H. Toruńczyk

- 110
- [25] E. Michael, Local properties of topological spaces, Duke Math. J. 21 (1954), pp. 163-171.
- 26] Convex structures and continuous selections, Canadian J. Math. 11 (1959), pp. 556-575.
- [27] T. Price, On decompositions and homotopy groups, Notices Amer. Math. Soc. 14 (1967), p. 274.
- [28] R. M. Schori, Topological stability of infinite dimensional manifolds, Compositio Math. 23 (1971), pp. 87-100.
- [29] S. Smale, A Vietoris mapping theorem for homotopy, Proc. Amer. Math. Soc. 8 (1957), pp. 604-610.
- [30] H. Toruńczyk, (G, K)-absorbing and skeletonized sets in metric spaces, to appear in Dissertationes Math.
- [31] Absolute neighbourhood retracts as factors of normed linear spaces, Fund. Math. 86 (1974), pp. 75-84.
- [32] On cartesian factors and the topological classification of linear metric spaces, Fund. Math. 88 (1975), pp. 71-86.
- [33] J. E. West, The subcontinua of a dendron form a Hilbert cube factor, Proc. Amer. Math. Soc. 36 (1972), pp. 603-608.
- [34] M. Wojdysławski, Retractes absolus et hyperespaces des continus, Fund. Math. 32 (1939), pp. 184-192.

Accepté par la Rédaction le 25, 11, 1974

2*

Hilbert cube modulo an arc

b

Zvonko Čerin (Baton Rouge, La.)

Abstract. Let Q denote the Hilbert cube and let α , $\beta \subseteq Q$ be arcs. Adapting methods of Bing–Andrews–Curtis–Kwun–Bryant we prove that $Q/\alpha \times I$ and $Q/\alpha \times Q/\beta$ are homeomorphic with Q, where I is a closed interval and Q/α is a space obtained from Q by shrinking α to a point. The same method applies equally well to the case when arcs are replaced with finite-dimensional cells or their intersections.

1. Introduction. We use Q to represent the Hilbert cube (the countable-infinite product of closed intervals). A closed subset $X \subset Q$ is called a Z-set if for any nonempty homotopically trivial open set $U \subset Q$, U - X is also non-empty and homotopically trivial. This concept was introduced by R. D. Anderson in [1] and in the infinite-dimensional topology plays a role analogous to a role of tameness conditions in the finite-dimensional topology. Chapman [7] showed that a Z-set $X \subset Q$ has a trivial shape if and only if the space Q/X, obtained from Q by shrinking X to a point, is homeomorphic to Q (in notation, $Q/X \cong Q$). If X is of a trivial shape but not a Z-set, then Q/X may fail to be locally like Q at the point $\widetilde{X} = p(X)$, where $p \colon Q \to Q/X$ is a natural projection. Indeed, Wong [14] constructed a copy of the Cantor set with non-simply connected complement in Q. By a standard technique we can pass an arc α through it such that $Q - \alpha$ is also not simply connected. If Q/α were locally Q at the point $\widetilde{\alpha}$, then Q/α being a contractible Q-manifold would be homeomorphic to Q [8]. But in Q the complement of every point is simply connected.

The problem SC 1 in [2] asks (in analogy with a similar result for Euclidean spaces established earlier by Andrews and Curtis [3]) whether for any arc $\alpha \subset Q$ multiplying Q/α by the unit interval I = [0, 1] gives the Hilbert cube. In Section 2 of this note we will present a detailed proof, adapting techniques from [3] to the Hilbert cube case, of the following theorem that confirmes this conjecture.

THEOREM 1. For any arc $\alpha \subset Q$, $(Q/\alpha) \times I$ is homeomorphic with Q.

Next, in Section 3, we first prove that $A \times B$ is a Z-set in $Q \times Q$ whenever A and B are finite-dimensional closed subsets of Q and then, following Kwun's method [10], establish

THEOREM 2. Let α , $\beta \subset Q$ be arbitrary arcs. Then $(Q/\alpha) \times (Q/\beta)$ is homeomorphic with Q.

Finally, the procedures in the proofs of both theorems can be easily extended, as was suggested in [5], to the case of shrinking a finite-dimensional cell in Q and, even further, intersections of such cells in Q (see Corollary 2.11 for precise statement).

Remark. Both Bryant and Chapman claimed proofs of Theorem 1 essentially along the lines presented here.

- 2. Proof of Theorem 1. Since $\alpha \times 0$ and $\alpha \times 1$ are Z-sets of trivial shape in $Q \times I$, there is a map $F: Q \times I \to Q \times I$ of $Q \times I$ onto itself such that $F(\alpha \times 0)$ and $F(\alpha \times 1)$ are distinct points of $Q \times I$ while $F|(Q \times I) (\alpha \times 0 \cup \alpha \times 1)$ is a homeomorphism onto $Q \times I F(\alpha \times 0 \cup \alpha \times 1)$. Pick, inductively, a sequence $\varepsilon_1, \varepsilon_2, \ldots$ of positive real numbers satisfying:
 - (γ) $3\varepsilon_i < \frac{1}{2}(\varepsilon_{i-1}) < 1$, and
- ($\gamma\gamma$) if $x\in N_{\varepsilon_i}(\alpha)\times I$ has I-coordinate less than $3\varepsilon_i$ or bigger than $1-3\varepsilon_i$ then F(x) is within ε_{i-1} of either $p=F(\alpha\times 0)$ or $q=F(\alpha\times 1)$, respectively, for each i>0.

Here, for any $\varepsilon > 0$, $N_{\varepsilon}(\alpha)$ denotes a closed ε -neighborhood of α in Q relative a fixed metric d on Q and $Q \times I$ is given the product metric.

LEMMA 2.1. Let $\alpha = \bigcap_{i>0} T_i$, where each $T_i \subset N_{e_i}(\alpha)$ is a closed neighborhood of α in Q and $T_{i+1} \subset T_i$. Suppose that for each positive integer i and numbers $\eta > 0$ and $0 < \varepsilon < 1$ there is an integer N and an isotopy $\mu_t(0 \le t \le 1)$ of $Q \times I$ onto itself such that

- (a) $\mu_0 = id$ (identity),
- (b) $\mu_t \mid Q \times I T_i \times \left[\frac{1}{2}\varepsilon, 1 \frac{1}{2}\varepsilon\right] = id$,
- (c) μ_t changes I-coordinate less than η , and
- (d) $\operatorname{diam} \mu_1(T_N \times w) < \eta$ for all $w \in [\varepsilon, 1-\varepsilon]$. Then $(Q/\alpha) \times I \cong Q$.

Proof. The proof of this lemma is very similar to the proof of Theorem 1 in [3] and whenever details are omitted they can be found in [3] or [12].

We will prove that the quotient $(Q \times I)/G$, where G is the upper semicontinuous decomposition of $Q \times I$ with only nondegenerate elements sets $F(\alpha \times t)$, 0 < t < 1, is homeomorphic to $Q \times I$ by constructing a pseudo-isotopy $f_t \colon Q \times I \to Q \times I$ such that $f_0 = \operatorname{id}$ and f_1 takes each element of G into a distinct point of $Q \times I$. The pseudo-isotopy f_t will be, for $0 \le t < 1$, the obvious extension of $F \circ h_t \circ F^{-1} \mid Q \times I - \{p, q\}$, where $h_t \colon Q \times I \to Q \times I$ keeps $\alpha \times 0$ and $\alpha \times 1$ fixed at any time. Even though limit is discontinuous, $f_1 = \lim_{t \to 1} f_t$ will make a required shrinking of elements of G.

We will define a monotone increasing sequence $n_1=1,n_2,n_3,\dots$ and a sequence of isotopies h_t^i $((i-1)/i \le t \le i/(i+1))$ of $Q \times I$ onto itself such that

- (1) $h_0^1 = id$,
- (2) $h_{i/(i+1)}^i = h_{i/(i-1)}^{i+1}$,
- (3) $h_{(i-1)/i}^{i-1} \mid Q \times I T_{n_i} \times [\frac{1}{2}\varepsilon_i, 1 \frac{1}{2}\varepsilon_i] = h_t^i \mid Q \times I T_{n_i} \times [\frac{1}{2}\varepsilon_i, 1 \frac{1}{2}\varepsilon_i]$

- (4) diam $h_{i/(i+1)}^i(T_{n+1}, \times w) < \eta(F, \varepsilon_i)$ for all $w \in [\varepsilon_i, 1-\varepsilon_i]$,
- (5) no point moves more than $2\varepsilon_{i-2}$ during $f_i = F \circ h_i^i \circ F^{-1}$,
- (6) $h_{i/(i+1)}^i(Q \times w) \subset h_{(i-1)/i}^i(Q \times [w \varepsilon_i, w + \varepsilon_i])$ for every $w \in I$, and
- (7) the *I*-coordinate of $h_{i/(i+1)}^i(x, w)$ is $\leq 3\varepsilon_i$ or $\geq 1-3\varepsilon_i$ whenever $w \leq 2\varepsilon_i$ or $w \geq 1-2\varepsilon_i$, respectively.

The number $\eta(F, \varepsilon_i)$ in (4) is determined according to the following definition. DEFINITION 2.2. Let $f: X \to Y$ be a map between compact metric spaces and $\varepsilon > 0$ a given number. Define $\eta(f, \varepsilon)$ to be

$$\sup \{\eta > 0 | d(x, x') < \eta \text{ in } X \text{ implies } d(f(x), f(x')) < \varepsilon \text{ in } Y \}.$$

The existence of h^1_t $(0\leqslant t\leqslant \frac{1}{2})$ follows from the assumptions in the lemma. We proceed, inductively, to define h^i_t and n_{i+1} . By (4), the uniform continuity of $h^{i-1}_{(i-1)/i}$ and the relation $2\varepsilon_{i-2}>\varepsilon_{i-1}$, there is $\gamma>0$ with the property: $\dim h^{i-1}_{(i-1)/i}(T_{n_i}\times [a,b])<\eta(F,2\varepsilon_{i-2})$ whenever $a,b\in [\varepsilon_{i-1},1-\varepsilon_{i-1}]$ satisfy $|a-b|<\gamma$. Also, there is an isotopy μ_t $((i-1)/i\leqslant t\leqslant i/(i+1))$ of $Q\times I$ and an integer $n_{i+1}>n_i$ such that

- (i) $\mu_{(i-1)/i} = id$,
- (ii) $\mu_t \mid Q \times I T_{n_t} \times \left[\frac{1}{2}\varepsilon_t, 1 \frac{1}{2}\varepsilon_t\right] = \mathrm{id},$
- (iii) μ_t changes I-coordinate less than Min (γ, ε_i) , and
- (iv) diam $\mu_{i/(i+1)}(T_{n_{i+1}} \times w) < \eta(h_{(i-1)/i}^{i-1}, \eta(F, \varepsilon_i))$ for $w \in [\varepsilon_i, 1-\varepsilon_i]$.

Now, define $h_t^i = h_{(i-1)/i}^{i-1} \circ \mu_t$. Then (1) and (2) are clearly satisfied, (3) follows from (ii), (4) from (iv), and (5) holds because if for $x \in F(T_{n_t} \times I) - \{p, q\}$ *I*-coordinates of both $F^{-1}(x)$ and $\mu_t \circ F^{-1}(x)$ are in $[\varepsilon_{i-1}, 1-\varepsilon_{i-1}]$ then, since they are by (iii) at most γ apart, the way γ was choosen gives

$$d(F \circ h_{(i-1)/i}^{i-1} \circ F^{-1}(x), F \circ h_{(i-1)/i}^{i-1} \circ \mu_t \circ F^{-1}(x)) < 2\varepsilon_{i-2}$$

and, on the other hand, if I-coordinate of at least one of points $F^{-1}(x)$ and $\mu_t \circ F^{-1}(x)$ is in, say, $[0, \varepsilon_{i-1}]$ then by (iii) both are in $[0, \varepsilon_{i-1} + \varepsilon_i] \subset [0, 2\varepsilon_{i-1}]$ so that condition (7) for $h^{i-1}_{(i-1)/i}$ implies that I-coordinates of $h^{i-1}_{(i-1)/i} \circ F^{-1}(x)$ and $h^{i-1}_{(i-1)/i} \circ \mu_i \circ F^{-1}(x)$ are in $[0, 3\varepsilon_{i-1}]$; the requirement ($\gamma\gamma$) forces $F \circ h^{i-1}_{(i-1)/i} \circ \mu_i \circ F^{-1}(x)$ and $F \circ h^{i-1}_{(i-1)/i} \circ F^{-1}(x)$ to be within ε_{i-2} of p, i.e., at most $2\varepsilon_{i-2}$ apart. Finally, (6) is a consequence of (iii), and (7) follows from the fact that $h^{i-1}_{(i-1)/i}$ is the identity outside $Q \times [\frac{1}{2}\varepsilon_{i-1}, 1 - \frac{1}{2}\varepsilon_{i-1}] \subset Q \times [3\varepsilon_i, 1 - 3\varepsilon_i]$ and (iii) since given $(x, w) \in Q \times I$ with, say, $w \in [0, 2\varepsilon_i]$ then,

$$h_{i(i+1)}^{i}(x, w) = h_{(i-1)/i}^{i-1}(\mu_{i/(i+1)}(x, w)) = \mu_{i/(i+1)}(x, w) \in Q \times [0, 3\varepsilon_i]$$
.

To complete the proof of Theorem 1 it remains to construct isotopies μ_t from the hypothesis in Lemma 2.1.

Consider Q as a countable infinite product $\prod_{i>0} J_i$, where $J_i = [-1,1]$ for each i>0. Since $\alpha \times \frac{1}{2}$ is a Z-set in $Q \times I$ [7, Corollary 2.4] by the homeomorphism

extension theorem of [1], there is a homeomorphism $\varphi: Q \times I \rightarrow Q \times I$ such that

$$\varphi(\{0\} \times [\frac{1}{4}, \frac{3}{4}]) = \alpha \times \frac{1}{2},$$

$$\varphi(\{-1\} \times \prod_{i>1} J_i \times I) = Q \times 0$$

and

$$\varphi(\{1\} \times \prod_{i>1} J_i \times I) = Q \times 1.$$

Let V_i denote a closed neighborhood

$$[-1/j, 1/j]^j \times \prod_{i>j} J_i$$
 of $0 = (0, 0, ...) \in Q$

and let

$$P_j = V_j \times [\frac{1}{4} - (1/2j), \frac{3}{4} + (1/2j)]$$

for each j>3. We can represent P_j as the union of Hilbert cubes $P_j^1, P_j^2, \dots, P_j^{j-1}$ where each P_j^k is a product of V_j with a subinterval of $[\frac{1}{4}-(1/2j),\frac{3}{4}+(1/2j)]$ of lenght (j+2)/2j(j-1). Define $Q_j^k=\varphi(P_j^k), Q_j=\varphi(P_j), R_j=Q_j\cap(Q\times\frac{1}{2})$, and $R_j^k=Q_j^k\cap(Q\times\frac{1}{2})$. As in [3, p. 2] we can choose a subsequence $\{P_i\}$ of $\{P_j\}$ such that

- (i) diam $Q_i^k < \min(1/i, \eta(\varphi, \varepsilon_i))$.
- (ii) For each i and each k, there is an s such that

$$Q_{i+1}^k \subset (R_i^s \cup R_i^{s+1}) \times I$$
,

(iii) For each i and each s, there is a k such that

$$Q_{i+1}^k \subset R_i^s \times I$$
,

and if $m \leq k$ then,

$$Q_{i+1}^m \subset (R_i^1 \cup R_i^2 \cup ... \cup R_i^s) \times I$$
.

Let $T_i = R_{2i}$. Then $\{T_i\}$ will be the sequence of neighborhoods of α for which we will construct isotopies required by Lemma 2.1.

LEMMA 2.3. Given a positive integer k and real numbers $\varepsilon > 0$ and 0 < a < b < 1, there exists a Hilbert cube E such that

$$T_{k+1} \times [a, b] \subset \operatorname{int} E \subset E \subset T_k \times [a-\varepsilon, b+\varepsilon]$$

Proof. The proof of this lemma is identical with the proof of Theorem 2 in [3]. Last two conditions on φ guarantee that $\varphi_1(P_{2k+1})$ does not have points with *I*-coordinates 0, 1 so that the homeomorphism analogous to φ_2 in [3] can be constructed.

COROLLARY 2.4. Given T_k , any integer m>2, and a sequence of real numbers $0< a_1< a_2< ... < a_{m-2}< b_{m-2}< ... < b_2< 1$, there is a sequence E_1 , E_2 , ..., E_{m-2} of Hilbert cubes such that

$$T_k \times [a_1, b_1] \supset E_1 \supset T_{k+1} \times [a_2, b_2] \supset \dots \supset E_{m-2} \supset T_{k+m-2} \times [a_{m-2}, b_{m-2}]$$

Remark 2.5. The note on p. 4 of [3] also holds in our situation,

For any set $\pi = \{0 < a_0 < a_1 < ... < a_{m-3} < b_{m-3} < ... < b_0 < 1\}$ of real numbers put $L^{\pi}_i = [a_i, a_{i+1}] \cup [b_{i+1}, b_i], \ 0 \le i \le m-4, \ \text{and} \ L^{\pi}_{m-3} = [a_{m-3}, b_{m-3}].$ Also, $J^{\pi}_i = [a_i, b_i], \ 0 \le i \le m-3.$

LEMMA 2.6. Let $\{T_i\}$ be a sequence of neighborhoods of α constructed above, and let $T_k \in \{T_i\}$, with $C_1, ..., C_m$ being the chain of R_{2k}^p 's in T_k . Then there is an isotopy μ_t on $Q \times I$ starting with the identity and ending with a homeomorphism h of $Q \times I$ onto itself such that

and

$$\begin{split} h(\{T_k \cap (C_1 \cup C_2)\} \times L_0^{\pi}) &\subset (C_1 \cup C_2) \times J_0^{\pi} \,, \\ h(\{T_{k+1} \cap (C_1 \cup C_2 \cup C_3)\} \times L_1^{\pi}) &\subset (C_2 \cup C_3) \times J_0^{\pi} \,, \\ & \dots \\ h(\{T_{k+m-3} \cap (C_1 \cup \dots \cup C_{m-1})\} \times L_{m-3}^{\pi}) &\subset (C_{m-2} \cup C_{m-1}) \times J_0^{\pi} \,. \end{split}$$

Proof. Once again, the proof is almost identical with the proof of Theorem 3 in [3] except that the role of Lemma 2 there in our situation plays

LEMMA 2.7. Let r be an arbitrary positive integer, $A = I^r \times Q \times I$, and $A_2 = I^r \times Q \times [\frac{1}{2}, 1]$. Let $B \subset (\operatorname{int} I^r) \times Q \times (\operatorname{int} I) \cup I^r \times Q \times 1$ be a closed subset. Then there is an isotopy $\gamma \colon A \times I \to A$ such that γ_0 is the identity, $\gamma_t \mid (\operatorname{Bd} I^r \times Q \times I \cup I^r \times Q \times \{0, 1\})$ is the identity, and $\gamma_1(B) \subset A_2$.

Proof. The isotopy γ_t $(t \in I)$ can be realized as $\mathrm{id}_Q \times \Delta_t$, where Δ_t is an isotopy on $I^r \times I$ constructed using Lemma 2 in [3] such that $\Delta_0 = \mathrm{id}$, Δ_t fixes boundary points of $I^r \times I$ for every t, and $\Delta_1(\pi(B)) \subset I^r \times [\frac{1}{2}, 1]$, where $\pi(B)$ is a projection of B onto the factor $I^r \times I$.

LEMMA 2.8. Let $T_k \in \{T_i\}$, $\eta > 0$, and $0 < \varepsilon < 1$ be given. Then there is an integer N and a homeomorphism $\varphi \colon Q \times I \to Q \times I$ such that

- (1) $\varphi \mid Q \times I T_k \times [\frac{1}{2}\varepsilon, 1 \frac{1}{2}\varepsilon] = id$,
- (2) φ changes I-coordinate less than η , and
- (3) diam $\varphi(T_N \times w) < \eta$ for all $w \in [\varepsilon, 1-\varepsilon]$.

Proof. Choose $N' \geqslant k$ so large that $\operatorname{diam} R_{2N'}^p < \frac{1}{16} \eta \sqrt{2}$. Then $T_{N'}$ has m = 2N' - 1 chambers $C_1 = R_{2N'}^1$, ..., $C_m = R_{2N'}^m$. Pick s(m-2) points $a_0^i < \ldots < a_{m-3}^i$ ($1 \le i \le s$) in I such that $a_0^1 = \frac{1}{2}\varepsilon$, $a_{m-3}^s = 1 - \frac{1}{2}\varepsilon$, $a_{m-3}^1 < \varepsilon$, $a_0^s > 1 - \varepsilon$, $a_{m-3}^i < a_0^{i+1}$ for every $i = 0, \ldots, s-1$, and a distance between any two consecutive a_i^i 's is less than $\eta \sqrt{2}/8(2m-5)$. Put N = N' + m - 3. A homeomorphism φ is the union of homeomorphisms h_1, \ldots, h_{s-1} where h_i is a homeomorphism given by Lemma 2.6 with $\pi = \{a_0^i, \ldots, a_{m-3}^i, a_0^{i+1}, \ldots, a_{m-3}^{i+1}\}$ for every $i = 1, \ldots, s-1$, and for i odd pushing is done toward C_m while for i even toward C_1 .

It is clear that above φ can be obtained as the end of an isotopy satisfying assumptions of Lemma 2.1. This completes the proof of Theorem 1.

Remark 2.9. Without any additional effort adapting a technique in [5], for the case when the considered k-cell is flat (i.e., the case I in [5]), word by word in a way explained above for an arc, we can get

THEOREM 2.10. Let β : $I^k \rightarrow Q$ be an embedding of the k-cell $(k \ge 0)$ I^k into the Hilbert cube Q. Then $[Q/\beta(I^k)] \times I$ is homeomorphic with Q.

COROLLARY 2.11. Let $A \subset Q$ be a decreasing intersection of finite-dimensional topological cells (of possibly varying dimensions). Then $(Q/A) \times I$ and Q are homeomorphic.

Proof. This follows immediately from the corollaries in [6].

3. Proof of Theorem 2. Throughout this section $P = \prod_{i>0} I_i$, $P_2 = \prod_{i>1} I_i$, $Q = \prod_{i>0} J_i$, and $Q_2 = \prod_{i>1} J_i$, where $I_i = J_i = [0, 1]$ for each i, are Hilbert cubes and $\alpha \subset P$ and $\beta \subset Q$ are arbitrary arcs. By the Homeomorphism Extension Theorem [1] there is no loss of generality to assume that no point of α and β has its first coordinate smaller than 2γ or larger than $1-2\gamma$, for some $\gamma > 0$.

In order to apply isotopies from Section 2 we must show that shrinking arcs "on the ends of $P \times Q$ " gives a Hilbert cube.

Let $f': P \times Q \rightarrow X'$ be the quotient map of $P \times Q$ onto the decomposition space X' of the upper semicontinuous decomposition whose only non-degenerate elements are arcs $\alpha \times \{(0, q)\}, \ \alpha \times \{(1, q)\}, \ \{(0, s)\} \times \beta, \ \text{and} \ \{(1, s)\} \times \beta, \ \text{where} \ q \in Q_2 \ \text{and} \ s \in P_2.$

LEMMA 3.1. The space X' is homeomorphic with Q.

Proof. Clearly, the union of all non-degenerate point inverses of f' is a Z-set in $P \times Q$. It follows easily from West's theorem [13] that X' is homeomorphic to Q provided X' is an AR. To establish this later property for X' we need J. H. C. Whitehead's theorem (see Theorem (9.1) on p. 116 in [4]) in order to get X' is an ANR, the fact that onto maps between ANR's with point inverses of trivial shape are homotopy equivalences [11], and that a contractible ANR is an AR.

We claim that $\alpha \times \beta$ is a Z-set in $P \times Q$. This follows from the more general Lemma 3.2.

LEMMA 3.2. Let A, $B \subset Q$ be finite dimensional closed subsets of Q. Then $A \times B$ is a Z-set in $Q \times Q$.

Proof. As in [9] by an open cube in Q we mean a basis element of the product topology, i.e., a product of relatively open subintervals of [0,1] such that only finitely many (maybe none) are different from the whole interval.

Take two open cubes $U \subset P$ and $V \subset Q$. Then $U \times V - A \times B = (U - A) \times V \cup U \times (V - B)$ and $(U - A) \times V \cap U \times (V - B) = (U - A) \times (V - B)$ is arcwise connected. Consequently, by the trivial part of van Kampen's theorem, the fundamental group of $U \times V - A \times B$ is generated by loops contained in $(U - A) \times V$ or $U \times (V - B)$. Since both inclusions $(U - A) \times V \rightarrow U \times V - A \times B$ and $U \times (V - B) \rightarrow U \times V - A \times B$

are homotopic to a constant map, we infer that $U \times V - A \times B$ is 1-connected. Thus $P \times Q - A \times B$ is 1- \overline{ULC} in the sense of Kroonenberg and $A \times B$ is a Z-set in $P \times Q$ [9].

Let X be a space obtained from X' by shrinking $f'(\alpha \times \beta)$ to a point and let $f: P \times Q \rightarrow X$ be a natural projection. As a consequence of Lemmas 3.1 and 3.2, $X \cong Q$.

The rest of the proof is very similar to [10].

The product $P/\alpha \times Q/\beta$ is obtained from X by shrinking each of the arcs $f(\alpha \times y)$, $f(x \times \beta)$, where $x \in P-\alpha$, $y \in Q-\beta$ and $x_1, y_1 \neq 0$ or 1, to a point. We shall show that such shrinking may be achieved by a pseudo-isotopy of X. Then it follows that $P/\alpha \times Q/\beta \cong X \cong Q$.

In order to apply the method of Section 2, we need to separate these arcs $f(\alpha \times y)$, $f(x \times \beta)$ into two groups. Let $X_1 = f(\alpha \times (Q - \beta))$ and $X_2 = ((P - \alpha) \times \beta)$. We wish to find two convenient disjoint open sets U_1 and U_2 of X such that $X_1 \subset U_1$ and $X_2 \subset U_2$. Then we will shrink arcs in X_i without disturbing points outside U_i (i = 1, 2).

Consider the relation $P/\alpha \times I \cong P$. Let $T_1^1 \supset T_2^1 \supset ...$ be a sequence of closed neighborhoods of α in P missing $\{0,1\} \times P_2$ constructed in Section 2. Let $T_1^2 \supset T_2^2 \supset ...$ be a similar sequence corresponding to $Q/\beta \times I \cong Q \times I$.

Let

$$U_1 = \bigcup f((\operatorname{int} T_i^1) \times (Q - T_i^2)),$$

$$U_2 = \bigcup f((P - T_i^1) \times (\operatorname{int} T_i^2)).$$

Next we show that there is a pseudo-isotopy h_t of X which is the identity outside U_1 and shrinks the arcs in X_1 . This, combined with an analogous pseudo-isotopy shrinking the arcs in X_2 , will complete the proof.

As in Lemma 2.1, the following lemma provides us with the desired pseudo-isotopy.

LEMMA 3.3. For given positive real numbers $\eta>0$, $0<\varepsilon<1$ and an integer N_0 , there exist integers $i_0=i_0(N_0)$, $N>N_0$ and an isotopy λ_t , $0\leqslant t\leqslant 1$, of X such that

- (1) $\lambda_0 = id$,
- (2) each λ_t is the identity outside $f([T_{i_0}^1 \times (Q T_{i_0}^2)] \cap [P \times [\frac{1}{2}\varepsilon, 1 \frac{1}{2}\varepsilon]] \times Q_2)$,
- (3) λ_t does not affect coordinates in Q_2 , and

 $|\pi(f^{-1}(\lambda_t(x))) - \pi(f^{-1}(x))| < \eta$ for every $x \in X$, where π is a projection of $P \times Q$ onto J_1 , and

(4) diam $\lambda_1 \circ f(T_N \times y) < \eta$ for all $y \in Q$.

Proof. Let i_1 be an integer such that diam $f(T_{i_1}^1 \times T_{i_1}^2) < \frac{1}{6}\eta$. Let i_2 be an integer with the property that any arc $f(\alpha \times y)$ meeting $f(T_{i_2}^1 \times T_{i_2}^2)$ lies in the interior of $f(T_{i_1}^1 \times T_{i_2}^2)$.

Let $\Delta = \eta(f, \frac{1}{6}\eta)$ (see Definition 2.2) and let $i_0 > \text{Max}(i_2, N_0)$ be an integer such that $T_{i_0}^1$ lies in a $\frac{1}{3}\Delta$ -neighborhood of α in P.

Devide Q_2 into finitely many "rectangular" Hilbert cubes K_1, \ldots, K_m each of diameter $< \frac{1}{2}A$.

Let μ_t be the isotopy of $P \times J_1$ from Lemma 2.1 as constructed in Lemma 2.8 with i_0 , $\frac{1}{6}A$, ϵ replacing i, η , ϵ , respectively. Let N be the integer determined by Lemma 2.1.

Let, for each $i=0,\ldots,s-1$, $R_i=T^1_{i_0}\times[a^i_0,a^{i+1}_{m-3}]$, where points $a^i_j\in J_1$ are picked as in the proof of Lemma 2.8 with $k=i_0$ and $\eta=\frac{1}{6}\Delta$. Also, put $R_{-1}=T^1_{i_0}\times[0,\frac{1}{2}\varepsilon]$ and $R_s=T^1_{i_0}\times[1-\frac{1}{2}\varepsilon,1]$. Now,

$$\bigcup_{i=-1}^{s} R_i = T_{i_0}^1 \times J_1,$$

and

$$T_{i_0}^1 \times Q = \bigcup_{i,j} R_i \times K_j.$$

We are ready to define λ_t . λ_t is the identity on

$$f((P-T_{i_0}^1)\times Q\cup P\times([0,\frac{1}{2}\varepsilon]\cup [1-\frac{1}{2}\varepsilon,1])\times Q_2)$$
.

On $f(T_{i_0}^1 \times [\frac{1}{2}\varepsilon, 1 - \frac{1}{2}\varepsilon] \times Q_2)$ we define λ_i on each piece $f(R_i \times Q_2)$ $(0 \le i \le s - 1)$ separately in such a way that $\lambda_i | f((\operatorname{Bd} R_i) \times Q_2) = \operatorname{id}$, where $\operatorname{Bd} R_i$ is the boundary of R_i in $P \times J_1$. Then all this λ_i 's will match together nicely.

The construction of λ_t on each $f(R_1 \times Q_2)$ and the verification that the isotopy of X obtained in this way is the required one is the same as in [10]

Now, the pseudo-isotopy h_i that performs promissed shrinking of arcs in X_1 is constructed in a way analogous to the construction of a pseudo-isotopy f_i in the proof of Lemma 2.1. This completes the proof of Theorem 2.

Remark 3.4. Extensions of Theorem 2 similar to Theorem 2.10 and Corollary 2.11 can also be proved with only minor changes in the above procedures (see Remark 2.9).

References

- [1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), pp. 365-383.
- [2] and N. S. Kroonenberg, Open problems in infinite-dimensional topology, preprint.
- [3] J. J. Andrews and M. L. Curtis, n-space modulo an arc, Annals of Math. 75 (2) (1962), pp. 1-7.
- [4] K. Borsuk, Theory of Retracts, PWN, Warszawa 1967.
- [5] J. L. Bryant, Euclidean space modulo a cell, Fund. Math. 63 (1968), pp. 43-51.
- [6] Z. T. Čerin, On cell-like approximations of manifolds, preprint.
- [7] T. A. Chapman, On some applications of infinite-dimensional manifolds to the theory of shape, Fund. Math. 76 (1972), pp. 181-193.
- [8] On the structure of Hilbert cube manifolds, Compositio Math. 24 (1972), pp. 329-353.
- [9] N. S. Kroonenberg, Characterization of finite-dimensional Z-sets, to appear in Proc. Amer. Math. Soc.

[11] R. C. Lacher, Cell-like mappings I, Pacific J. Math. 30 (1969), pp. 717-731.

[12] T. B. Rushing, Topological Embeddings, Academic Press, New York-London 1973.

[13] J. E. West, Mapping Hilbert cube manifolds to ANR's, preprint.

[14] R. Y. T. Wong, A wild Cantor set in the Hilbert cube, Pacific J. Math 24 (1968), pp. 189-193.

LOUISIANA STATE UNIVERSITY, Baton Rouge, La. UNIVERSITY OF ZAGREB, Yugoslayia

Accepté par la Rédaction le 22. 4. 1976