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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

Concerning locally homotopy negligible sets
and characterization of /,-manifolds *

by

H. Toruinczyk (Warszawa)

Abstract. Let ACX be a set such that for every open subset U of X the inclusion UN\A— U
is a weak homotopy equivalence. The following two facts are shown: (A) If X is an ANR (@%)-space,
then so is X\A4; (B) if 4 is closed in X, X is complete-metrizableand X\4 is an L-manifold, thei
s0 is X. We apply (B) to prove that if X is a separable complete ANR (M) without isolated points,
then the space of paths in X forms an L-manifold.

Initially the paper was intended to present the proofs of the following two facts,
which had been announced, or employed, in [31] and [32]:

(A) If X is a complete separable ANR(9R)- space and A is a countable union
of Z-sets in X, then X\A € ANR (), and

(B) If X is as above, 4 is a Z-set in X and X\4 is an J,-manifold, then X is
also an ,-manifold.

By a Z-set in X we mean here any closed set 4 <X with the property that
every map f: [0, 1]°—X is a uniform limit of X\A4-valued maps.

If we use results of infinite-dimensional topology, (A) has a very short proof:
by [31], the space X x I, is an I,-manifold which clearly contains 4 x /, as a countable
union of Z-sets; thus, by [2], XxI,\A x I, is homeomorphic to X%/, and hence
(X\4) %I, and X\4 are ANR(I)’s. However, the assumption of (A) seems to be
too restrictive: for instance, (A) does not include the fact that if 4 is any subset
of the boundary of the square [0, 1]* (4 need not be of type Gj), then [0, 1]\ 4
is an ANR (). (See Fox [13].) Therefore we prove here in § 3 a result more general
than (A), namely

(A) If Xe ANR(@Y) and 4=X is locally homotopy negligible in X (i.e., for
every open set UcX the inclusion UNA—U is a weak homotopy equivalence),
then X\4 € ANR(MY).

* This paper was completed while the author was visiting the Amsterdam University and
the Mathematical Centre, Amsterdam It is registered as Math. Centre Repott ZW 23/74,
April 1974,
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Since the properties of non-closed locally homotopy negligible sets have never
been explicitly formulated, we devote a section of the paper to presenting the basic
facts concerning such sets (see § 2). We note that most of these facts and also of the
methods used in their proofs are similar to those of Anderson [14], Eells and
Kuiper [11] and Henderson [19] (see also Eilenberg and Wilder [12], Smale [29],
Haver [16]); however, several technical changes have to be made if one wants to
dispense with the assumption that 4 is closed and X is an ANR(IR). The material
of § 2 allows us to strengthen the results of [4], [22] and [23] on cell-like mappings
of metric spaces (see the Appendix); also, we hépe that the study of non-closed
locally homotopy negligible sets in concrete spaces can be used to prove that these
spaces are ANR(M)’s or infinite-dimensional manifolds.

The result (B), stated before, is proved in § 5 and then applied to show
that, for Y a complete separable connected ANR(I) and K a polyhedron, the
space of maps K—Y is an L-manifold. ' .

In the paper we discuss. also an elementary characterization of ANR(9)’s
which is used in the proof of (A/). (See § 1). Let us note that (A") can also be estab-
lished by using a characterization of Dowker and Hanner [10]; nevertheless the result
of § 1 seems to be of independent interest (for instance, it unifies earlier results of
Wojdystawski [34], Dugundji [9], Himmelberg [20] and others).

Notation. By I we denote the interval [0, 1], by IV the set of integers ; continuous
functions are called “maps”. A homotopy h: X x I Y is oftén denoted by (,): X— 7,
where A,(x) = h(x,1). All spaces are assumed to be normal, and if X is a metri-
zable space then g usually denotes a metric which induces the topology of X.
Pxt X'x Y=Y denotes the natural projection. By cov(X) we denote the family of all
open coverings of X. If K is an (abstract) simplicial complex, then |K| denotes
its standard geometric realization, endowed with the CW-topology. By i, k, 7
we denote elements of N U {0} U {o0} and i<n+1 means “i<n if n # oo and
i# o if n= 0" :

§ 1. A characterization of ANR(IR)’s. If & and B are families of subsets of X
then by /3 we denote the family of all sets 4 € & which refine B,

Suppose that X and Z are spaces, .« is a family of subsets of X and that to certain
sots 4 € o/ we have assigned a map f, from a non-empty set dom(f, DeZ into X,
Given Uecov(X), we say that ({f,},Z) is a W-fine admissible approximation
to of if there is a B ecov(X) such that the following conditions are satisfied:

(D if A € sfy then f, is defined, 4 U im(f,) refines U and Fy = dom(f) is
a homotopy trivial subset of Z; ‘

(i) if 4, Be oy and A<B then f; is an extension of S

We sometimes say that ({f,: 4 € &g}, Z) forms an approximation. An approxi-
mation ({f,}, Z) will be said to be continuous if it is 1-fine for all U e cov(X).
If Z = X and each f, is an inclusion, then we say that the approximation is frivial;
trivial approximations will be denoted by {F,}, where F, = dom(f)c=X.
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The aim of this section is to prove the following:

L.1. THEOREM. The following conditions are equivalent for a metric space X:

(a) X e ANR(M), )

(b) there exists a space E such that X x E has an open basis with all finite in-
tersections of its members being homotopy trivial,

() there exist.continuous admissible approximations to the family of all finite
subsets of X, ]

(d) there exist arbitrarily fine admissible approximations to the family of all
finite subsets of X'x (0, 11.

For simplicity the family of all finite subsets of X will be denoted by 4 (X))
and the family of all subsets of X by L(X).

Remark. The implication (c)=(a) of 1.1 generalizes earlier results of
Dugundji [8] and Himmelberg [20] stating that metric spaces which admit “nice”
equiconnecting functions are- ANR ()’s; see also Milnor [24]. In fact, if / is an
equiconnecting function on X, then, letting 4, = A and inductively

Apry = {Ax,y,0): xed,yed, tel}
and F, = () 4,, we get a trivial approximation to & (X) which is continuous in
n

the situations considered in [8] and [20]. (Note that F, is contractible whenever
it is defined.) : ‘ o

Remark. Admissible approximations to & = & (X) can be obtained as follows.
Let U ecov(X), let K denote the simplicial complex of all {x,, ..., x,} € #y and
suppose that there is given a map f: [K|—X. Then, letting Z = |K| and f, = fj,
for ¢ € K == %), we get an approximation to & which is continuous if for- each
x e X and a neighbourhood U of x there is a neighbourhood V< U of x such that
floeU for all ¢ = {x(,...,x,}=T.

In particular, the “convex structures” of [26] yield continuous approximations
of this type and therefore 1.1 generalizes the results stating that spaces which admit
convex (or similar) structures are ANR(I)’s (see Himmelberg [20] and Wojdy-
stawski [34]). )

In the proof of 1.1 we need the following lemmas:

1.2. LemMmA. Let Y be a metric space and Y, its dense subset, If there are arbi-
trarily fine admissible approximations to F (Y,), then there are also arbitrarily fine
admissible approximations to & = #(Y). i

Proof. Fix Wecov(Y), let U, e cov(Y) be a star-refinement of U and let
({f4: A€ Fg},Z) be a U -fine admissible approximation to # = F(¥,). We
assume without loss of generality that B refines U;. Let W e cov(Y) be a locally -
finite star-refinement of B and let N € cov(Y) be a refinement of W such that each
element of 9N intersects only finitely many elements of M. For each We W pick
an yp € Yo n W and, given Se Py, let gs = f5, where

S = {yy: WeiB and WS #@}.

1*
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It is easy to see that ({gs: Se Pa},Z) is a U-fine approximation to the family .

1.3. LemMA. Let (Y, 0) be a metric space such that there exist arbitrarily fine
admissible approximations to & = ¥ (X). Then, given a: Y—(0, o), there are a sim-
plicial complex K and maps f: Y—|K| and g: |K|—Y such that o(gf (), y)<a(y)
for dll ye Y.

Proof. Replacing, if necessary, ¢ by 4(y;,y,) = e(yi, ) +1a(y)~a(y)l,
we may assume that |a(y,)—a(p,)[<e(yy, y,) for y,,y,€ V. Let

U = {By, $a3)): ye ¥}

be the cover of ¥ by open balls and let ({ f5: Se %y}, Z) be a U-fine admissible
approximation to &, B being locally finite. Let X denote the nerve of B and for
each o = {V;, .., V,} e K let :

I(d) = {(fV1n...nVn(Z)5 Z): ze dom(fVin...nV..)} c¥xZ.

Clearly, Iis an anti-monotone function from X to the non-empty homotopy trivial
subsets of ¥'xZ (i.e., if oy =0, € K then I(s,)>1(s,)). :
Now let K’ denote the barycentric subdivision of X and let i: |K|—|K’| be the
subdivision map. For each o ¢ K we denote by & its barycenter; & is then a vertex
of X'.
SUBLEMMA. There is a map §: |K'|—~YxZ such that

*) - ({81, 8;, ... 8} cI(ey)  for all 01<0, ... <o, e K.

Proof. For each vertex & of X’ choose a point §0(8) € I(0). Let (L, §) be a maxi-
mal pair (under the natural ordering) such that L is a subcomplex of K’ containing
all vertices of X’ and § extends §, and satisfies (*); we shall show that L = K.
Assume the contrary and let s K'\L be a simplex of minimal dimension. Then
dim(s)=>1 and (%) [$|<|L|, whence g”]lé[: 18] Y% Z is well defined. Representing s as
{84 .., 85}, where 6,c0,... co,e K, we infer from (x) and the anti-monotony
of I that §(|$]) =I(a,). Since the set I (o4) is homotopy trivial, we may extend g “s']
to a g;: [sl—I(oy). Clearly (LU {s},5 U gs) exceeds (L, &), which is impossible;
thus L = K’ and § is as required.

Proof of 1.3 (continued). Let g = pyogoi Given yelt, let {V,..,V}
= {Ve®B: ye V}. Observe that, by (%), we have :

9({7s;, ..., VH}I)CPY(isLy): I({vi}) = KU im(fy).

Since im(fy,) U ¥V, refines U for i — 1,2, ..,n, we infer that g{Vis s V3D
is contained in the star of y in 1. Therefore, if /: ¥—|K]| is induced by a partition of
unity {4,: ¥ & B} with each Ay vanishing outside ¥, then gf{ () est(y, Wforallye Y.
This easily yields g(gf (3), ¥)<a(y) for all ye ¥,

————

() & denotes the boundary of s,
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The following lemma is actually a special case of a theorem of Dowker and
Hanner (see [10], p. 105); however, we include a short proof of it, which will be used
later.

1.4 LemMA, Let (X, @) be a metric space and assume that there are a simplicial
complex K and maps f: Xx(0, 1}—|K| and g: |K|—X such that olaf(x, 0, x)<t
Jor all (x,1)e Xx(0,1]. Then X e ANR ().

Proof. Let : A—X be a map of a closed set A of a metric space (B, 0p); wWe
shall construct a neighbourhood extension of h.

For this purpose let u = hxid: 4x (0, 1]-X x (0, 1]. Since simplicial complexes
are neighbourhood extensors for metric spaces, f o u admits an extension v: U—|K|,
where U<Bx (0, 1] is an open set containing 4 % (0, 1] (see [21], p. 105). Without
loss of generality we may assume that U is contained in the set {(b, N e U: there is
an ae 4 with gp(a, b)<t and o(gv(d, 1), h(d)) <1}, which, by our assumptions, is
a neighbourhood of Ax(0,1]. Let A: B—[0, 1] be such that A4 =0 and
{(3,A(0)): beB\A}cU U (B\A)x{1}. (2 can easily be constructed by using
Tietze’s theorem and the fact that for each ¢ e (0, 1] there is a closed neighbour-
hood W of A in B with Wx[a, 1]cU). We let ¥V'= {be B: 1(b)<1} and define
h: V=X by

bed,

k) = {h(b) i be V4.

go(b, A(B)) if

It is easily seen that & is continuous.

Now we complete the proof of 1.1. To show that (2)=>(c) consider X as a closed
subset of a convex set Z in a normed linear space ([21], p. 81) and for sufficiently
small sets A= X let Fy = conv(4)=Z and f, = r|F,, where r is a neighbourhood
retraction onto X. (c)=-(d) is a consequence of the fact that any pair of continuous
admissible approximations to & (X) and to #(Y) induces a continuous product
approximation to & (X x ¥). Further, (d)=>(a) by Lemmas 1.2-1.4, and (a)=>(b) by
a result of {31] stating that if X e ANR (9%), then there exists a normed linear space E
with X'x E homeomorphi¢ to an open subset of E. Finally, (b)=>(a) follows from the
implication (c)=-(a) and the following fact applied to ¥ = ¥'x E,

SUBLEMMA. If Y has a base W with homotopy trivial intersections, then there exist
trivial continuous approximations to & (Y).

Proof. For each n e N let B, € cov(X) be a locally finite refinement of 1L with
diam,V'<1/n for all Ve B,. Let 8= (J'Y,, let ¥+ Uy, be a function of B into i

such that V< Uy for all Ve B, and for sufficiently small A< ¥ let

U UV 2

V eB(4)

Fy = where B(4) = {VeB: Ac=V}.

It is easy to see that B (4) is finite for all 4= ¥ and F is a continuous trivial approxi-
mation to & (Y). )
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1.5. CorOLLARY. Let X be a separable complete metric space which is 1,-stable
(i.e, Xx1, =2'X). Suppose further that there exist arbitrarily fine admissible ap-
proximations to % (X,), where Xy X is a dense set. Then X is an l,-manifold.
. ~Proof. By a theorem of Klee we have [, x (0, 1] = 7, (see [31]) and therefore
Xxlx(0,1] 2 XxI, and X'x(0,1] = X. Hence, by 1.1 and 1.2, X € ANR(M)
and thus, by [31], X'x7, is an /,-manifold. Since X'x/, = X, then result follows.

Clearly, the conditions of 1.5 are also necessary for a connected space X to be
an /,-manifold (recall that each separable I,~-manifold is /,-stable and is homeomor-
phic to an open subset of /,, see [3] and [31]).

§ 2. Locally homotopy negligible sets.

2.1. DErINITION. A 'set 4<X will be said to be locally n-negligible if, given
xe X, k<n+1 and a neighbourhood U of x, there is a neighbourhood V= U of x

such that foreach f: (I¥, 2I*)—(V', ¥\4) there isahomotopy (h): (I*, BI—(U, I\A)

with ky = f and hy(I*)c UNA. Locally co-negligible sets will also be called locally
homotopy negligible (briefly: 1. h. negligible). i
The aim of this section is-to discuss certain properties of L h. negligible sets;

we formulate the corresponding results for locally n-negligible sets with n<co
only if their proofs require no extra work.

2.2. Remark. Let 4 be a locally n-negligible set in X. Then
(a)“For every space E, AXE is locally n-negligible in X'x E.
(b) For every open set UcX, U n A4 is locally n-negligible in U.

2.3. TueoreMm. Let AcX, where X is normal. The following conditions are

equivalent:
(@) 4 is locally n-negligible in X.

(b) Given &>0, a pseudometric ¢ on X and a map f: (K], 1LD—(X, X\4),
where (K, L) is a finite simplicial pair with dim(K)<n+1, there is a homotopy
(B2 |K|~=X such that hy = f, b (IK|)=X\4, h(x) = f(x) for (x, ) e|L|xI, and
o(h(x), F (M) <s for (x, D e |K|xL

(¢) Given: a simplicial pair (K, L) with dim(K)<n, a pseudometric ¢ on X and
mdps a: |K|—(0, c0) and fr |K|x {0} U |L|xI~>X with o(F (e, 1, f (%, 0)<a(x)
and f(x, 1) ¢ 4 for all (x,£) e |L|x I, there is an T |K|x I=X which extends f and
satisfies o(F(x, 1), F(x, 0)<a(x) and F(x, 1) ¢ A for all (x,He|K|xL

(d) For each open Uc=X and i<n+1 the relative homotopy group m, (U, UNA)
vanishes. '

(¢) Each xe X has a basis W, of open neighbourhoods with (U, UNA) =0
Jor all UeW, and i<n+1.

Proof. (a)=(b). Let (b,) denote the condition obtained from (b) with
“dim(K)<n+1” replaced by “dim(K)<p”; we shall show that (a)=>(b1,)' for
0<p<n+1. Assume that (2)=>(b,-;) has been established (evidently (@)=>(bo))
and let K, L,  and be as in (b,). Given g€ (0, 3), cover the compact set FUK)D by
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open sets Vi, .., Vi such that for each g: (I”, aI")—=(V;, Vi\4), where 1<igk,
there-is a homotopy k = (h): (I%, AIF)—(X, X\NA) withhy =g, (I nd =&
and diam,im (k) <e. Let a subdivision (K’, L") of (X, L) be so fine that {f(e):0ceK"}
refines {V, ..., ¥y} (we identify |K'] with |K]), and for each o€ K’ let ]f‘: X—-10,1]
be a map that is 1 on f(lo]) and O outside a ¥’ e {V, ..., V3}. Write

i,y = ¥ 2®—-10)+elx,y) for x,yelX,
ge K’

and let M be the union of L’ and the p—1 skeleton of K’. By (b, 1): there is a homo-
topy (f): IM|—>X such that fo =f|IM|, fi(M) 4 =0, ftHLI'—“f\ll_ll and
d(F(x), f (x))<e for all (x,%) e|M|xI. For each e K'"\M denote T, = |¢| xT v
U |o] % {0} and let 7° be the map induced by f on 4] x [0, 1] and by f on o] x {0}.
Then (T, |6]x {1} & (I7, 8I%) and F(T,)<V, for all e K'\M and therefore, by
our construction, there are homotopies (g5): (T, 6] x {I)—(X, X\4) such thﬂa:t
g5 =F%, gi(T,) n A =& and diam,im(g”)<e for each; o e K\M. Then the g°’s
induce maps h°: lo|xI—X such that A°|T,=J°, R(olx{1D=X\4 and
diam,im(h°)<e (we take A = f“u”, where u° is a homeomorphism of |o| xI onto
T.xI such that u”(x) = (x,0) for xeT,clo|x] and u’(jo|x {1}) = T,x{1} v
U 6l x {1} xI). We let

Ko i
hx) = {ft(x) if

(b)=>(c). By the Kuratowski-Zorn lemma it suffices to consider the_case where
K = o is a simplex and L = 6. Assume that |0} is embedded in a euclidean space
and for each A<|o| denote by A4 the image of 4 under the A-homothethy with
respect to the barycenter 0 of |o]. Let e>0 satisfy e<min{o(x): ?celal} and
e<min{a(x)—o(f (%, 1), f (x, 0)): (x, ) € [6] x I}. Set T = |o] x {0} v |6] < I; by b)
there is an e-homotopy w: T'xI—X such that wy(T) n4d =@, wy = f and
wi(x) = f(x, 1) for x € |6]x{1}. Now, for each x e |a\{0} let

AR = {(x,0): Aell, g} v {(ux, n: tel},

where p>1 is chosen so that ux e|d]. Then the inequality

)] sup{o(f (3),/(x,0)): y e A(N)} <alx)—e
holds for all x e ]o".l and therefore, by compactness, there is a A & (0, 1) such that (1)
holds for all xe|e]\Alo]. Let (u): |o]—TxI be a homotopy such that:
@ w9 = ((x, ),0) if (v, ) elé|xI U o] x {0},

(i) u,(x) = ((x,0), 9) if (x,D)ello|x];

(i) w(jo])=Tx {1} U |6]x {1} xI; and

(iv) prudx) € A(x) if (x, ) e (Jo]\Alo]) x L. )

Then f: |o| x =X defined by f (x, ) = w(u(x)) is the required extension of f.

The implications (c)=>(b) and (d)=>(e)=(a) are evident. To prove that (b)=(d),
fix 12 (I*, 8I—(U, UNA), where U< X is open and k<n+1. Let 4: X—I be a func-
tion that is 0 on X\U and 1 on £(I*) and let (k,); I*—~X be a homotopy such that

xelo] and o K"\M,
xel|M|.
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by =f, (M) " 4 = @, h(x) = f(x) for x € 8I* and [Af,(x)—Af (x)| <} for x e I*
(all t&I). Then h(I*)<U for all eI and hence f is trivial in n (U, U\A).

If (X ) is a metric space and h: M x /=X and a: M xI-[0, c0) are maps,
then we shall say that A is an a-homotopy if g(ht(x),ho(x))éa(x, 1) for all
(x,HeMxI.

2.4. THEOREM. Let A be an L h. negligible set in a metric space (X, @) and let
J: M—X be a map of an ANR(M)-space M. Then, given o: M x [0, 1]—[0, c0)
with a(x, >0 for (x,?) ef~1(4)x (0, 1], there is an a-homotopy (h): M—X such
that hy = f and h(M)=X\A for te (0, 1]. :

We first consider a special case of 2.4.

SUBLEMMA. Let X, M, A and f be as above and let y: M—(0, 0). Then there
exists a g: M—XN\A such that o(g(x), £ (x))<4y(x) for x e M.

Proof. Let Uecov(M) be so fine that diam,f(U)<sup{y(x): xe U}<
2inf{y(x): x € U} for all Uel, and let a simplicial complex K and maps u 11 M—|K],
uy: |K|—M be such that for each x € M there is a Ue 2 with {uu (), x}<U
(1], p. 138). By 2.3 there exists a go: | K|>X\4 such that ¢(go(»), fia(3)) <yis(y)
for all ye|K|. We let g = gyu,. .

Proof of 2.4. Let X' = Xx(0,1], 4’ = Ax%(0,1], M' = a"*0, w0) and
let. St M'—X" be defined by f'(x, 1) = (f(%), 7). By 2.2 and the sublemma, there
exists a g: M'—X'\4’ such that

o' (g, 0, f'Cx, H)<min(t, a(x, 7)) for (x,t)eM’,

where ¢'((x, 1), (y,5) = a(x, ) +]t—s|. We let h(x) = x, 0 if (x ‘
and h(x) = f(x) if (x, ) e Mx {0} U a™(0). 0 pag 3 (et

25. Remark. Assume that X, M and f are as in 2.4 and that 4 is locally
n‘-negligible in X. If dim(M)<n—1, then the assertion of 2.4 still holds. If
dim(M)<n, then for every f: X—[0, co) with B|A>0 there is a homotopy
{h): M—X such that hy = f, h(M)cX~A and o(h(x), f (%)< B(f(x)) for all
(x, Y€ M'xI. (We apply the proof of 3.4 and the fact that if M; e ANR(MR) is of

covering lc‘ilmensxon n, then there are an n-dimensional simplicial complex K and
1 uz

. maps My—|K|—M, such that u,u, is homotopic to the identity by means of a small
homotopy).

2.6. COROLLARY. If A is an I h. negligible set in a metric space X and A’ is a sub-
set of A, then A’ is also 1. h. negligible in X.

Proof. Let an open set Uc=X and f: (I", OI"y—(U, UNA") be given, and let
Z = Q](c f (Id),h X;)U) By 24, there exists an z-homotopy (h): I"™X such that
o=t and A(I"Y "4 = @ for te(0, 1]. Then (h): (I", oI" ! i
the condition in 2.1. ' ) '( » ST TN sptishes

2.7. (?OROLLARY. Let Ay, Ay, ... be closed 1. h. negligible sets in X. If X is com-
plete-metrzzable, then 4 = \J) A4; is 1. h. negligible in X,
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Proof. Fix n>0 and consider the space Y of all maps of I"x (0, 1] into X,
equipped with the “fine topology” generated by all sets

Vig,a) = {he ¥: g(h(x), g(x))<a(x)},

where ¢ is a fixed complete metric on X, g € Y and « is a map from I"x (0, 1] into
(0, o). .

By 2.4, all the sets Y, = {ge ¥: im(g) n 4, = J} are dense and open in Y-
Moreover, it is easy to verify that ¥ has the Baire property (cf. [30]) and therefore
Y, =) Y, is dense in Y. Thus for each f: I"—>X there is an ke Y, with

n
o(h(x, D), f(x))<et for all (x,7)el"x(0,1]; this easily completes the proof.

We conclude this section by giving a condition for a set A=X to be locally
n-negligible. Following [12], we say that B< X is LC" rel. X at a point x € X if,
given k<n+2 and a neighbourhood U of x, there is a neighbourhood ¥« U of x such
that each f: 8I%—B n V extends to an f: I*>Bn U.

2.8. THEOREM (compare [12]). Let X be a metric space and let AcX be a set
such that X~A is dense in X and is LC" rel. X at each point of A. If n<w, then A is
locally n-negligible in X and each map f: I""*—X can be approximated by maps
f': "1 XNA which coincide with f on an arbitrary given compact subset of f ~(X\A).

Proof. Let f: K—X be a fixed map of a compact polyhedron K. Writing
L =f(K)n 4, we let for any map g: Z—X of a compact space Z

5(g) = diam,g (2)-+sup{e(9(2), L): ze Z},

and we say that g is A-small if §(g)<2. By a standard compactness argument there
exist a 4o>0 and a function &: (0, Ao]—(0, c0) with lim () = 0 and such that
-0

each A-small g: &I"-»X\A admits an e(1)-small extension F: I*—X\A
(k =0,1,..,n+1). Without loss of generality we can assume that 1o>3 and
that & is non-decreasing. .

Cra (A). If dim(K) <n-+1 then, for every u € (0, 1], there exists ¢ g: K—X\4
such that p(f, g)<e@Bw)+3u and g(x) = £ (x) if o(F(x), L)>p (j).

Proof. We use induction on dim(K). Suppose that (A) holds true if dim(K)<p
(it does hold if dim (K) = 0) and assume dim (K) = p+1<n+1. Let T be a triangu-
lation of K such that diam,f(l6])<p for any simplex o € T" and let S denote the
p-skeleton of T. Let go: |S|—X\4 be a map such that ﬁ(go,f“S])q,z and such
that go(x) = f(x) if x lies in a simplex of T which is disjoint from f ~1(A). Now, let
ceT be any (p+1)-simplex. If |o| nf~(4) # &, then gona‘l is 3p-small and
therefore it admits an &(34)-small extension g%: |o|—X\A. If |o| nf™'(d) = &,
then put g° = f ]lal. Clearly, g, and the g°’s induce the required g: K— X\4.

Cra (B). If dim(K) <n, then there is a homotopy (h.): K—X With hy = fand
h(K)c=X~\A for te (0, 1].

(® By o we denote the sup-metric induced by p.
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Proof. Define g(u) = e(3y) and inductively &;..;(1) = 2g,()+3y; we may
assume that all &(u), & (1), ..., &,(1) are defined for u<1. Let T, i>1, be triangu-
lations of X such that Ty, , is a subdivision of T} and diam, f (|o])<2"* for all s € T},
and i1, and for each i1 let g;: K—~X\4 be a map such that 9(g;, /) <2~ and
g{x) = f(x) if x lies in a simplex of T; disjoint from f~*(A4). We shall find the re-
quired homotopy in such a way that s, = g, if 1 = 2741 7 =1,2,... To make this
possible it suffices to construct for each i>1 an h': KxI—=X\4 with hj = g,,
b} = g;1q and (i, f)<e,27)+27" for tel '

To this end, fix i and Iet » be a vertex of T,. If ve f~*(4) then g,(v) and g,..,(v)
can be joined by an &(3-27%)-small path lying in X\4, and if v ¢ £~ 1(4) then this
path can be taken as constant. Proceeding in this way with all vertices v of T}, we
getan A" : TP xT U Kx {0, 1}—>X with £ |K'x {0} = g; and h*° |[K'x {1} = g,
(by T¥ we denote the k-skeleton of T;). Now let o € TH. If |o] A f~*(4) 5 @, then
B*||6]x I U |o] x {0, 1} is an 2e,(27"+3-27"-smallmap of a 1-sphere and there-
fore it can be extended to an &(27%)-small map of [o]x] into X\A; if
lo] n f1(A4) = @, then this extension can be taken to be constant on all intervals
{J_c} x1I, x €|o|. In this way one gets an 2*': |T}|x I U Kx {0, 1}—X which extends
#*° and has the property that A*!||o] x 1 is £,(2~%)-small for all ¢ T}. Inductively,
we getmaps h™/: |T{|xT U Kx{0,1}—=X, j=1,2,..,n, such that A"/** extends
i and ™ |lo| x I is &2 ")-small for all o € TY. We let h' = A™,

Clearly (A) and (B) imply the assertion of 2.8.

2.9. Remark. If Y= X is a dense set which is uniformly LC® in a metric of X,
then Y'is LC® rel. X at each x € X and, hence, X\ Yis L. h. negligible in X. (A version

of this remark was made by Eilenberg and Wilder [12] and various forms of it were
applied by Haver [16], [17] in a study of function spaces.)

§ 3. Locally homotopy negligible sets in ANR()’s and LC®-spaces.

3.1. TeeorReM. Let X'e ANR(W) and let A be a locally homotopy negligible

set in X. Then X\A e ANR(M).

Proof. By 1.1, there exists a space E such that X x E has an open basis (say 1)
with homotopy trivial intersections. Then A x E is L. h. negligible in X' xE and
therefore the basis {UNAX E: Ue U} of (XNA)x E has homotopy trivial inter-
sections. Hence (X\4)x E and X\4 are ANR(M)’s (we use 1.1 again).

‘ 3.2. P}{OPOSXTION. Let X ANR(Y) and let A be a locally n-negligible set
in X. If dim(X)<n then 4 is Lh. negligible in X,

Proof. Fix f: (I*, 0I)—(X, X\4) and ¢> 0. By 2.5, there exists an ¢-homotopy
(h): X—X such that hy(X)cI\A and h(x) = x if (v, 1) e Xx {0y uF@EIM =L
Hence (h,f): (I, 0I)—(X, X\4) is an e-homotopy with A, f = fand & JTHeXN4;
thus 4 is L h. negligible in X.

For 0<k< o0 let us say that 4 is a Z,-set in X if each map f: I*-X can be
approximated by maps into X\4. It is easy to see that 4 is a Z-set in X iff it is
a Zy-set for all ke N; closed Z,-sets in X will be called Z-sets.
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3.3. COROLLARY. Let X € LC" be a metric space. The following conditions on
a closed set Ac=X are equivalent:

(a) X\A4 is dense in X and is - LC*"* rel. X at each xe A;
(b) 4 is a Z,-set in X; ‘ ’
() 4 is locally n-negligible in X. ,
~ Proof. (a)=(b) follows from 2.8 and (c)=(a) is trivial. Finally, (b)=(c) by
the well-known properties of LC"-spaces (see [21], p. 160).

8§ 4. Enlarging an ANR (D) — open questions and remarks.- Let X be a locally
contractible metric space and A4 its 1 h. negligible subset. By 3.2, X € ANR(I)
=X\4 € ANR(T). We do not know whether the converse implication is true ).

In this connection let ut show:

4.1. PROPOSITION. Let X be a metric. space and A its ANR (I)-subset. Then,

. A may be enlarged to an ANR(W)-set A= X which is of type G; in X and has the

property that ANA is 1. h. negligible in A.

Proof. By well-known properties of ANR(Dt)’s there is a W & cov(4 x (0, 1)
and a map g: |K]—+4, where K is the nerve of U, such that if /2 4% (0, 1]-|K] is
any canonical map, then g(gf(x, 1), x)<¢ for all (x, ) e 4% (0, 1] (see [21], p. 138
or use the proof of 1.1). Let B be a family of open subsets of X' (0, 1] such that
U= {VnAdx(0,1]: Ve B}, let L be the nerve of B and ¥ the union. of all ele-
ments of B, and let f: V—|L| be a canonical map. Identifying K with a subcomplex
of L, we infer that C' = f~1(|K]) is a relatively closed subset of ¥ and therefore the
set B={(x,0eC: algf(x, ), x)<t} is of type G, in Xx(0,1] and contains
Ax(0, 1]. Since (0, 1] is o-compact, A = X\p(X % (0, 1]\B) is a Gs-subset of X
containing 4. By 1.4, 4 € ANR(M). The following sublemma shows that ANA is
L. h. negligible in A.

SUBLEMMA. Every set C<XN\im(g), is . h. negligible in X.

Proof. Let h: I"—X be given. Identify I* with I"x {0}<=I"x 1. By 1.4 there
are >0 and F: I"x [0, e]—X such that i|I" = /; moreover, the formula given in
the proof of 1.4 yields h(x, #) eim(g) for ¢ & (0, &]. Therefore there is a homotopy
(u): I"—X such that 1, = & and u,(I") n C = @ for ¢>0; this concludes the proof.

42 Remark. The set 4 of 4.1 is in no way unique: e.g., if BoA4 is any
G;s-subset of A, then B also satisfies the assertion of 4.1 (see 2.6 and. § 3).

43, Remark. Let X be a compact PL-manifold, let H denote its-homeomor-
phism group with compact-open topology and let P be the subgroup of H consisting
of PL-maps. It was shown by Haver [15], [17], that P e ANR () and the closure G
of P is an open subgroup of H. Let G,oP be an ANR(I)-extension of P to
a Gs-subset of G; since P is uniformly locally contractible (see [17]), we infer, by 2.9
and 2.6, that G\G, is L k. negligible in G. Thus G'x, contains an ,-manifold

(® Added in proof. It is not, without assuming X to be locally contractible, as is
shown by Taylor’s example (BAMS 81, p. 629) combined with 6.1 and 6.3.
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(namely G xI,, see [31]) with an L h. negligible complement. Since H is a union of
open cosets of G and since HxI, & H (Geoghegan [14]), H also contains an
1,-manifold with an 1. h. negligible complement, It is however an open question if
H is an ANR(I).

4.4. Remark. Similarly, it follows from [15] and 4.1 that if E is any separable
complete linear metric space then ENK € AR (M) for some Lh. negligible F,-set K;
it is though unknown if Ee AR(M).

§ 5. Enlarging a manifold. In this section we show that if a complete
ANR(M)-space X contains an I,-manifold whose complement is a Z-set in X,
then X is necessarily an /,-manifold. We start with:

5.1. PROPOSITION. Let E denote the Hilbert cube or a locally convex linear
metric space such that E = E® or Ex2 Y E = {(x)e E®: x; = 0 for almost all i}
and let A be a Z-set in a metric space X. If X% E and X\A are E-manifolds, then
X =2 XxE and X is an E-manifold.

The proof is divided into 3 steps and involves an idea of Cutler (see [7] and
also [33], where some special cases of 5.1 are established).

1° If Mis an E-manifold and K is a Z-set 'in M, then there is a homotopy
(f2: M—=M such that f, =id, f(M)cintf,(M) if 0<s<t<1, Uf(M) = MN\K

t>0

and (x, )>(fy(x), 1) is a closed embedding of Mx1I into itself.

onto
Proof. Under our assumptions there is a homeomorphism /&: M — MxI

such that 2(K) = M x {0} (see [30]). Let ¢ be any product metric on M x I; then for
each te7 the formula

ux) = inf{s e I: g((x, s), h(K))>1}

defines a continuous function on M. We let f, = A~'g,h, where g:(x,8) = (x,5)
if .S'?O(.,(x') and g,(x, 8) = (x, $o,(x)+4s) otherwise. '

Given spaces Z and F and a closed set LcZ, we denote by (Zx F), the space
(Z\L)x F v L equipped with the topology generated by open subsets of (Z\L)x F
and by sets of the form Un L u (UNL)x F, where UcZ is open. CF denotes
(% F)0y5 the cone over F. .

2° Under the assumptions of 5.1, the spaces X x CE and (X x CE), are homeo-
morphic.

Prgof. Set M = XxE and K = 4% E and let (f}): M—M be the homotopy
from 1°. Define £: X'x CE—(Xx CE), by the formula

x,3) ify=0,
o) = ( e 0, pafit d
P x,e,< x;e,———-) if y =
x prfix, e) ﬁf,(x,e)) if y=(,¢) and >0,
whf:re /?(x, €) =sup{sel: (x,e) ef(M). It is a matter of routine but tedious
verification to show that / is a homeomorphism of XX CE onto (X% CE),.
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Proof of 5.1. It is known that E and CE are homeomorphic (see [18] and
[33]), and therefore XX E =~ (XX E),. Let ¢ be any metric for X. Since X\4

onto

is an E-manifold, there is a homeomorphism g: (X\A)xE— X\4 such that
0{g(2), px())<e(px(2), A) for all z e (X\4) x E (see [28]). Extending g by identity
over 4, we get a homeomorphism of (X'x E), onto X. Thus XxE = X.

Combining 5.1 with the results of [32], we get

5.2. THEOREM. Let X be an ANR(MM)-space, let A be a Z-set in X and assume
that X\A is a manifold modelled on a space E. In any of the following cases X is also
an E-manifold: A i

(a) E is an infinite-dimensional Hilbert space and X is complete;

(b) Eis a locally convex linear metric space with E =2y E and X admits a closed
embedding into E. -

For a discussion of certain special cases in which the condition (b) is satisfied
see [31], § 1.

In the remaining part of this section we apply 5.2 to show that certain function
spaces are [,-manifolds. If X is a space and 4 is a compactum, then C(4, X) denotes
the space of maps of A4 into X (compact-open topology), for x € X we denote by £ the
constant map with value x, and we let X = {%: xe X}. C((4, 4,), (X, X;)) has
the usual meaning, We need two lemmas leading to the fact that if X ¢ ANR(IR)
has no isolated points, then one can continuously assign to each xe X a non-
constant path starting from x. :

5.3. LEMMA. Let Ye ANR(M), let Ay A be compacta and let yoe Y. If
neither {y,} nor A, are open, then the singleton {$o} is a Z-set in

8 = C((4, 4o), (T, yo))-

Proof. Since every fe S factorizes through a map of (4/4,, [4]) into (Y, ¥,),
we may assume that 4, = {a,} is a one-point set. Consider 4 as a (nowhere-dense)
subset of I, and let (a,)e(4d\4o)®, (z,) e \D® and (y,) e (IN\{y}™ be
sequences such that limz, = lima, = g, and limy, = yo. Given f: AXI®—Y
with f({ao} xI?)={po}, extend f to fi: (AU {z,: ne N})xI*—>Y by letting
fiz} xI®) = {y,},ne N, and extend f; to anf: Ux [*—Y where Us 4 U {z,:ne N}
is open in ,. Let (g,) be a sequence of mappings g,: 4—U such that limg, = id
and moreover g,(do) = ao and g,(a,) = z, for all sufficiently big »’s. The maps
[t AXI®—Y defined by . :

fa,9) =f(g,@,9). (@, 9ed%xI°, neN
converge to f and have the property that, for each g € I, the map a+f,(a, g) belongs
to S\{fo}. Since fi AxI*—Y was induced by an arbitrary map of I* into S,
the result follows.
5.4. LEMMA. Let Y be an ANR(M)-space without isolated points and let £>0.
There is a v: Y~C(I, YI\Y such that v(¥)(0) = y and ¢(v(y), §)<e for all ye ¥
(¢ denotes here the sup-metric induced by o).
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Proof. C(J, Y)is an ANR(I)-space and therefore, by 2.4, 3.3 and elementary
properties of ANR(D)’s, it suffices to show that C(Z, Y)\¥ is LC® rel. C(J, Y)
at each point § € Y.

To this end Jet us fix ke N, 9, ¥ and £,>0; we shall find a 6>0 such that
under the notation S = C(Z, ¥) and J = [—1, 1], we have

(¥ Each f: 6]‘—A>S\Y with sup{a(f(*), 9o): xedl*}<d ektends to an
Fr J5o8\Y with sup{e(F (x), 95): x €%} <eq.

First observe . that, by 5.3 and 3.2, there is a 5,>0 such that each

g: a5 C(([0, 21, 2), (¥, yo))\{Fo} with 2(g(x), J,)<28, for x e aJ* admits an
extension g: J*—C(([0, 2T, 2), (¥, yo))N\{9o} with 9(g (%), 9o)<e, for x &J* Since
Y e ANR(2), there exists further-a §>0 such that the d-ball of ¥ centred at y, can
be deformed to y, inside the §,-ball centred at y,. We shall show that § satisfies ().
Indeed, if fis as in (), then there exists a w: J*— ¥ with w(x) = f(x)(1) for x e aJ%,
w(0) = y,, and g(w(x), o) <8, for x € J* Letting .

e S G®
g(x)(n) = {W‘((ZfZ)x)

we get a g: AT*—C((10, 2], 2), (¥, o)) with 0(g (%), 9,) <28, for x € aJ* Siucé
g: J.C((0,2],2), (Y, y))\{Po} with

if te]0, 1],
if te[l,2],

ﬁo ¢im(g), ¢ admits an extension F:
o(@(x), 9o)<e for all x e J% If we let h(f) = (—2r+3)z, tel, then

if xedJ*, refs, 11,

) = fg(x) o b,
f(w-i- N if xeJ¥, ref0,4], -

g@rx)e h1/2
defines the extension required in ().

5.5. TproreM. Let X and X, .., X,cX be separable complete ANR(9R)'s,
let 4 be a compactum and 4, ..., 4, its disjoint closed subsets, and let U be an open
sub.s*et of X whose boundary .is compact and collared in U. If either U n (4 v

2V 4,) = & and X has no.isolated points or UcA, and X, has no isolated

pomt.s' then the szzce S={feCl4,X): f(4)<X; for i=1,2,
Ly-manifold.

Proof. Let K = {feS: f is constant on U}. It is known that S\K is an
_lz-manifold and S is a complete separable ANR (90%)-space (see [31], § 4). Therefore
it remains to show that X is a Z-set in S.

To this end fix ¢>0 and f: I°x4—X such that Jo=r(g,)eS for
all geI®. By assumption there exist a compactum C in U and a homo-
topy (u): d—Ax{0} U CxI such that u(a) = (a,0) if a¢ U or =0 and
ufd) = 4x{0} U Cx[0,7] for all rel Define f: I°x(4x{0} U CxI)=X

by‘
_1f(g.2)
f%”“ﬂummm

Ly R} s an

if gel®, zed = A% {0},
ifgel®, z = (e, He Cx (0,17,
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where o satisfies 5.4 with Y =X f Un (4, v ..U 4d;) =0 and with Y =X,
xf Uc A. Choose 60 such that p(f (u,;xid), f)<s and define g: T°x A—X by

_ f(qa uﬁ(a))
g(q,(l) - {f(q (C t/é))

One easily verifies that g, = g(g, -) & S\K and p(gq,fq)<2£ for all g e I*. This
shows that K is a Z_-set in Y.

5.6. COROLLARY..Let X and Xy, ..., X,cX be complete separable ANR(I)’s,
where X has no isolated points. If A is a connected compact finite-dimensional manifold
(with or without boundary), then for any closed mutually disjoint proper subsets
Ayy .y A, of A the space {feC(4,X): f(4d)=X; fori=1,2,. .., n} forms an
L-manifold. In particular, the space of paths from X, io X, and. the space of closed
curves starzmg from X; are l,-manifolds. . .

1f us(a) e Ax {0},
if uga) = (c, N e C><I

Appendlx Locally homotopy negligible sets and UV‘”—maps We shall show here
how the properties of L. h. negligible sets are related to the results of Armentrout—
Price, Kozlowski and Lacher on cell-like mappings of metric spaces,

All spaces are assumed to be metrizable. If/: X— ¥ is a map, then by the mapping
cylinder of f'we mean the space Z, = X% [0,1) v ¥'x {1} equipped with the topology
generated by open subsets of X'x [0, 1) and by sets f~ YUy x(t, 1) U Ux {1}, where
¢>0and U< Yis open. Note that Z is metrizable: if we consider X'and. Y as bounded
subsets of normed spaces E and F respectively, then

Zp o {(x—tx, 1,4/ (x)): te], xe X} U {0} x {I} x Ye EXIxXF.

We identify X with Xx {0}, ¥ with Yx {1}, and we'denote by p: Z,~Y and
g: ZN\Y—X the collapse and projection, respectively.

A map f: XY will be said to be. UV" at y e Y if, given-k <n+1 and a neigh-
bourhood U of y, there is a neighbourhood ¥'= U of y such that each g: oI (V)
extends toan g: I~ ~1(U). If fis UV" atall y e ¥, then we say that it isa UV"-map.
Similarly if the projection X—X]4 is UV" at [A], then we say that 4 is a UV"-subset
of X.

6.1. Remark. fis a UV*-mapping iff Z\Y is LC rel. Z; at each point of Y.

" If all the f~*(p)’s are compact and fis a surjection, then f is a UV™-map iff all the

Fy)ys, ye Y, are UV'-subsets of X.

It is known that compacta of trivial shape are UV*- subsets of ANR(D?)’s in
which they lie (see 5D.

6.2. PROPOSITION (compare [27], [22], [4]). If f: X—Y is a UV~map and f(X)
is dense in Y, then f induces an isomorphism of the n-th homotopy group.

Proof. Apply 2.8 and the fact that finduces an isomorphism of the nth homotopy
group iff the inclusion Z\Y—Z, does.so.

6.3. PROPOSITION. Let f: X—Y be a UV®-map with @ dense image and let
MeANR(R). Then, given u: M—Y and o MXx (0,11—(0, ), there is
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a g: Mx(0, 11K such that o( fgx), u(x))<alx,?) for (x,H)e Mx(0,1]. If, in
addition, K< X is a closed set, U is its neighbourhood and v: U—X is any lifting of u|U,
then g may be constructed in such a way that g,|K = v|K for dll t. ‘

Proof. Put on Z; a metric d in which the collapse p: (Z;, d)—(Y, @) is a con-
traction and let A: M—][0,1] satisfy A|K =1 and M\Ucintd~*(0). Define
w: M—Z; by

w(x)g= {(v(x),l(x))eXx [0,11 if A(x)>0,
u(x) if A(x)=0.

Since, by 2.8, Y is 1 h. negligible in Z, there exists an a-homotopy (h,): M—Z,
such that A(M)<=Z\Y and h,|K = w for all >0. We let g, = gh,.

6.4. PROPOSITION. Let f: X—Y be an UV®-map of ANR(I)s and assume
that f (X) is dense in Y. Then, given a.: ¥ x (0, 11-(0, c0), there exist g: Y x (0, 1}-X
and a homotopy (hy): X—X such that hy = id, by = g, f and o(fgd»), y)<a(y, 1)
and (fh(x), F () <a(f (%), f) for all £€(0,1], xe X, ye Y.

Proof. Let A be any increasing homeomorphism of [—1, 2] onto [0, 1]. By 6.3
there is a g: Y% (0, 1]—X such that, for all (y,2) e ¥Yx(0, 1],

o(f949), y)<qmin(u(3), 1, sn(1), inf{ay(3): s€A(L, 2D)) .

Let M= Xx[-1,2], K=Xx{-1,2}, U= Xx([—1,0)u(1,2]), and define
u: M—Y by
f if te[~1,0],
u = fo.f if te(0,1],
fo.f i tell,2].

Using 6.3 again, construct i: M—X with i_, =id, fi; = g, f and
o(fhax), u(M)<tou(f®) for (t,x)e M=Xx[-1,2].

Finally, let k, = f;-14y.

6.5.' Remark. Let f: X—Y be a UV”-map with a dense image and assume
that X is an LC"™space and dim(¥Y)<n<oo. It easily follows from 6.1 and 2.8
that ¥ is LC" and therefore Y& ANR(M) by [6], p. 122.

6.6. Remark. Let f: X—Y be an UV" l.map with a dense imagé and
assume that X and ¥ are ANR(9t)’s and max(dim(Y), dim(X)+1)<n<co. Then,
dim(Z)<n and Z; is locally contractible, and therefore Z € ANR(I) (see [21],
p. 168). Hence, by 3.2, Y is L h. negligible in Z, and f is actually a UV*®-map;
thus 6.4 applies. ‘

We also observe that if X and ¥ are locally compact spaces and f is a proper
map,‘then the homotopies id U (fg,),>0 and () of 6.4 are proper if « is taken
sufficiently. small (slightly weaker versions of 6.5 and 6.6 form the theorems of
Lacher [23]). '
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6.7. COROLLARY. Let f: X—Y be a surjection such that all the f~Y(3)’s, ye ¥,
are compact UV™subsets of X. If X is an n-dimensional ANR (W)-space and Y'is

;ﬁnite-dimensiona‘l, then Ye ANR) and f is a UV™-map.

Proof. If n = co then the result follows from 6.5. Assume n<o, fix yo € ¥
and consider the quotient map 7: X—X|f ~'(yy) = S,,. By 6.5 we have Sy, € ANR ()
and therefore, by 6.6, 7 is a UV®-map. Thus all the f ~1(»)’s, y € ¥, are UV®-subsets
of X and the assertion follows from 6.1 and 6.5.
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Hilbert cube modulo an arc
by

Zvonko Cerin (Baton Rouge, La.)

Abstract. Let Q denote the Hilbert cube and let @, § CQ be arcs. Adapting methods of Bing—
Andrews—Curtis-Kwun-Bryant we prove that Q/axI and Qfx X Q/f are homeomorphic with Q,
where I is a closed interval and Qe is a space obtained from Q by shrinking a to a point. The same
method applies equally well to the case when arcs are replaced with finite-dimensional cells or their
intersections.

1. Introduction. We use Q to represent the Hilbert cube (the countable-infinite
product of closed intervals). A closed subset X< Q is called a Z-set if for any non-
empty homotopically trivial open set U= Q, U—X is also non-empty and homo-
topically trivial. This concept was introduced by R. D. Anderson in [1] and in the
infinite-dimensional topology plays a role analogous to a role of tameness conditions
in the finite-dimensional topology. Chapman [7] showed that a Z-set X< has
a trivial shape if and only if the space Q/X,, obtained from Q by shrinking X to a point,
is homeomorphic to @ (in notation, 0/X = Q). If X is of a trivial shape but not
a Z-set, then Q/X may fail to be locally like O at the point X = p(X), where
p: O—Q/X is a natural projection. Indeed, Wong [14] constructed a copy of the
Cantor set with non-simply connected complement in Q. By a standard technique
we can pass an arc « through it such that Q—a is also not simply connected. If Qlx
were locally Q at the point & then Qf« being a contractible Q-manifold would be
homeomorphic to O [8]. But in Q the complement of every point is simply con-
nected.

‘The problem SC 1 in [2] asks (in analogy with a similar result for Euclidean
spaces established earlier by Andrews and Curtis [3]) whether for any arc «=Q
multiplying ‘Qfe by the unit interval I = [0, 1] gives the Hilbert cube. In Section 2
of this note we will present a detailed proof, adapting techniques from [3] to the
Hilbert cube case, of the following theorem that confirmes this conjecture.

TueoreM 1. For any arc ac Q, (QJa)x I is homeomorphic with Q.

Next, in Section 3, we first prove that AxB is a Z-setin Qx Q whenever 4
and B are finite-dimensional closed subsets of Q and then, following Kwurt’s method
[10], establish

THEOREM 2. Let o, f = Q be arbitrary arcs. Thén (Qfo) % (Q/B) is homeomorphic
with Q. ‘
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