigma}_n\}|) \subset I(\sigma_1)$$
 for all $\sigma_1 \subset \sigma_2 ... \subset \sigma_n \in K$.

Proof. For each vertex $\hat{\sigma}$ of K' choose a point $\tilde{g}_0(\hat{\sigma}) \in I(\sigma)$. Let (L, \tilde{g}) be a maximal pair (under the natural ordering) such that L is a subcomplex of K' containing all vertices of K' and \tilde{g} extends \tilde{g}_0 and satisfies (*); we shall show that L = K'. Assume the contrary and let $s \in K' \setminus L$ be a simplex of minimal dimension. Then $\dim(s) \ge 1$ and $\binom{1}{3} |\tilde{s}| \subset |L|$, whence $\tilde{g}[|\tilde{s}|: |\tilde{s}| \to Y \times Z$ is well defined. Representing s as $\{\hat{\sigma}_1, ..., \hat{\sigma}_n\}$, where $\sigma_1 \subset \sigma_2 ... \subset \sigma_n \in K$, we infer from (*) and the anti-monotony of I that $\tilde{g}(|\tilde{s}|) \subset I(\sigma_1)$. Since the set $I(\sigma_1)$ is homotopy trivial, we may extend $\tilde{g}[|\tilde{s}|]$ to a $g_s: |s| \to I(\sigma_1)$. Clearly $(L \cup \{s\}, \tilde{g} \cup g_s)$ exceeds (L, \tilde{g}) , which is impossible; thus L = K' and \tilde{g} is as required.

Proof of 1.3 (continued). Let $g = p_Y \circ \tilde{g} \circ i$. Given $y \in Y$, let $\{V_1, ..., V_n\}$ = $\{V \in \mathfrak{B}: y \in V\}$. Observe that, by (*), we have

$$g(|\{V_1,\ldots,V_n\}|) \subset p_{\mathbb{Y}}\left(\bigcup_{i\leq n} I(\{V_i\})\right) = \bigcup_{i\leq n} \operatorname{im}(f_{V_i}).$$

Since $\operatorname{im}(f_{V_i}) \cup V_i$ refines $\mathfrak U$ for i=1,2,...,n, we infer that $g(|\{V_1,...,V_n\}|)$ is contained in the star of y in $\mathfrak U$. Therefore, if $f\colon Y\to |K|$ is induced by a partition of unity $\{\lambda_v\colon V\in\mathfrak B\}$ with each λ_v vanishing outside V, then $gf(y)\in\operatorname{st}(y,\mathfrak U)$ for all $y\in Y$. This easily yields $\varrho(gf(y),y)<\alpha(y)$ for all $y\in Y$.

The following lemma is actually a special case of a theorem of Dowker and Hanner (see [10], p. 105); however, we include a short proof of it, which will be used later.

1.4 LEMMA. Let (X, ϱ) be a metric space and assume that there are a simplicial complex K and maps $f: X \times (0, 1] \rightarrow |K|$ and $g: |K| \rightarrow X$ such that $\varrho(gf(x, t), x) < t$ for all $(x, t) \in X \times (0, 1]$. Then $X \in ANR(\mathfrak{M})$.

Proof. Let $h: A \rightarrow X$ be a map of a closed set A of a metric space (B, ϱ_B) ; we shall construct a neighbourhood extension of h.

For this purpose let $u=h\times \mathrm{id}\colon A\times(0,1]\to X\times(0,1]$. Since simplicial complexes are neighbourhood extensors for metric spaces, $f\circ u$ admits an extension $v\colon U\to |K|$, where $U\subset B\times(0,1]$ is an open set containing $A\times(0,1]$ (see [21], p. 105). Without loss of generality we may assume that U is contained in the set $\{(b,t)\in U: \text{there is an } a\in A \text{ with } \varrho_B(a,b)< t \text{ and } \varrho(gv(b,t),h(a))< t\}$, which, by our assumptions, is a neighbourhood of $A\times(0,1]$. Let $\lambda\colon B\to[0,1]$ be such that $\lambda|A=0$ and $\{(b,\lambda(b)): b\in B\setminus A\}\subset U\cup (B\setminus A)\times\{1\}$. (λ can easily be constructed by using Tietze's theorem and the fact that for each $a\in(0,1]$ there is a closed neighbourhood W of A in B with $W\times[a,1]\subset U$). We let $V=\{b\in B: \lambda(b)<1\}$ and define $h\colon V\to X$ by

$$\bar{h}(b) = \begin{cases} h(b) & \text{if} \quad b \in A, \\ gv(b, \lambda(b)) & \text{if} \quad b \in V \setminus A. \end{cases}$$

It is easily seen that \bar{h} is continuous.

Now we complete the proof of 1.1. To show that (a) \Rightarrow (c) consider X as a closed subset of a convex set Z in a normed linear space ([21], p. 81) and for sufficiently small sets $A \subset X$ let $F_A = \operatorname{conv}(A) \subset Z$ and $f_A = r | F_A$, where r is a neighbourhood retraction onto X. (c) \Rightarrow (d) is a consequence of the fact that any pair of continuous admissible approximations to $\mathscr{F}(X)$ and to $\mathscr{F}(Y)$ induces a continuous product approximation to $\mathscr{F}(X \times Y)$. Further, (d) \Rightarrow (a) by Lemmas 1.2-1.4, and (a) \Rightarrow (b) by a result of [31] stating that if $X \in \operatorname{ANR}(\mathfrak{M})$, then there exists a normed linear space E with $E \subset E$ becomes an open subset of E. Finally, (b) \Rightarrow (a) follows from the implication (c) \Rightarrow (a) and the following fact applied to $Y = X \times E$.

Sublemma. If Y has a base $\mathfrak U$ with homotopy trivial intersections, then there exist trivial continuous approximations to $\mathcal S(Y)$.

Proof. For each $n \in N$ let $\mathfrak{V}_n \in \text{cov}(X)$ be a locally finite refinement of \mathfrak{U} with $\dim_{\varrho} V < 1/n$ for all $V \in \mathfrak{V}_n$. Let $\mathfrak{B} = \bigcup_n \mathfrak{V}_n$, let $V \mapsto U_V$ be a function of \mathfrak{V} into \mathfrak{U} such that $V \subset U_V$ for all $V \in \mathfrak{V}$, and for sufficiently small $A \subset Y$ let

$$F_A = \bigcup_{V \in \mathfrak{V}(A)} U_V$$
, where $\mathfrak{V}(A) = \{ V \in \mathfrak{V} : A \subset V \}$.

It is easy to see that $\mathfrak{B}(A)$ is finite for all $A \subset Y$ and F_A is a continuous trivial approximation to $\mathscr{S}(Y)$.

⁽¹⁾ s denotes the boundary of s.

1.5. COROLLARY. Let X be a separable complete metric space which is l_2 -stable (i.e., $X \times l_2 \cong X$). Suppose further that there exist arbitrarily fine admissible approximations to $\mathcal{F}(X_0)$, where $X_0 \subset X$ is a dense set. Then X is an l_2 -manifold.

Proof. By a theorem of Klee we have $l_2 \times (0, 1] \cong l_2$ (see [31]) and therefore $X \times l_2 \times (0, 1] \cong X \times l_2$ and $X \times (0, 1] \cong X$. Hence, by 1.1 and 1.2, $X \in ANR(\mathfrak{M})$ and thus, by [31], $X \times l_2$ is an l_2 -manifold. Since $X \times l_2 \cong X$, then result follows.

Clearly, the conditions of 1.5 are also necessary for a connected space X to be an l_2 -manifold (recall that each separable l_2 -manifold is l_2 -stable and is homeomorphic to an open subset of l_2 , see [3] and [31]).

§ 2. Locally homotopy negligible sets.

2.1. DEFINITION. A set $A \subset X$ will be said to be *locally n-negligible* if, given $x \in X$, k < n+1 and a neighbourhood U of x, there is a neighbourhood $V \subset U$ of x such that for each $f: (I^k, \partial I^k) \to (V, V \setminus A)$ there is a homotopy $(h_t): (I^k, \partial I^k) \to (U, U \setminus A)$ with $h_0 = f$ and $h_1(I^k) \subset U \setminus A$. Locally ∞ -negligible sets will also be called *locally homotopy negligible* (briefly: l.h. negligible).

The aim of this section is to discuss certain properties of l. h. negligible sets; we formulate the corresponding results for locally n-negligible sets with $n < \infty$ only if their proofs require no extra work.

- 2.2. Remark. Let A be a locally n-negligible set in X. Then
- (a) For every space E, $A \times E$ is locally n-negligible in $X \times E$.
- (b) For every open set $U \subset X$, $U \cap A$ is locally n-negligible in U.
- 2.3. THEOREM. Let $A \subset X$, where X is normal. The following conditions are equivalent:
 - (a) A is locally n-negligible in X.
- (b) Given $\varepsilon > 0$, a pseudometric ϱ on X and a map $f: (|K|, |L|) \rightarrow (X, X \setminus A)$, where (K, L) is a finite simplicial pair with $\dim(K) < n+1$, there is a homotopy $(h_t): |K| \rightarrow X$ such that $h_0 = f$, $h_1(|K|) \subset X \setminus A$, $h_t(x) = f(x)$ for $(x, t) \in |L| \times I$, and $\varrho(h_t(x), f(x)) < \varepsilon$ for $(x, t) \in |K| \times I$.
- (c) Given: a simplicial pair (K, L) with $\dim(K) \leq n$, a pseudometric ϱ on X and maps $\alpha: |K| \rightarrow (0, \infty)$ and $f: |K| \times \{0\} \cup |L| \times I \rightarrow X$ with $\varrho(f(x, t), f(x, 0)) < \alpha(x)$ and $f(x, 1) \notin A$ for all $(x, t) \in |L| \times I$, there is an $f: |K| \times I \rightarrow X$ which extends f and satisfies $\varrho(f(x, t), f(x, 0)) < \alpha(x)$ and $f(x, 1) \notin A$ for all $(x, t) \in |K| \times I$.
- (d) For each open $U \subset X$ and i < n+1 the relative homotopy group $\pi_i(U, U \setminus A)$ vanishes.
- (e) Each $x \in X$ has a basis \mathfrak{U}_x of open neighbourhoods with $\pi_i(U, U \setminus A) = 0$ for all $U \in \mathfrak{U}_x$ and i < n+1.

Proof. (a) \Rightarrow (b). Let (b_p) denote the condition obtained from (b) with "dim(K) < n+1" replaced by "dim $(K) \le p$ "; we shall show that $(a) \Rightarrow (b_p)$ for $0 \le p < n+1$. Assume that $(a) \Rightarrow (b_{p-1})$ has been established (evidently $(a) \Rightarrow (b_0)$) and let K, L, f and be as in (b_p) . Given $\varepsilon \in (0, \frac{1}{2})$, cover the compact set f(|K|) by

open sets V_1, \ldots, V_k such that for each $g: (I^p, \partial I^p) \rightarrow (V_i, V_i \setminus A)$, where $1 \le i \le k$, there is a homotopy $h = (h_i): (I^p, \partial I^p) \rightarrow (X, X \setminus A)$ with $h_0 = g$, $h_1(I^p) \cap A = \emptyset$ and $\operatorname{diam}_{\varrho} \operatorname{im}(h) < \varepsilon$. Let a subdivision (K', L') of (K, L) be so fine that $\{f(|\sigma|): \sigma \in K'\}$ refines $\{V_1, \ldots, V_k\}$ (we identify |K'| with |K|), and for each $\sigma \in K'$ let $\lambda_{\sigma} : X \rightarrow [0, 1]$ be a map that is 1 on $f(|\sigma|)$ and 0 outside a $V^{\sigma} \in \{V_1, \ldots, V_k\}$. Write

$$d(x, y) = \sum_{\sigma \in K'} |\lambda_{\sigma}(x) - \lambda_{\sigma}(y)| + \varrho(x, y) \quad \text{for} \quad x, y \in X,$$

and let M be the union of L' and the p-1 skeleton of K'. By (b_{p-1}) , there is a homotopy (\tilde{f}_t) : $|M| \to X$ such that $\tilde{f}_0 = f \mid M \mid$, $\tilde{f}_1(\mid M \mid) \cap A = \emptyset$, $\tilde{f}_t \mid L \mid = f \mid L \mid$ and $d(\tilde{f}_t(x), f(x)) < \varepsilon$ for all $(x, t) \in \mid M \mid \times I$. For each $\sigma \in K' \setminus M$ denote $T_\sigma = |\dot{\sigma}| \times I \cup \cup |\sigma| \times \{0\}$ and let \tilde{f}^σ be the map induced by \tilde{f} on $|\dot{\sigma}| \times [0, 1]$ and by f on $|\sigma| \times \{0\}$. Then $(T_\sigma, |\dot{\sigma}| \times \{1\}) \cong (I^p, \partial I^p)$ and $\tilde{f}^\sigma(T_\sigma) \subset V_\sigma$ for all $\sigma \in K' \setminus M$ and therefore, by our construction, there are homotopies (g_t^σ) : $(T_\sigma, |\dot{\sigma}| \times \{1\}) \to (X, X \setminus A)$ such that $g_0^\sigma = \tilde{f}^\sigma$, $g_1^\sigma(T_\sigma) \cap A = \emptyset$ and $\dim_{\varrho} \operatorname{im}(g^\sigma) < \varepsilon$ for each $\sigma \in K' \setminus M$. Then the g^σ 's induce maps h^σ : $|\sigma| \times I \to X$ such that $h^\sigma \mid T_\sigma = \tilde{f}^\sigma$, $h^\sigma(|\sigma| \times \{1\}) \subset X \setminus A$ and $\dim_{\varrho} \operatorname{im}(h^\sigma) < \varepsilon$ (we take $h^\sigma = f^\sigma u^\sigma$, where u^σ is a homeomorphism of $|\sigma| \times I$ onto $T_\sigma \times I$ such that $u^\sigma(x) = (x, 0)$ for $x \in T_\sigma \subset |\sigma| \times I$ and $u^\sigma(|\sigma| \times \{1\}) = T_\sigma \times \{1\} \cup \cup |\dot{\sigma}| \times \{1\} \times I$). We let

$$h_t(x) = \begin{cases} h^{\sigma}(x, t) & \text{if} \quad x \in |\sigma| \text{ and } \sigma \in K \setminus M, \\ \tilde{f}_t(x) & \text{if} \quad x \in |M|. \end{cases}$$

(b) \Rightarrow (c). By the Kuratowski–Zorn lemma it suffices to consider the case where $K = \sigma$ is a simplex and $L = \dot{\sigma}$. Assume that $|\sigma|$ is embedded in a euclidean space and for each $A \subset |\sigma|$ denote by λA the image of A under the λ -homothethy with respect to the barycenter 0 of $|\sigma|$. Let $\varepsilon > 0$ satisfy $\varepsilon < \min\{\alpha(x): x \in |\sigma|\}$ and $\varepsilon < \min\{\alpha(x) - \varrho(f(x,t),f(x,0)): (x,t) \in |\dot{\sigma}| \times I\}$. Set $T = |\sigma| \times \{0\} \cup |\dot{\sigma}| \times I$; by (b) there is an ε -homotopy $w: T \times I \rightarrow X$ such that $w_1(T) \cap A = \emptyset$, $w_0 = f$ and $w_1(x) = f(x,1)$ for $x \in |\dot{\sigma}| \times \{1\}$. Now, for each $x \in |\sigma| \setminus \{0\}$ let

$$A(x) = \{(\lambda x, 0) \colon \lambda \in [1, \mu]\} \cup \{(\mu x, t) \colon t \in I\},\$$

where $\mu \ge 1$ is chosen so that $\mu x \in |\dot{\sigma}|$. Then the inequality

(1)
$$\sup \{ \varrho(f(y), f(x, 0)) \colon y \in A(x) \} < \alpha(x) - \varepsilon$$

holds for all $x \in |\dot{\sigma}|$ and therefore, by compactness, there is a $\lambda \in (0, 1)$ such that (1) holds for all $x \in |\dot{\sigma}| \setminus \lambda |\dot{\sigma}|$. Let (u_t) : $|\dot{\sigma}| \to T \times I$ be a homotopy such that:

- (i) $u_t(x) = ((x, t), 0)$ if $(x, t) \in |\dot{\sigma}| \times I \cup |\sigma| \times \{0\}$,
- (ii) $u_t(x) = ((x, 0), t)$ if $(x, t) \in \lambda |\sigma| \times I$;
- (iii) $u_1(|\sigma|) \subset T \times \{1\} \cup |\dot{\sigma}| \times \{1\} \times I$; and
- (iv) $p_T u_t(x) \in A(x)$ if $(x, t) \in (|\sigma| \setminus \lambda |\sigma|) \times I$.

Then $f: |\sigma| \times I \to X$ defined by $f(x, t) = w(u_t(x))$ is the required extension of f. The implications $(c) \Rightarrow (b)$ and $(d) \Rightarrow (e) \Rightarrow (a)$ are evident. To prove that $(b) \Rightarrow (d)$, fix $f: (I^k, \partial I^k) \to (U, U \setminus A)$, where $U \subset X$ is open and k < n+1. Let $\lambda: X \to I$ be a function that is 0 on $X \setminus U$ and 1 on $f(I^k)$ and let $(h_t): I^k \to X$ be a homotopy such that

 $h_0 = f$, $h_1(I^k) \cap A = \emptyset$, $h_t(x) = f(x)$ for $x \in \partial I^k$ and $|\lambda f_t(x) - \lambda f(x)| < \frac{1}{2}$ for $x \in I^k$ (all $t \in I$). Then $h_t(I^k) \subset U$ for all $t \in I$ and hence f is trivial in $\pi_k(U, U \setminus A)$.

If (X, ϱ) is a metric space and $h: M \times I \to X$ and $\alpha: M \times I \to [0, \infty)$ are maps, then we shall say that h is an α -homotopy if $\varrho(h_t(x), h_0(x)) \leq \alpha(x, t)$ for all $(x, t) \in M \times I$.

2.4. THEOREM. Let A be an l. h. negligible set in a metric space (X, ϱ) and let $f: M \rightarrow X$ be a map of an ANR(\mathfrak{M})-space M. Then, given $\alpha: M \times [0, 1] \rightarrow [0, \infty)$ with $\alpha(x, t) > 0$ for $(x, t) \in f^{-1}(A) \times (0, 1]$, there is an α -homotopy $(h_t): M \rightarrow X$ such that $h_0 = f$ and $h_t(M) \subset X \setminus A$ for $t \in (0, 1]$.

We first consider a special case of 2.4.

SUBLEMMA. Let X, M, A and f be as above and let $\gamma: M \rightarrow (0, \infty)$. Then there exists a $g: M \rightarrow X \setminus A$ such that $\varrho(g(x), f(x)) < 4\gamma(x)$ for $x \in M$.

Proof. Let $\mathfrak{U} \in \operatorname{cov}(M)$ be so fine that $\operatorname{diam}_e f(U) < \sup\{\gamma(x) \colon x \in U\} < 2\inf\{\gamma(x) \colon x \in U\}$ for all $U \in \mathfrak{U}$, and let a simplicial complex K and maps $u_1 \colon M \to |K|$, $u_2 \colon |K| \to M$ be such that for each $x \in M$ there is a $U \in \mathfrak{U}$ with $\{u_2 u_1(x), x\} \subset U$ ([11], p. 138). By 2.3 there exists a $g_0 \colon |K| \to X \setminus A$ such that $\varrho(g_0(y), fu_2(y)) < \gamma u_2(y)$ for all $y \in |K|$. We let $g = g_0 u_1$.

Proof of 2.4. Let $X' = X \times (0,1]$, $A' = A \times (0,1]$, $M' = \alpha^{-1}(0,\infty)$ and let $f' \colon M' \to X'$ be defined by f'(x,t) = (f(x),t). By 2.2 and the sublemma, there exists a $g \colon M' \to X' \setminus A'$ such that

$$\varrho'(g(x,t),f'(x,t)) < \min(t,\alpha(x,t))$$
 for $(x,t) \in M'$,

where $\varrho'((x, t), (y, s)) = \varrho(x, y) + |t - s|$. We let $h_t(x) = p_X g(x, t)$ if $(x, t) \in M'$ and $h_t(x) = f(x)$ if $(x, t) \in M \times \{0\} \cup \alpha^{-1}(0)$.

2.5. Remark. Assume that X, M and f are as in 2.4 and that A is locally n-negligible in X. If $\dim(M) \le n-1$, then the assertion of 2.4 still holds. If $\dim(M) \le n$, then for every $\beta: X \to [0, \infty)$ with $\beta | A > 0$ there is a homotopy $(h_t): M \to X$ such that $h_0 = f$, $h_1(M) \subset X \setminus A$ and $\varrho(h_t(x), f(x)) < \beta(f(x))$ for all $(x, t) \in M \times I$. (We apply the proof of 3.4 and the fact that if $M_1 \in ANR(\mathfrak{M})$ is of covering dimension n, then there are an n-dimensional simplicial complex K and maps $M_1 \to |K| \to M_1$ such that $u_2 u_1$ is homotopic to the identity by means of a small homotopy).

2.6. COROLLARY. If A is an I. h. negligible set in a metric space X and A' is a subset of A, then A' is also l. h. negligible in X.

Proof. Let an open set $U \subset X$ and $f: (I^n, \partial I^n) \to (U, U \setminus A')$ be given, and let $\varepsilon = \varrho(f(I^n), X \setminus U)$. By 2.4, there exists an ε -homotopy $(h_t): I^n \to X$ such that $h_0 = f$ and $h_t(I^n) \cap A = \emptyset$ for $t \in (0, 1]$. Then $(h_t): (I^n, \partial I^n) \to (U, U \setminus A')$ satisfies the condition in 2.1.

2.7. COROLLARY. Let $A_1, A_2, ...$ be closed l.h. negligible sets in X. If X is complete-metrizable, then $A = \bigcup A_i$ is l.h. negligible in X.

Proof. Fix $n \ge 0$ and consider the space Y of all maps of $I^n \times (0, 1]$ into X, equipped with the "fine topology" generated by all sets

$$V(g,\alpha) = \{h \in Y: \varrho(h(x), g(x)) < \alpha(x)\},\,$$

where ϱ is a fixed complete metric on X, $g \in Y$ and α is a map from $I^n \times (0, 1]$ into $(0, \infty)$.

By 2.4, all the sets $Y_n = \{g \in Y: \operatorname{im}(g) \cap A_n = \emptyset\}$ are dense and open in Y. Moreover, it is easy to verify that Y has the Baire property (cf. [30]) and therefore $Y_{\infty} = \bigcap_{n} Y_n$ is dense in Y. Thus for each $f \colon I^n \to X$ there is an $h \in Y_{\infty}$ with $\varrho(h(x,t),f(x)) < \varepsilon t$ for all $(x,t) \in I^n \times (0,1]$; this easily completes the proof.

We conclude this section by giving a condition for a set $A \subset X$ to be locally n-negligible. Following [12], we say that $B \subset X$ is LC^n rel. X at a point $x \in X$ if, given k < n+2 and a neighbourhood U of x, there is a neighbourhood $V \subset U$ of x such that each $f \colon \partial I^k \to B \cap V$ extends to an $f \colon I^k \to B \cap U$.

2.8. THEOREM (compare [12]). Let X be a metric space and let $A \subset X$ be a set such that $X \setminus A$ is dense in X and is LC^n rel. X at each point of \overline{A} . If $n < \infty$, then A is locally n-negligible in X and each map $f: I^{n+1} \to X$ can be approximated by maps $f': I^{n+1} \to X \setminus A$ which coincide with f on an arbitrary given compact subset of $f^{-1}(X \setminus \overline{A})$.

Proof. Let $f: K \rightarrow X$ be a fixed map of a compact polyhedron K. Writing $L = f(K) \cap \overline{A}$, we let for any map $g: Z \rightarrow X$ of a compact space Z

$$\delta(g) = \operatorname{diam}_{\varrho} g(Z) + \sup \{ \varrho(g(z), L) \colon z \in Z \},\,$$

and we say that g is λ -small if $\delta(g) < \lambda$. By a standard compactness argument there exist a $\lambda_0 > 0$ and a function ε : $(0, \lambda_0] \rightarrow (0, \infty)$ with $\lim_{\lambda \to 0} \varepsilon(\lambda) = 0$ and such that each λ -small g: $\partial I^k \rightarrow X \setminus A$ admits an $\varepsilon(\lambda)$ -small extension \overline{g} : $I^k \rightarrow X \setminus A$ (k = 0, 1, ..., n+1). Without loss of generality we can assume that $\lambda_0 > 3$ and that ε is non-decreasing.

CLAIM (A). If dim $(K) \le n+1$ then, for every $\mu \in (0, 1]$, there exists a $g: K \longrightarrow X \setminus A$ such that $\hat{\rho}(f, g) < \varepsilon(3\mu) + 3\mu$ and g(x) = f(x) if $\varrho(f(x), L) > \mu(^2)$.

Proof. We use induction on dim(K). Suppose that (A) holds true if dim(K) $\leq p$ (it does hold if dim(K) = 0) and assume dim(K) = $p+1 \leq n+1$. Let T be a triangulation of K such that diam_e $f(|\sigma|) < \mu$ for any simplex $\sigma \in T$ and let S denote the p-skeleton of T. Let $g_0 \colon |S| \to X \setminus A$ be a map such that $\hat{\rho}(g_0, f|S|) < \mu$ and such that $g_0(x) = f(x)$ if x lies in a simplex of T which is disjoint from $f^{-1}(\overline{A})$. Now, let $\sigma \in T$ be any (p+1)-simplex. If $|\sigma| \cap f^{-1}(A) \neq \emptyset$, then $g_0||\dot{\sigma}|$ is 3μ -small and therefore it admits an $\varepsilon(3\mu)$ -small extension $g^{\sigma} \colon |\sigma| \to X \setminus A$. If $|\sigma| \cap f^{-1}(\overline{A}) = \emptyset$, then put $g^{\sigma} = f||\sigma|$. Clearly, g_0 and the g^{σ} 's induce the required $g \colon K \to X \setminus A$.

CLAIM (B). If dim $(K) \le n$, then there is a homotopy (h_t) : $K \rightarrow X$ with $h_0 = f$ and $h_t(K) \subset X \setminus A$ for $t \in (0, 1]$.

⁽²⁾ By $\hat{\varrho}$ we denote the sup-metric induced by ϱ .

lations of K such that T_{i+1} is a subdivision of T_i and diam $f(|\sigma|) < 2^{-i}$ for all $\sigma \in T_i$ and $i \ge 1$, and for each $i \ge 1$ let g_i : $K \to X \setminus A$ be a map such that $\hat{\varrho}(g_i, f) < 2^{-i}$ and $g_i(x) = f(x)$ if x lies in a simplex of T_i disjoint from $f^{-1}(\overline{A})$. We shall find the required homotopy in such a way that $h_t = g_i$ if $t = 2^{-i+1}$, i = 1, 2, ... To make this possible it suffices to construct for each $i \ge 1$ an h^i : $K \times I \to X \setminus A$ with $h^i = a$. $h_1^i = g_{i+1}$ and $\hat{\rho}(h_t^i, f) < \varepsilon_n(2^{-i}) + 2^{-i}$ for $t \in I$.

To this end, fix i and let v be a vertex of T_i . If $v \in f^{-1}(\overline{A})$ then $g_i(v)$ and $g_{i+1}(v)$ can be joined by an $\varepsilon(3\cdot 2^{-i})$ -small path lying in $X\setminus A$, and if $v\notin f^{-1}(\overline{A})$ then this path can be taken as constant. Proceeding in this way with all vertices v of T_i , we get an $h^{i,0}: |T_i^0| \times I \cup K \times \{0, 1\} \to X$ with $h^{i,0}: |K \times \{0\}| = g_i$ and $h^{i,0}: |K \times \{1\}| = g_{i+1}$ (by T_i^k we denote the k-skeleton of T_i). Now let $\sigma \in T_i^1$. If $|\sigma| \cap f^{-1}(A) \neq \emptyset$, then $h^{i,0}||\dot{\sigma}|\times I\cup|\sigma|\times\{0,1\}$ is an $2\varepsilon_0(2^{-i})+3\cdot 2^{-i}$ -small map of a 1-sphere and therefore it can be extended to an $\varepsilon_1(2^{-i})$ -small map of $|\sigma| \times I$ into $X \setminus A$: if $|\sigma| \cap f^{-1}(\overline{A}) = \emptyset$, then this extension can be taken to be constant on all intervals $\{x\} \times I, x \in |\sigma|$. In this way one gets an $h^{i,1}: |T_i^1| \times I \cup K \times \{0, 1\} \rightarrow X$ which extends $h^{i,0}$ and has the property that $h^{i,1}||\sigma| \times I$ is $\varepsilon_1(2^{-i})$ -small for all $\sigma \in T^1$. Inductively. we get maps $h^{i,j}$: $|T_i^j| \times I \cup K \times \{0,1\} \rightarrow X$, j=1,2,...,n, such that $h^{i,j+1}$ extends $h^{i,j}$ and $h^{i,j}||\sigma|\times I$ is $\varepsilon_i(2^{-i})$ -small for all $\sigma\in T^j$. We let $h^i=h^{i,n}$.

Clearly (A) and (B) imply the assertion of 2.8.

2.9. Remark. If $Y \subset X$ is a dense set which is uniformly LC^{∞} in a metric of X, then Y is LC^{∞} rel. X at each $x \in X$ and, hence, $X \setminus Y$ is 1. h. negligible in X. (A version of this remark was made by Eilenberg and Wilder [12] and various forms of it were applied by Haver [16], [17] in a study of function spaces.)

§ 3. Locally homotopy negligible sets in ANR(\mathfrak{M})'s and LC $^{\infty}$ -spaces.

3.1. Theorem. Let $X \in ANR(\mathfrak{M})$ and let A be a locally homotopy negligible set in X. Then $X \setminus A \in ANR(\mathfrak{M})$.

Proof. By 1.1, there exists a space E such that $X \times E$ has an open basis (say \mathfrak{U}) with homotopy trivial intersections. Then $A \times E$ is l. h. negligible in $X \times E$ and therefore the basis $\{U \setminus A \times E : U \in \mathfrak{U}\}\$ of $(X \setminus A) \times E$ has homotopy trivial intersections. Hence $(X \setminus A) \times E$ and $X \setminus A$ are ANR(M)'s (we use 1.1 again).

3.2. Proposition. Let $X \in ANR(\mathfrak{M})$ and let A be a locally n-negligible set in X. If $\dim(X) \leq n$ then A is l.h. negligible in X.

Proof. Fix $f: (I^k, \partial I^k) \rightarrow (X, X \setminus A)$ and $\varepsilon > 0$. By 2.5, there exists an ε -homotopy $(h_t): X \to X$ such that $h_1(X) \subset X \setminus A$ and $h_t(x) = x$ if $(x, t) \in X \times \{0\} \cup f(\partial I^k) \times I$. Hence $(h_t f)$: $(I^k, \partial I^k) \rightarrow (X, X \setminus A)$ is an ε -homotopy with $h_0 f = f$ and $h_1 f(I^k) \subset X \setminus A$; thus A is l. h. negligible in X.

For $0 \le k \le \infty$ let us say that A is a Z_k -set in X if each map $f: I^k \to X$ can be approximated by maps into $X \setminus A$. It is easy to see that A is a Z_m -set in X iff it is a Z_k -set for all $k \in N$; closed Z_{∞} -sets in X will be called Z-sets.

- 3.3. COROLLARY. Let $X \in LC^n$ be a metric space. The following conditions on a closed set $A \subset X$ are equivalent:
 - (a) $X \setminus A$ is dense in X and is LC^{n-1} rel. X at each $x \in A$;
 - (b) A is a Z_n -set in X:
 - (c) A is locally n-negligible in X.

Proof. (a) \Rightarrow (b) follows from 2.8 and (c) \Rightarrow (a) is trivial. Finally, (b) \Rightarrow (c) by the well-known properties of LC"-spaces (see [21], p. 160).

§ 4. Enlarging an ANR(\mathfrak{M}) — open questions and remarks. Let X be a locally contractible metric space and A its l. h. negligible subset. By 3.2, $X \in ANR(\mathfrak{M})$ $\Rightarrow X \setminus A \in ANR(\mathfrak{M})$. We do not know whether the converse implication is true (3).

In this connection let ut show:

4.1. Proposition. Let X be a metric space and A its $ANR(\mathfrak{M})$ -subset. Then, A may be enlarged to an ANR(\mathfrak{M})-set $\widetilde{A} \subset X$ which is of type G_{δ} in X and has the property that $\tilde{A} \setminus A$ is l. h. negligible in \tilde{A} .

Proof. By well-known properties of ANR(\mathfrak{M})'s there is a $\mathfrak{U} \in \text{cov}(A \times (0, 1])$ and a map $g: |K| \to A$, where K is the nerve of U, such that if $f: A \times (0, 1] \to |K|$ is any canonical map, then $\rho(qf(x,t),x) < t$ for all $(x,t) \in A \times (0,1]$ (see [21], p. 138 or use the proof of 1.1). Let $\mathfrak B$ be a family of open subsets of $X\times(0,1]$ such that $\mathfrak{U} = \{V \cap A \times (0, 1]: V \in \mathfrak{B}\}$, let L be the nerve of \mathfrak{B} and V the union of all elements of \mathfrak{D} , and let $f: V \rightarrow |L|$ be a canonical map. Identifying K with a subcomplex of L, we infer that $C = f^{-1}(|K|)$ is a relatively closed subset of V and therefore the set $B = \{(x, t) \in C: \varrho(gf(x, t), x) < t\}$ is of type G_{δ} in $X \times (0, 1]$ and contains $A \times (0, 1]$. Since (0, 1] is σ -compact, $\tilde{A} = X \setminus p_{x}(X \times (0, 1] \setminus B)$ is a G_{δ} -subset of X containing A. By 1.4, $\widetilde{A} \in ANR(\mathfrak{M})$. The following sublemma shows that $\widetilde{A} \setminus A$ is 1. h. negligible in \tilde{A} .

Sublemma. Every set $C \subset X \setminus \operatorname{im}(q)$, is l. h. negligible in X.

Proof. Let h: $I^n \to X$ be given. Identify I^n with $I^n \times \{0\} \subset I^n \times I$. By 1.4 there are $\varepsilon > 0$ and $\bar{h}: I^n \times [0, \varepsilon] \to X$ such that $\bar{h} | I^n = h$; moreover, the formula given in the proof of 1.4 yields $\bar{h}(x, t) \in \text{im}(g)$ for $t \in (0, \varepsilon]$. Therefore there is a homotopy $(u_n): I^n \to X$ such that $u_0 = h$ and $u_n(I^n) \cap C = \emptyset$ for t > 0; this concludes the proof.

- 4.2 Remark. The set \tilde{A} of 4.1 is in no way unique: e.g., if $B \supset A$ is any G_{δ} -subset of \tilde{A} , then B also satisfies the assertion of 4.1 (see 2.6 and § 3).
- 4.3. Remark. Let X be a compact PL-manifold, let H denote its homeomorphism group with compact-open topology and let P be the subgroup of H consisting of PL-maps. It was shown by Haver [15], [17], that $P \in ANR(\mathfrak{M})$ and the closure G of P is an open subgroup of H. Let $G_0 \supset P$ be an ANR(M)-extension of P to a G_{δ} -subset of G; since P is uniformly locally contractible (see [17]), we infer, by 2.9 and 2.6, that $G \setminus G_0$ is 1. h. negligible in G. Thus $G \times I_2$ contains an I_2 -manifold

⁽³⁾ Added in proof. It is not, without assuming X to be locally contractible, as is shown by Taylor's example (BAMS 81, p. 629) combined with 6.1 and 6.3.

(namely $G_0 \times l_2$, see [31]) with an l. h. negligible complement. Since H is a union of open cosets of G and since $H \times l_2 \cong H$ (Geoghegan [14]), H also contains an l_2 -manifold with an l. h. negligible complement. It is however an open question if H is an ANR(\mathfrak{M}).

- 4.4. Remark. Similarly, it follows from [15] and 4.1 that if E is any separable complete linear metric space then $E \setminus K \in AR(\mathfrak{M})$ for some l.h. negligible F_{σ} -set K; it is though unknown if $E \in AR(\mathfrak{M})$.
- § 5. Enlarging a manifold. In this section we show that if a complete ANR(\mathfrak{M})-space X contains an I_2 -manifold whose complement is a Z-set in X, then X is necessarily an I_2 -manifold. We start with:
- 5.1. PROPOSITION. Let E denote the Hilbert cube or a locally convex linear metric space such that $E \cong E^{\infty}$ or $E \cong \sum E = \{(x_i) \in E^{\infty} : x_i = 0 \text{ for almost all } i\}$ and let A be a Z-set in a metric space X. If $X \times E$ and $X \setminus A$ are E-manifolds, then $X \cong X \times E$ and X is an E-manifold.

The proof is divided into 3 steps and involves an idea of Cutler (see [7] and also [33], where some special cases of 5.1 are established).

1° If M is an E-manifold and K is a Z-set in M, then there is a homotopy (f_t) : $M \rightarrow M$ such that $f_0 = \operatorname{id}$, $f_t(M) \subset \operatorname{int} f_s(M)$ if $0 < s < t \le 1$, $\bigcup_{t>0} f_t(M) = M \setminus K$ and $(x, t) \mapsto (f_t(x), t)$ is a closed embedding of $M \times I$ into itself.

Proof. Under our assumptions there is a homeomorphism $h: M \to M \times I$ such that $h(K) \subset M \times \{0\}$ (see [30]). Let ϱ be any product metric on $M \times I$; then for each $t \in I$ the formula

$$\alpha_t(x) = \inf\{s \in I: \ \varrho((x, s), h(K)) \geqslant t\}$$

defines a continuous function on M. We let $f_t = h^{-1}g_th$, where $g_t(x, s) = (x, s)$ if $s \ge \alpha_t(x)$ and $g_t(x, s) = (x, \frac{1}{2}\alpha_t(x) + \frac{1}{2}s)$ otherwise.

Given spaces Z and F and a closed set $L \subset Z$, we denote by $(Z \times F)_L$ the space $(Z \setminus L) \times F \cup L$ equipped with the topology generated by open subsets of $(Z \setminus L) \times F$ and by sets of the form $U \cap L \cup (U \setminus L) \times F$, where $U \subset Z$ is open. CF denotes $(I \times F)_{\{0\}}$, the cone over F.

 2^{0} Under the assumptions of 5.1, the spaces $X \times CE$ and $(X \times CE)_{A}$ are homeomorphic.

Proof. Set $M = X \times E$ and $K = A \times E$ and let (f_t) : $M \rightarrow M$ be the homotopy from 1°. Define $h: X \times CE \rightarrow (X \times CE)_A$ by the formula

$$h(x,y) = \begin{cases} (x,y) & \text{if } y = 0, \\ \left(p_X f_t(x,e), \left(p_E f_t(x,e), \frac{t}{\beta f_t(x,e)} \right) \right) & \text{if } y = (t,e) \text{ and } t > 0, \end{cases}$$

where $\beta(x, e) = \sup\{s \in I: (x, e) \in f_s(M)\}$. It is a matter of routine but tedious verification to show that h is a homeomorphism of $X \times CE$ onto $(X \times CE)_A$.

Proof of 5.1. It is known that E and CE are homeomorphic (see [18] and [33]), and therefore $X \times E \cong (X \times E)_A$. Let ϱ be any metric for X. Since $X \setminus A$ is an E-manifold, there is a homeomorphism $g: (X \setminus A) \times E \to X \setminus A$ such that $\varrho(g(z), p_X(z)) < \varrho(p_X(z), A)$ for all $z \in (X \setminus A) \times E$ (see [28]). Extending g by identity over A, we get a homeomorphism of $(X \times E)_A$ onto X. Thus $X \times E \cong X$.

Combining 5.1 with the results of [32], we get

- 5.2. THEOREM. Let X be an ANR(\mathfrak{M})-space, let A be a Z-set in X and assume that $X \setminus A$ is a manifold modelled on a space E. In any of the following cases X is also an E-manifold:
 - (a) E is an infinite-dimensional Hilbert space and X is complete;
- (b) E is a locally convex linear metric space with $E\cong\sum E$ and X admits a closed embedding into E.

For a discussion of certain special cases in which the condition (b) is satisfied see [31], § 1.

In the remaining part of this section we apply 5.2 to show that certain function spaces are l_2 -manifolds. If X is a space and A is a compactum, then C(A, X) denotes the space of maps of A into X (compact-open topology), for $x \in X$ we denote by \hat{x} the constant map with value x, and we let $\hat{X} = \{\hat{x}: x \in X\}$. $C((A, A_0), (X, X_0))$ has the usual meaning. We need two lemmas leading to the fact that if $X \in ANR(\mathfrak{M})$ has no isolated points, then one can continuously assign to each $x \in X$ a non-constant path starting from x.

5.3. LEMMA. Let $Y \in ANR(\mathfrak{M})$, let $A_0 \subset A$ be compacta and let $y_0 \in Y$. If neither $\{y_0\}$ nor A_0 are open, then the singleton $\{\hat{y}_0\}$ is a Z-set in

$$S = C((A, A_0), (Y, y_0)).$$

Proof. Since every $f \in S$ factorizes through a map of $(A/A_0, [A])$ into (Y, y_0) , we may assume that $A_0 = \{a_0\}$ is a one-point set. Consider A as a (nowhere-dense) subset of l_2 and let $(a_n) \in (A \setminus A_0)^{\infty}$, $(z_n) \in (l_2 \setminus A)^{\infty}$ and $(y_n) \in (Y \setminus \{y_0\})^{\infty}$ be sequences such that $\lim z_n = \lim a_n = a_0$ and $\lim y_n = y_0$. Given $f: A \times I^{\infty} \to Y$ with $f(\{a_0\} \times I^{\infty}) \subset \{y_0\}$, extend f to $f_1: (A \cup \{z_n: n \in N\}) \times I^{\infty} \to Y$ by letting $f_1(\{z_n\} \times I^{\infty}) = \{y_n\}$, $n \in N$, and extend f_1 to an $f: U \times I^{\infty} \to Y$ where $U \supset A \cup \{z_n: n \in N\}$ is open in l_2 . Let (g_n) be a sequence of mappings $g_n: A \to U$ such that $\lim g_n = \operatorname{id}$ and moreover $g_n(a_0) = a_0$ and $g_n(a_n) = z_n$ for all sufficiently big n's. The maps $f_n: A \times I^{\infty} \to Y$ defined by

$$f_n(a,q) = f(g_n(a),q), \quad (a,q) \in A \times I^{\infty}, n \in N$$

converge to f and have the property that, for each $q \in I^{\infty}$, the map $a \mapsto f_n(a, q)$ belongs to $S \setminus \{\hat{y}_0\}$. Since $f: A \times I^{\infty} \to Y$ was induced by an arbitrary map of I^{∞} into S, the result follows.

5.4. LEMMA. Let Y be an ANR(M)-space without isolated points and let $\varepsilon > 0$. There is a $v: Y \rightarrow C(I, Y) \hat{Y}$ such that v(y)(0) = y and $\hat{\varrho}(v(y), \hat{y}) < \varepsilon$ for all $y \in Y$ ($\hat{\varrho}$ denotes here the sup-metric induced by ϱ).

Proof. C(I, Y) is an ANR(\mathfrak{M})-space and therefore, by 2.4, 3.3 and elementary properties of ANR(\mathfrak{M})'s, it suffices to show that $C(I, Y) \setminus \hat{Y}$ is LC^{∞} rel. C(I, Y) at each point $\hat{y} \in \hat{Y}$.

To this end let us fix $k \in \mathbb{N}$, $\hat{y}_0 \in \hat{Y}$ and $\varepsilon_0 > 0$; we shall find a $\delta > 0$ such that, under the notation S = C(I, Y) and J = [-1, 1], we have

(*) Each $f: \partial J^k \to S \setminus \hat{Y}$ with $\sup \{\hat{\varrho}(f(x), \hat{y}_0): x \in \partial J^k\} < \delta$ extends to an $f: J^k \to S \setminus \hat{Y}$ with $\sup \{\hat{\varrho}(f(x), \hat{y}_0): x \in J^k\} < \varepsilon_0$.

First observe that, by 5.3 and 3.2, there is a $\delta_0 > 0$ such that each $g \colon \partial J^k \to C(([0,2],2),(Y,y_0)) \setminus \{\hat{y}_0\}$ with $\hat{\varrho}(g(x),\hat{y}_0) < 2\delta_0$ for $x \in \partial J^k$ admits an extension $g \colon J^k \to C(([0,2],2),(Y,y_0)) \setminus \{\hat{y}_0\}$ with $\hat{\varrho}(g(x),\hat{y}_0) < \epsilon_0$ for $x \in J^k$. Since $Y \in \text{ANR}(\mathfrak{M})$, there exists further a $\delta > 0$ such that the δ -ball of Y centred at y_0 can be deformed to y_0 inside the δ_0 -ball centred at y_0 . We shall show that δ satisfies (*). Indeed, if f is as in (*), then there exists a $w \colon J^k \to Y$ with w(x) = f(x)(1) for $x \in \partial J^k$, $w(0) = y_0$, and $\varrho(w(x), y_0) < \delta_0$ for $x \in J^k$. Letting

$$g(x)(t) = \begin{cases} f(x)(t) & \text{if } t \in [0, 1], \\ w((2-t)x) & \text{if } t \in [1, 2], \end{cases}$$

we get a $g: \partial J^k \to C(([0,2],2),(Y,y_0))$ with $\hat{\varrho}(g(x),\hat{y}_0) < 2\delta_0$ for $x \in \partial J^k$. Since $\hat{y}_0 \notin \operatorname{im}(g)$, g admits an extension $\bar{g}: J^k \to C(([0,2],2),(Y,y_0)) \setminus \{\hat{y}_0\}$ with $\hat{\varrho}(\bar{g}(x),\hat{y}_0) < \varepsilon$ for all $x \in J^k$. If we let $h_r(t) = (-2r+3)t$, $t \in I$, then

$$\bar{f}(rx) = \begin{cases} g(x) \circ h_r & \text{if } x \in \partial J^k, \ r \in [\frac{1}{2}, 1] \ , \\ \bar{g}(2rx) \circ h_{1/2} & \text{if } x \in J^k, \ r \in [0, \frac{1}{2}] \ , \end{cases}$$

defines the extension required in (*).

5.5. THEOREM. Let X and $X_1, ..., X_n \subset X$ be separable complete ANR (\mathfrak{M})'s, let A be a compactum and $A_1, ..., A_n$ its disjoint closed subsets, and let U be an open subset of X whose boundary is compact and collared in \overline{U} . If either $U \cap (A_1 \cup \ldots \cup A_n) = \emptyset$ and X has no isolated points or $U \subset A_1$ and X_1 has no isolated points, then the space $S = \{ f \in C(A, X) \colon f(A_i) \subset X_i \text{ for } i = 1, 2, ..., n \}$ is an l_2 -manifold.

Proof. Let $K = \{ f \in S : f \text{ is constant on } U \}$. It is known that $S \setminus K$ is an l_2 -manifold and S is a complete separable ANR(\mathfrak{M})-space (see [31], § 4). Therefore it remains to show that K is a Z-set in S.

To this end fix $\varepsilon>0$ and $f\colon I^\infty\times A\to X$ such that $f_q=f(q,\cdot)\in S$ for all $q\in I^\infty$. By assumption there exist a compactum C in U and a homotopy $(u_t)\colon A\to A\times\{0\}\cup C\times I$ such that $u_t(a)=(a,0)$ if $a\notin U$ or t=0 and $u_t(A)=A\times\{0\}\cup C\times [0,t]$ for all $t\in I$. Define $f\colon I^\infty\times (A\times\{0\}\cup C\times I)\to X$ by

$$f(q,z) = \begin{cases} f(q,z) & \text{if } q \in I^{\infty}, \ z \in A = A \times \{0\}, \\ v(f(q,c))(t) & \text{if } q \in I^{\infty}, \ z = (c,t) \in C \times (0,1], \end{cases}$$

where v satisfies 5.4 with Y = X if $U \cap (A_1 \cup ... \cup A_n) = \emptyset$ and with $Y = X_1$ if $U \subset A$. Choose $\delta > 0$ such that $\hat{\rho}(\tilde{f}(u_{\delta} \times \mathrm{id}), f) < \varepsilon$ and define $g: I^{\infty} \times A \to X$ by

$$g(q, a) = \begin{cases} \tilde{f}(q, u_{\delta}(a)) & \text{if } u_{\delta}(a) \in A \times \{0\}, \\ \tilde{f}(q, (c, t/\delta)) & \text{if } u_{\delta}(a) = (c, t) \in C \times I. \end{cases}$$

One easily verifies that $g_q = g(q, \cdot) \in S \setminus K$ and $\hat{\rho}(g_q, f_q) < 2\varepsilon$ for all $q \in I^{\infty}$. This shows that K is a Z_{∞} -set in Y.

5.6. COROLLARY. Let X and $X_1, ..., X_n \subset X$ be complete separable ANR(\mathfrak{M})'s, where X has no isolated points. If A is a connected compact finite-dimensional manifold (with or without boundary), then for any closed mutually disjoint proper subsets $A_1, ..., A_n$ of A the space $\{f \in C(A, X): f(A_i) \subset X_i \text{ for } i = 1, 2, ..., n\}$ forms an l_2 -manifold. In particular, the space of paths from X_1 to X_2 and the space of closed curves starting from X_1 are l_2 -manifolds.

Appendix. Locally homotopy negligible sets and UV^{\varphi}-maps. We shall show here how the properties of l. h. negligible sets are related to the results of Armentrout-Price, Kozlowski and Lacher on cell-like mappings of metric spaces.

All spaces are assumed to be metrizable. If $f: X \to Y$ is a map, then by the mapping cylinder of f we mean the space $Z_f = X \times [0, 1) \cup Y \times \{1\}$ equipped with the topology generated by open subsets of $X \times [0, 1)$ and by sets $f^{-1}(U) \times (t, 1) \cup U \times \{1\}$, where t > 0 and $U \subset Y$ is open. Note that Z_f is metrizable: if we consider X and Y as bounded subsets of normed spaces E and F respectively, then

$$Z_t \cong \{(x-tx, t, tf(x)): t \in I, x \in X\} \cup \{0\} \times \{1\} \times Y \subset E \times I \times F$$
.

We identify X with $X \times \{0\}$, Y with $Y \times \{1\}$, and we denote by $p: Z_f \rightarrow Y$ and $q: Z_f \setminus Y \rightarrow X$ the collapse and projection, respectively.

A map $f: X \to Y$ will be said to be UVⁿ at $y \in Y$ if, given k < n+1 and a neighbourhood U of y, there is a neighbourhood $V \subset U$ of y such that each $g: \partial I^k \to f^{-1}(V)$ extends to an $g: I^k \to f^{-1}(U)$. If f is UVⁿ at all $y \in Y$, then we say that it is a UVⁿ-map. Similarly if the projection $X \to X/A$ is UVⁿ at [A], then we say that A is a UVⁿ-subset of X.

6.1. Remark. f is a UVⁿ-mapping iff $Z_f \setminus Y$ is LCⁿ rel. Z_f at each point of Y. If all the $f^{-1}(y)$'s are compact and f is a surjection, then f is a UVⁿ-map iff all the $f^{-1}(y)$'s, $y \in Y$, are UVⁿ-subsets of X.

It is known that compacta of trivial shape are UV°-subsets of ANR(M)'s in which they lie (see [5]).

6.2. Proposition (compare [27], [22], [4]). If $f: X \to Y$ is a UV^n -map and f(X) is dense in Y, then f induces an isomorphism of the n-th homotopy group.

Proof. Apply 2.8 and the fact that f induces an isomorphism of the nth homotopy group iff the inclusion $Z_f \setminus Y \rightarrow Z_f$ does so.

6.3. PROPOSITION. Let $f: X \rightarrow Y$ be a UV^{∞} -map with a dense image and let $M \in ANR(\mathfrak{M})$. Then, given $u: M \rightarrow Y$ and $\alpha: M \times (0,1] \rightarrow (0,\infty)$, there is

a $g: M \times (0, 1] \rightarrow K$ such that $\varrho(fg_t(x), u(x)) < \alpha(x, t)$ for $(x, t) \in M \times (0, 1]$. If, in addition, $K \subset X$ is a closed set, U is its neighbourhood and $v: U \rightarrow X$ is any lifting of u|U, then g may be constructed in such a way that $g_t|K = v|K$ for all t.

Proof. Put on Z_f a metric d in which the collapse $p: (Z_f, d) \rightarrow (Y, \varrho)$ is a contraction and let $\lambda: M \rightarrow [0, 1]$ satisfy $\lambda \mid K = 1$ and $M \setminus U \subset \operatorname{int} \lambda^{-1}(0)$. Define $w: M \rightarrow Z_f$ by

$$w(x) = \begin{cases} (v(x), \lambda(x)) \in X \times [0, 1] & \text{if } \lambda(x) > 0, \\ u(x) & \text{if } \lambda(x) = 0. \end{cases}$$

Since, by 2.8, Y is 1. h. negligible in Z_f , there exists an α -homotopy (h_t) : $M \rightarrow Z_f$ such that $h_t(M) \subset Z_f \setminus Y$ and $h_t \mid K = w$ for all t > 0. We let $g_t = qh_t$.

6.4. PROPOSITION. Let $f: X \rightarrow Y$ be an UV^{∞} -map of $ANR(\mathfrak{M})$'s and assume that f(X) is dense in Y. Then, given $\alpha: Y \times (0, 1] \rightarrow (0, \infty)$, there exist $g: Y \times (0, 1] \rightarrow X$ and a homotopy $(h_t): X \rightarrow X$ such that $h_0 = \operatorname{id}_t h_1 = g_1 f$ and $\varrho(fg_t(y), y) < \alpha(y, t)$ and $\varrho(fh_t(x), f(x)) < \alpha(f(x), t)$ for all $t \in (0, 1], x \in X, y \in Y$.

Proof. Let λ be any increasing homeomorphism of [-1, 2] onto [0, 1]. By 6.3 there is a $g: Y \times (0, 1] \rightarrow X$ such that, for all $(y, t) \in Y \times (0, 1]$,

$$\varrho(fg_t(y), y) < \frac{1}{2}\min(\alpha_t(y), t, \alpha_{\lambda(t)}(y), \inf\{\alpha_s(y): s \in \lambda([1, 2])\}).$$

Let $M = X \times [-1, 2]$, $K = X \times \{-1, 2\}$, $U = X \times ([-1, 0) \cup (1, 2])$, and define $u: M \rightarrow Y$ by

$$u_{t} = \begin{cases} f & \text{if } t \in [-1, 0], \\ fg_{t}f & \text{if } t \in [0, 1], \\ fg_{1}f & \text{if } t \in [1, 2]. \end{cases}$$

Using 6.3 again, construct $\tilde{h}: M \rightarrow X$ with $\tilde{h}_{-1} = \mathrm{id}$, $\tilde{h}_2 = g_1 f$ and

$$\varrho(f\tilde{h}_t(x), u_t(x)) < \frac{1}{2}\alpha_{M}(f(x))$$
 for $(t, x) \in M = X \times [-1, 2]$.

Finally, let $h_t = \tilde{h}_{\lambda^{-1}(t)}$.

6.5. Remark. Let $f: X \rightarrow Y$ be a UVⁿ-map with a dense image and assume that X is an LC^n -space and $\dim(Y) \leq n < \infty$. It easily follows from 6.1 and 2.8 that Y is LC^n and therefore $Y \in ANR(\mathfrak{M})$ by [6], p. 122.

6.6. Remark. Let $f: X \rightarrow Y$ be an UV^{n-1} -map with a dense image and assume that X and Y are ANR(\mathfrak{M})'s and $\max(\dim(Y), \dim(X)+1) \leq n < \infty$. Then, $\dim(Z_f) \leq n$ and Z_f is locally contractible, and therefore $Z_f \in \text{ANR}(\mathfrak{M})$ (see [21], p. 168). Hence, by 3.2, Y is 1. h. negligible in Z_f and f is actually a UV^{∞} -map; thus 6.4 applies.

We also observe that if X and Y are locally compact spaces and f is a proper map, then the homotopies id $\cup (fg_t)_{t>0}$ and (h_t) of 6.4 are proper if α is taken sufficiently small (slightly weaker versions of 6.5 and 6.6 form the theorems of Lacher [23]).

6.7. COROLLARY. Let $f: X \rightarrow Y$ be a surjection such that all the $f^{-1}(y)$'s, $y \in Y$, are compact UV^n -subsets of X. If X is an n-dimensional ANR(\mathfrak{M})-space and Y is finite-dimensional, then $Y \in ANR(\mathfrak{M})$ and f is a UV^{∞} -map.

Proof. If $n = \infty$ then the result follows from 6.5. Assume $n < \infty$, fix $y_0 \in Y$ and consider the quotient map $\pi: X \rightarrow X/f^{-1}(y_0) = S_{y_0}$. By 6.5 we have $S_{y_0} \in ANR(\mathfrak{M})$ and therefore, by 6.6, π is a UV^{∞} -map. Thus all the $f^{-1}(y)$'s, $y \in Y$, are UV^{∞} -subsets of X and the assertion follows from 6.1 and 6.5.

References

- [1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), pp. 365-383.
- [2] Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), pp. 64-67.
- [3] and R. M. Schori, Factors of infinite-dimensional manifolds, Trans. Amer. Math. Soc. 142 (1969), pp. 315-330.
- [4] S. Armentrout and T. M. Price, Decompositions into compact sets with UV properties, Trans. Amer. Math. Soc. 141 (1969), pp. 433-442.
- [5] K. Borsuk, Theory of Shape, Warszawa 1975.
- [6] Theory of Retracts, Warszawa 1967.
- [7] W. H. Cutler, Negligibility and deficiency in Fréchet manifolds, Doctoral Dissertation, Cornell Univ., Ithaca 1970.
- [8] J. Dugundji, Locally equiconnected spaces and absolute neighbourhood retracts, Fund. Math. 57 (1965), pp. 187-193.
- [9] *Topology*, Boston 1966.
- [10] C. H. Dowker, Homotopy extension theorems, Proc. London Math. Soc. 6 (1956), pp. 100-116.
- [11] J. Eells and N. H. Kuiper, Homotopy negligible subsets of infinite-dimensional manifolds, Comp. Math. 21 (1969), pp. 155-161.
- [12] S. Eilenberg and R. L. Wilder, Uniform local connectedness and contractibility, Amer. J. Math. 64 (1942), pp. 613-622.
- [13] R. H. Fox, A characterization of Absolute Neighbourhood Retracts, Bull. Amer. Math. Soc. 48 (1942), pp. 271-275.
- [14] R. Geoghegan, On spaces of homeomorphisms, embeddings and functions I, Topology 11 (1972), pp. 159-177.
- [15] W. E. Haver, Metric spaces that are Absolute Neighbourhood Retracts, Proc. Amer. Math. Soc. 40 (1973), pp. 280-284.
- [16] The closure of the space of homeomorphisms on a manifold, Trans. Amer. Math. Soc. 195 (1974), pp. 401-419.
- [17] The closure of the space of homeomorphisms on a manifold the piecewise linear case, to appear.
- [18] D. W. Henderson, Corrections and extensions of two papers about infinite-dimensional manifolds, Gen. Topology Appl. 1 (1971), pp. 321-327.
- [19] Z-sets in ANR's, Trans. Amer. Math. Soc. 213 (1975), pp. 205-216.
- [20] C. J. Himmelberg, Some theorems on equiconnected and locally equiconnected spaces, Trans. Amer. Math. Soc. 115 (1965), pp. 43-53.
- [21] S. T. Hu, Theory of Retracts, Detroit 1965.
- [22] G. Kozlowski, Factorization of certain maps up to homotopy, Proc. Amer. Math. Soc. 21 (1969), pp. 88-92.
- [23] C. Lacher, Cell-like mappings I, Pacific J. Math. 30 (1969), pp. 717-731.
- [24] J. Milnor, On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc. 98 (1958), pp. 272-280.
- 2 Fundamenta Math. CI

H. Toruńczyk

- 110
- [25] E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), pp. 163-171.
- 26] Convex structures and continuous selections, Canadian J. Math. 11 (1959), pp. 556-575.
- [27] T. Price, On decompositions and homotopy groups, Notices Amer. Math. Soc. 14 (1967), p. 274.
- [28] R. M. Schori, Topological stability of infinite dimensional manifolds, Compositio Math. 23 (1971), pp. 87-100.
- [29] S. Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), pp. 604-610.
- [30] H. Toruńczyk, (G, K)-absorbing and skeletonized sets in metric spaces, to appear in Dissertationes Math.
- [31] Absolute neighbourhood retracts as factors of normed linear spaces, Fund. Math. 86 (1974), pp. 75-84.
- [32] On cartesian factors and the topological classification of linear metric spaces, Fund. Math. 88 (1975), pp. 71-86.
- [33] J. E. West, The subcontinua of a dendron form a Hilbert cube factor, Proc. Amer. Math. Soc. 36 (1972), pp. 603-608.
- [34] M. Wojdysławski, Retractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), pp. 184-192.

Accepté par la Rédaction le 25, 11, 1974

2*

Hilbert cube modulo an arc

by

Zvonko Čerin (Baton Rouge, La.)

Abstract. Let Q denote the Hilbert cube and let α , $\beta \subseteq Q$ be arcs. Adapting methods of Bing–Andrews–Curtis–Kwun–Bryant we prove that $Q/\alpha \times I$ and $Q/\alpha \times Q/\beta$ are homeomorphic with Q, where I is a closed interval and Q/α is a space obtained from Q by shrinking α to a point. The same method applies equally well to the case when arcs are replaced with finite-dimensional cells or their intersections.

1. Introduction. We use Q to represent the Hilbert cube (the countable-infinite product of closed intervals). A closed subset $X \subset Q$ is called a Z-set if for any nonempty homotopically trivial open set $U \subset Q$, U - X is also non-empty and homotopically trivial. This concept was introduced by R. D. Anderson in [1] and in the infinite-dimensional topology plays a role analogous to a role of tameness conditions in the finite-dimensional topology. Chapman [7] showed that a Z-set $X \subset Q$ has a trivial shape if and only if the space Q/X, obtained from Q by shrinking X to a point, is homeomorphic to Q (in notation, $Q/X \cong Q$). If X is of a trivial shape but not a Z-set, then Q/X may fail to be locally like Q at the point $\widetilde{X} = p(X)$, where $p \colon Q \to Q/X$ is a natural projection. Indeed, Wong [14] constructed a copy of the Cantor set with non-simply connected complement in Q. By a standard technique we can pass an arc α through it such that $Q - \alpha$ is also not simply connected. If Q/α were locally Q at the point $\widetilde{\alpha}$, then Q/α being a contractible Q-manifold would be homeomorphic to Q [8]. But in Q the complement of every point is simply connected.

The problem SC 1 in [2] asks (in analogy with a similar result for Euclidean spaces established earlier by Andrews and Curtis [3]) whether for any arc $\alpha \subset Q$ multiplying Q/α by the unit interval I = [0, 1] gives the Hilbert cube. In Section 2 of this note we will present a detailed proof, adapting techniques from [3] to the Hilbert cube case, of the following theorem that confirmes this conjecture.

THEOREM 1. For any arc $\alpha \subset Q$, $(Q/\alpha) \times I$ is homeomorphic with Q.

Next, in Section 3, we first prove that $A \times B$ is a Z-set in $Q \times Q$ whenever A and B are finite-dimensional closed subsets of Q and then, following Kwun's method [10], establish

THEOREM 2. Let α , $\beta \subset Q$ be arbitrary arcs. Then $(Q/\alpha) \times (Q/\beta)$ is homeomorphic with Q.