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Hilbert cube modulo an arc
by

Zvonko Cerin (Baton Rouge, La.)

Abstract. Let Q denote the Hilbert cube and let @, § CQ be arcs. Adapting methods of Bing—
Andrews—Curtis-Kwun-Bryant we prove that Q/axI and Qfx X Q/f are homeomorphic with Q,
where I is a closed interval and Qe is a space obtained from Q by shrinking a to a point. The same
method applies equally well to the case when arcs are replaced with finite-dimensional cells or their
intersections.

1. Introduction. We use Q to represent the Hilbert cube (the countable-infinite
product of closed intervals). A closed subset X< Q is called a Z-set if for any non-
empty homotopically trivial open set U= Q, U—X is also non-empty and homo-
topically trivial. This concept was introduced by R. D. Anderson in [1] and in the
infinite-dimensional topology plays a role analogous to a role of tameness conditions
in the finite-dimensional topology. Chapman [7] showed that a Z-set X< has
a trivial shape if and only if the space Q/X,, obtained from Q by shrinking X to a point,
is homeomorphic to @ (in notation, 0/X = Q). If X is of a trivial shape but not
a Z-set, then Q/X may fail to be locally like O at the point X = p(X), where
p: O—Q/X is a natural projection. Indeed, Wong [14] constructed a copy of the
Cantor set with non-simply connected complement in Q. By a standard technique
we can pass an arc « through it such that Q—a is also not simply connected. If Qlx
were locally Q at the point & then Qf« being a contractible Q-manifold would be
homeomorphic to O [8]. But in Q the complement of every point is simply con-
nected.

‘The problem SC 1 in [2] asks (in analogy with a similar result for Euclidean
spaces established earlier by Andrews and Curtis [3]) whether for any arc «=Q
multiplying ‘Qfe by the unit interval I = [0, 1] gives the Hilbert cube. In Section 2
of this note we will present a detailed proof, adapting techniques from [3] to the
Hilbert cube case, of the following theorem that confirmes this conjecture.

TueoreM 1. For any arc ac Q, (QJa)x I is homeomorphic with Q.

Next, in Section 3, we first prove that AxB is a Z-setin Qx Q whenever 4
and B are finite-dimensional closed subsets of Q and then, following Kwurt’s method
[10], establish

THEOREM 2. Let o, f = Q be arbitrary arcs. Thén (Qfo) % (Q/B) is homeomorphic
with Q. ‘
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Finally, the procedures in the proofs of both theorems can be easily extended,
as was suggested in [5], to the case of shrinking a finite-dimensional cell in Q@ and,
even further, intersections of such cells in Q (see Corollary 2.11 for precise statement),

Remark. Both Bryant and Chapman claimed proofs of Theorem 1 essentially
along the lines presented here.

2. Proof of Theorem 1. Since «x 0 and a x 1 are Z-sets of trivial shape in Q x ,
there is a map F: QxI—Qx[ of OxI onto itself such that F(o x0) and F(xx 1)
are distinct points of QxI while F| (Ox1)~(@x0 wax1)is a homeomorphism
onto QxI—~F(ax0uaxl). Pick, inductively, a sequence ¢, &,,... of positive
real numbers satisfying:

) 3e,<i(ei-1)<1, and .

(v7) if x e N, (a) x I has I-coordinate less than 3¢; or bigger than 1-3g; then
F(x) is within ¢;_; of either p = F(ax0) or g = F(ax 1), respectively, for each
1>0. .

Here, for any &>0, N,(«) denotes a closed ¢-neighborhood of & in Q relative
a fixed metric 4 on Q and QxI is given the product metric.

LeMMA 2.1. Let o = (\ T,, where each T;=N,( ) is a closed neighborhood of «
i>0

in Q and Tiy, =T;. Suppose that for each positive integer i and numbers 1>0 and
0<e<! there is an integer N and an isotopy 1 (0<1<1) of Q% I onto itself such that
(@) 1o = id (identity), ‘
®) pl @xI-Tix[te, 1-}e] = id,
() p changes I-coordinate less than 4, and
(d) diam p (Tyx w)<n Jor all we[e, 1—¢].
Then (Qloyx I = Q.

Proof. The proof of this lemma is very similar to the proof of Theorem 1 in [3]
and whenever details are omitted they can be found in [3] or [12].

We will prove that the quotient (Q x I)|G, where G is the upper semicontinuous
decomposition of QO x I with only nondegenerate elements sets F(ux 1), 0<t<1,
is homeomorphic to Q x I by constructing a pseudo-isotopy St @QxI-Qx I such
thatf, = id and J1 takes each element of G into a distinct point of O x I. The pseudo-
isotopy f; will be, for 0<t< 1, the obvious extension of Fo hyo F7Y OxI—- {p,q},

where &,: O x IO x I keeps ax0 and arx 1 fixed at any time. Even though lim#, is
. 0 ! . . "}1
discontinuous; f; = lm} fi will make a required shrinking of elements of G.
-+

We will define 2 monotone increasing sequence ny = 1,1, ns, ... and a sequence
of isotopies A} (G—-1fi<e<il(i+1)) of OxT onto itself such that

() A = id, '

@ hél(H— 1= h%l— 1)»

3) hl(;—ll)/il QxI-T, x[4e,, 1-%¢] = hﬂ OxI-T, x[te, 1—1%e],
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(4) diamh e 1(Typpy x W<n(F, g) for all we g, 1—&],

(5 no point moves more than 2g;_, during f;, = Fo Bio F71,

(6) IzE,(H,)(Q X W) chi(,-_])/i(Q x [w—e;, w+eg,]) for every we I, and

(7) the I-coordinate of hék,.ﬂ)(x, w) is <3¢, or >1-3¢; whenever w<2g; or
w>1-2g;, respectively.

" The number 5(F, ¢;) in (4) is determined according to the following definition.

DEFINITION 2.2. Let f: X— Y be a map between compact metr_ic spaces and >0
a given number. Define #(f, ¢) to be ‘ )

sup{n>0| d(x,x)<n in X implies d(f (x),f(x))<e in ¥}.

The existence of A} (0<z<%) follows from the assumptions in the lemma.

We proceed, inductively, to define h:and n;,,. By (4), the }.miform continuity
of hi(i“_ll),; and the relation 2¢;_,>g;_y, there is y>0 with t%le property:
diam ity (T, % [, ) <n(F, 2¢; ;) whenever a,bele; 1,1 —2,-4] s.atlsfy la—bl<7.
Also, there is an isotopy u, ((i— 1)/i<t§i/(i+ 1)) of Q%I and an integer Mipy >Ny
such that : L

® re-1n = id,

(i) p) @xI—T, xke;, 1—1e] = id,

(iii) g, changes I-coordinate less than Min(y, &), and

(iv) diam e 1y Ty X wy<n(hiily, n(F, &) for we [g;, 1—&].

Now, define A = hi_%y: o i, Then (1) and (2) are clearly satisfied, (3) follow's
from (ii), (4) from (iv), and (5) holds because if for x € F (T, xD—{ P g} I-coordi-
nates of both F~(x) and p, o F~*(x) are in [g;_;, 1—&;_,] then, since they are
by (iii) at most y apart, the way y was choosgn gives : R

A(F o bl g0 F71(x), Fo B e e o FTH(x)) <2859

and, on the other hand, if I-coordinate of at least one of points F~*(x) and jz, o F~*(x)
is in, say, [0, &;_,] then by (jii) both arein [0, ai-1+si]<:[0,£§i_,.] _so_klthatucon-
dition (7) for gy, implies that I-coordinates of h(i_li),_ilo F7i(%) .?nd
Biitygio e F () arein [0, 3¢;4]; the requirement (yy) forces Fo h(,_l),i? peoF (Jf) v
and Fo B4y 0 F~1(x) to be within e;_, of p, i.e., at mos{t— 2:{61_? apart. Fn?ally, (6)is
a consequence of (i), and (7) follows from the fact that {1@_ 1y;1is the 1den't1ty. outside
Ox[46i_1, 1 —%&-11= O % [38;, 1 —3¢;] and (iii) since given (x, w) e @ xI with, say,
we [0, 2¢;] then, . :

hi/(g“)(x, W) = hi;—ll)li(“i/(ﬁ 0, W) = pyae (e, w)e @x [0, 3z] . W .

To complete the proof of Theorem 1 it remains to construct isotopies y, from

the hypothesis in Lemma 2.1.
Consider Q as a countable infinite product .HOJ“ where J; = [—1,1] for

each i>0. Since X% isa.Z-setin Qx I [7, Corollary 2.4] by the homeomorphism

'
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extension theorem of [1], there is a homeomorphism ¢: O x I——;Q x I such that
(P({O} X H:’ %]) = OCX% s
e({—}x[]hixD) = @x0
i>1
and

{1} x[]J,xI) = @x1.
i1 '
Let ¥; denote a closed neighborhood

(=1, ¥ xT]J;  of 0 =(0,0,.)eQ
i>j
and let
Py = Vix[k—(1/2), 3+(1/2))]
for each j> 31; We can. represent F; as the union of Hilbert cubes P}, P7, ..., P~
where ca}cl} Plisa produ(;kt of ¥; with a subinterval of [$—(1/2), 3+ (1/2j)] of ienjght
(;Jzz)/zjo—n._neﬁne Qj = 9(P)), 0; = (), R; = 0; 0 (@), and R: = Q%
1) Qx.%). As in [3, p. 2] we can choose a subsequence {P;} of {P;} such that
(i) diam Q¥ <Min(1/i, n(g, ¢)).
(i) For each i and each k, there is an s such that
Ofe (R L R X1,
(iii) For.each i and each s, there is a k such that
| QhacRxI,
and if m<k then, :
‘ ' Orvic(RIURIU...UR)XI,
Let T; = R,;. Then {77} will be the se i
2t T; = Ry quence of neigh i
we will construct isotopies required by Lemma 2.1, lg b°1'1109ds of o for which

LemMMA 2.3. Given a positive integer k and real numbers

there exists a Hilbert cube E such that '8>0 and 0{a<b<1,

Ter1 X a, b]cintEcEchxb[‘a-«e, b+g].

LastI:erZ(; f. ',;Ihe proof of this lemma is identical with the proof of Theorem 2 in [3]
o two ;m Elons ]c;n ¢ guarantee t.hat ©1(Pag+1) does not have points with I-coor-
- , 1 50 that the homeomorphism analogous to ¢, in [3] can be constructed. W
ROLLARY 2.4, Given Ty, any integer m>2, and a sequence of real numbers

O<a;<a,<...<aq,
i <@y <by_,<..<b,<], there is
Hilbert cubes such that ’ # sequencs B Bas o Bz of

Tixlay, by ]2 E; =Ty x [a,, 6212 By 25 Tt X [ b 2l
—20b45].

Remark 2.5, The note on p. 4 of [3] also holds in our situation.
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For any set n = {0<a0<a1<...<am_3<b,,,_3<...<b0<1} of real numbers
put LT = {a;, @411 [Bie1, bids 0<gi<m—4, and Lf_3 = [ay_3,bu-3]. Also,
JF = [a;, b)), 0<i<m—3.

Livva 2.6. Let {T;} be a sequence of neighborhoods of « constructed above,
and let T, e {T}; with Cy, ..., C, being the chain of RZ.s in Ty. Then there is an
isotopy p, on Q x I starting with the identity and ending with a homeomorphism h of
O x I onto itself such that

u, = id outside of TyxJg ,
h=id on (C3 0 Cau ... U CxLy,
h=1id on (C,u Cs U ...u CxL],
) h=1id on CuxLp_3,
and
h({T, 0 (Cy v CYxLy)=(Cy v C)xJ5
R({Tys1 0 (€L u Cy U G} x L= (Cr v C3)xJ5,

B{Tiam-3 0 (CL 0 eV Cp— O} X Ly-3)=(Cpoz Y Cn-1)%J5 -

Proof. Once again, the proof is almost identical with the proof of Theorem 3
in [3] except that the role of Lemma 2 there in our situation plays

Lemva 2.7. Let r be an arbitrary positive integer, A = I'x OxI, and
A, =IxQx[}, 1] Let Be(intI)x@x (inth u I"x 0x1 be a closed subset.
Then there is an isotopy y: AxI—A such that y, is the identity, y| (BAI"x @xI v
U I'x 0% {0, 1} is the identity, and y,(B)=A4,.

Proof. The isotopy 7, (¢ € I) can be realized as idg ¥ A,, where 4, is an isotopy
on I"x I constructed using Lemma 2 in [3] such that 4, = id, 4, fixes boundary
points of I"x I for every ¢, and Ay(n(B))=I" %[}, 1], where n(B) is a projection
of B onto the factor I"xI. B ‘

Levva 2.8. Let T, € (T}, 1>0, and 0<e<1 be given. Then there is an integer N
and a homeomorphism ¢@: QxI—QxI such that .

@) @l OQxI-Tyx[}e,1-3e] = id,

(2) @ changes I-coordinate less than 1, and

(3) diamo(Tyx w)<n for all wele, 1—¢l. :

Proof. Choose N’ >k so large that diam REy <151+/2. Then Ty: hasm=2N"-1
chambers C; = Riys, «rs Cn = Royr. Pick s(m—2) points dh<..<da_3 (1<i<y)
in I such that aj= %e, af,—5 = 1—}%e, ak_s<e, ay>1—¢, &' _s<abtt for every
i=0,..,5—1, and a distance between any two consecutive @i’s is less than
7J2/8(2m—5). Put N = N'+m~3. A homeomorphism g is the union of homeomor-

phisms /4, ...; h—; Where h; is a homeomorphism given by Lemma ‘2.6 with
= Gy ey Gy Aot Ly s Gs} fOr every i=1, ..., s—1, and for i odd pushing

js done toward C, while for i even toward Ci. n
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It is clear that above ¢ can be obtained as the end of an isotopy satisfying assump-
tions of Lemma 2.1. This completes the proof of Theorem 1. o
Remark 2.9. Without any additional effort adapting a technique in [5], for
the case when the considered k-cell is flat (i.e., the case I in [5]), word by word
in a way explained above for an arc, we can get g
THEOREM 2.10. Let B: I*~Q be an embedding of the k-cell (kz0) I* into the
Hilbert cube Q. Then [QJB(I%)]x I is homeomorphic with Q.

CoROLLARY 2.11. Ler A= Q be a decreasing intersection of finite-dimensional
topological cells (of possibly varying dimensions). Then (Q]A)xI and Q are homeo-
morphic. ‘

Proof. This follows immediately from the corollariés in [6]. M

3. Proof of Theorem 2. Throughout this section P =[][, P, = I %
i>0 >4
Q=T]J;, and @, = [1J:, where I, = J, = [0, 1] for each i, are Hilbert cubes
i>0 i>1

and ¢=P and f< @ are arbitrary arcs. By the Homeomorphism Extension The-
orem [1] there is no loss of generality to assume that no point of o and B has its first
coordinate smaller than 2y or larger than 1—2y, for some y>0.

In order to apply isotopies from Section 2 we must show that shrinking arcs
“on the ends of Px Q” gives a Hilbert cube.

Letf”: Px 0—X" be the quotient map of P x Q onto the decomposition space X’
of the upper semicontinuous decomposition whose only non-degenerate elements are
arcs ax {(0, )}, ax{(1, P}, {(0, 5} x f, and {1, )} x B, where ge 0, and se P,

LemMa 3.1. The space X' is homeomorphic with Q. )

Proof. Clearly, the union, of all non-degenerate point inverscs of f'is a Z-set
in Px Q. It follows easily from West’s theorem [13] that X" is homeomorphic to Q
provided X" is an AR. To establish this later property for X" we need . H. C. White-
head’s theorem (see Theorem (9.1) on p. 116 in [4]) in order to get X" is an ANR, the
fact that onto maps between ANR’s with point inverses of trivial shape are homo-
topy -equivalences [11], and that a contractible ANR is an AR. M

We claim that ax § is a Z-set in Px Q. This follows from the more general
Lemma 3.2.

LeMMA 3.2. Let 4, B< Q be finite dimensional closed subsets of Q. Then Ax B
is a Z-set in Q% Q.

Proof. Asin [9] by an open cube in ©Q we mean a basis element of the product
topology, i.e., a product of relatively open subintervals of [0, 1] such that only
finitely many (maybe none) are different from the whole interval.

Take two open cubes UcP and Ve Q. Then UxV—AXRB = U—~HxVu
U UX(V~B) and (U-A)x V n Ux (V—B) = (U~4)x(V—B) is arcwise con-
nected. Consequently, by the trivial part of van Kampen’s theorem, the fundamental
group of Ux V'~ A x B is generated by loops contained in (U=A)x Vor Ux(V—-B).
Since both inclusions (U—A)x V5Ux V—d x B and UxX(V—B)—»Ux V~Ax B
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are homlotopic to a constant map, we infer that Ux V—Ax B is 1-copnected. Thl:xs
PxQ—AxB is 1-ULC in the sense of Kroonenberg and AxB is a Z-set in
PxQ 9] W L . , ‘ 1

Let X be a space obtained from X* by shrinking f"(cx f) to a point and let
f: Px Q—X be a natural projection. As a consequence of Lemmas 3.1 and 3.2,
X=0. o
The rest of the proof is very similar to [10]. o
The product P/ax Q/p is obtained from X by shrinking each .of the arcs
Flaxy),f(xxp), wherexe P—o,ye Q—f and x,,y; #0orl,toa pomt..We shall
show that such shrinking may be achieved by a pseudo-isotopy of X. Then it follows
that Plax Q[f = X = Q. N
In/ order to apply the method of Section 2, we need to separate these atcs
Flaxy), f(xxp) into two groups. Let X, = flex(Q—p)) and X, = ((P—a) x f).
We wish to find two convenient disjoint open sets U, and U, o.f X suc.h that X Uy
and X, U,. Then we will shrink arcs in X; without disturbing points outside U;
i=1,2).
( Consider the relation Pjax] & P. Let. Tj>T3>... be a sequence 2of clzoscd
neighborhoods of « in P missing {0, 1} x P, constructed in Section 2. Let Ty oT; 2.
be a similar sequence corresponding to Q/BxI = O x L
Let ) ' '
U, = Us(Gntthx(@—-19) 4
U, = Uf(P-THx(ntT?)).

Next we show that there is a ‘pseudo-isotopy Hoof X which. is the ider}fcity
outside U, and shrinks the arcs in Xj. This, combined with an analogous psel‘ldo-f
isotopy shrinking the ares in X,, will com'plefe? the prqof. o

As in Lemma 2.1, the following lemma provides us with.the desired pseuqo-
isotopy. : SR e . o

LevMa 3.3. For given positive real numbers 1>0, 0O<e<l and an integer Ng,
there exist integers iq = iy(Ny), N>No and an isotopy Aes 0521, of X such that

(D) A =id, ‘

(2) each A, is the identity outside [ ([T,},x(Q—T,?,)] AP x[Le, 1—%e]]x Qs),

(3) A, does not. affect coordinates in Qs and . :

(e f 1 (A())—= (f )| < n.for every x € X, where m is a projection of PxQ
onto Jy, and ‘ ‘ .

(4) diaml, o f (Tyx )<y for all ye Q. . ‘ ‘

Proof. Let i; be an integer such that diam f (T, xiTi,) <2;11 Lt?t i, be an 113tege;
with the property that any arc f(xx ) meeting F (T x T;) lies in the interior o

Ty X T5)- e
7 1Lct Z = n(f,+n) (see Definition, 2.2) and. let ig>Max(i,, No) be an integer
such that T3 lies in a }4-neighborhood of o in P. : Ce e
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Devide Q, into finitely many “rectangular” Hilbert cubes X, ..., K, each of
diameter <14.

Let u, be the isotopy of PxJ, from Lemma 2.1 as constructed in Lemma 2.8
with iy, -4, e replacing i, 7, & respectively. Let IV be the integer determined by
Lemma 2.1.

Let, for each i =0, ..., 5—1, R, = T x [ah, alt], where points abeJ, are
picked as in the proof of Lemma 2.8 with k =i, and n = %£4. Also, put
R_; = TEx[0,4e] and R, = T x[l—%e¢, 1]. Now,

8

Ry = TipxJy,
21

i=
and
T,})XQ = U R;x K.
4

‘We are ready to define 4,. 4, is the identity on
F(P-T)x QU Px([0,%e] U [1-%e, 1) x Q). -

. On f(TLx[be, 1—%e]x Q,) we define 1, on each piece f(R;x Q,) (0<i<s—1)
separately in such a way that 1| f((BAR) x Q,) = id, where Bd R is the boundary
of R, in PxJ,. Then all this A’s will match together nicely.

The construction of 4, on each f(R;x @,) and the verification that the isotopy
of X obtained in this way is the required one is the same as in [10] W

Now, the pseudo-isotopy 4, that performs promissed shrinking of arcs in X is
constructed in a way analogous to the construction of a pseudo-isotopy f, in the proof
of Lemma 2.1. This completes the proof of Theorem 2. :

Remark 3.4, Extensions of Theorem 2 similar to Theorem 2.10 and Cor-
ollary 2.11 can also be proved with only minor changes in the above procedures
(sce Remark 2.9).
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