

Stronger topologies preserving the class of continuous functions

by

Helena Nonas (Łódź)

Abstract. The work includes the detailed discussion of the conditions concerning two topological spaces (X, T), (X, T_0) , $T_0 \subset T$, under which the following equivalence holds: the class of real functions continuous with respect to T is equal to the class of real functions continuous with respect to T_0 if and only if every real function continuous with respect to T is a bounded function.

The sufficient condition for this equivalence is pseudo-compactness of (X, T_0) and the fact that every one-point set is a G_b -set in (X, T_0) .

The necessary condition is an impossibility of representation of (X, T_0) in the form of the sum of two disjoint non-empty sets X_1 , X_2 such that $X_1 \notin T_0$ and subspaces $(X_1, T_0 \mid X_1)$ and $(X_2, T_0 \mid X_2)$ are *-compact (*-compactness means that every continuous real function is bounded).

For a Tichonov countably compact space (X, T_0) with the topology induced by the order the necessary and sufficient condition of the above equivalence is the condition that every one-point set is a G_{δ} in (X, T_0) .

As known, if (X, T_0) and (X, T) are two topological spaces and topology T is stronger than T_0 , then every continuous function on (X, T_0) is continuous also on (X, T). In particular, if C(X, T) denotes the set of real-valued functions continuous on (X, T), then $C(X, T_0) \subset C(X, T)$. In some cases, even if the topology T is essentially stronger than T_0 , it happens that $C(X, T_0) = C(X, T)$.

E. Kocela in [2] showed that if (X, T_0) is a compact metrizable space and $T \supset T_0$, the conditions

$$C(X, T_0) = C(X, T),$$

(ii)
$$C(X,T)\subset B(X)$$
,

where B(X) stands for the set of functions bounded on X, are equivalent.

The aim of this paper is to analyse conditions concerning the space (X, T_0) at which

$$(i) \Leftrightarrow (ii).$$

Condition (ii) concerning the set C(X, T) is equivalent to that of *-compactness of the space (X, T) introduced in [2]. One can prove without difficulty that a metric space is compact if and only if it is *-compact.

THEOREM 1. Let a topological space (X,T_0) be given such that $X=X_1\cup X_2$, where $X_1,\ X_2$ are disjoint, nonempty, *-compact spaces endowed with topologies induced by T_0 and $X_1\notin T_0$. Let T be a topology generated by $T_0\cup \{X_1\}\cup \{X_2\}$. Then (X,T) is a *-compact space and

$$C(X,T) \neq C(X,T_0)$$
.

Proof. By the definition of the topology T we have

$$T = \{E = (A \cap X_1) \cup (B \cap X_2) \colon A, B \in T_0\}.$$

Observe that in spite of the essential extension of the initial topology T_0 , topologies induced by T_0 and T in subsets X_1 and X_2 are identical.

To show that (X,T) is a *-compact space, we shall consider an arbitrary real function f which is T-continuous, i.e. $f \in C(X,L)$. The reduced functions $f \mid X_1$ and $f \mid X_2$ are continuous with respect to suitable topologies induced by T_0 . By Theorem 4 in [2], they are bounded. Consequently, f is bounded. Thus we have shown that (X,T) is a *-compact space.

To show that $C(X, T) \neq C(X, T_0)$, it is enough to find a T-continuous function which is not T_0 -continuous. For example, the function

$$g(x) = \begin{cases} 1 & \text{for } x \in X_1, \\ 0 & \text{for } x \notin X_1, \end{cases}$$

satisfies the condition. This completes the proof.

COROLLARY 1. Let (X, T_0) be a topological countably compact space (cf. [1]). Suppose that there exists a point $x_0 \in X$ which is an accumulation point of the set X but is not an accumulation point of any of the countable subsets of X. Let T be a topology generated by $T_0 \cup \{x_0\}$.

Then (X, T) is a *-compact space and

$$C(X,T) \neq C(X,T_0)$$
.

Proof. To show that all the assumptions of Theorem 1 are satisfied, we put $X_1 = \{x_0\}$ and $X_2 = X \setminus \{x_0\}$. Obviously, X_1 is a *-compact space. The space X_2 endowed with topology induced by T_0 is countably compact since it is formed from the set X, by deleting the point x_0 which is not an accumulation point of any sequence. Thus X_2 is a *-compact space, too. $X_1 = \{x_0\} \notin T_0$ because x_0 is a T_0 -accumulation point of the set X.

Example 1. Let X be the set of all ordinal numbers not greater than Ω . Let T_0 denote a topology whose base is composed of the following family of sets:

$$B = \{(y, x]\} \cup \{0\},\$$

where $(y, x] = \{z: y < z \le x\}$, $y < x \le \Omega$, and 0 stands for the ordinal type of an empty set.

Then (X, T) is a compact space (cf. [2]). Ω has properties of the point x_0 from Corollary 1. Therefore (X, T) with topology generated by $T_0 \cup \{\Omega\}$ is a *-compact space and $C(X, T) \neq C(X, T_0)$.

COROLLARY 2. Let (X, T_0) be a countably compact space. Let X_0 denote an open but not closed set is (X, T_0) such that every accumulation point of the set X_0 which does not belong to X_0 is not an accumulation point of any sequence from X_0 . Let T be a topology generated by $T_0 \cup \{X \setminus X_0\}$. Then (X, T) is a *-compact space and

$$C(X,T) \neq C(X,T_0)$$
.

Proof. To show that the assumptions of Theorem 1 are satisfied, we put $X_2 = X_0$ and $X_1 = X \setminus X_0$. X_1 endowed with topology induced by T_0 is a countably compact space since X_1 is a closed subset of the set X. Thus it is also *-compact.

By the definition of the set X_0 it is clear that the space X_0 with topology induced by T_0 is countably compact and thus *-compact.

EXAMPLE 2. Let $A = \{\alpha : 0 \le \alpha \le \Omega\}$ be the set of ordinal numbers not greater than Ω and let $B = \{x : 0 < x \le 1\}$ be the set of real numbers from the interval $\{0, 1\}$.

Let us put

$$X = A \cup B$$
.

Let T_0 denote a topology whose base is composed of the following family of sets:

{0}, where 0 denotes the ordinal type of an empty set,

 $\{\alpha: \beta_1 < \alpha \leq \beta_2\}$ for $\beta_1, \beta_2 < \Omega$;

 $\{\alpha: \beta < \alpha \leq \Omega\} \cup \{x: 0 < x < b\} \text{ for } \beta < \Omega, b \in (0, 1],$

 ${x: a < x < b}$ for $a, b \in (0, 1]$,

 $\{x: a < x \le 1\}$ for $a \in (0, 1)$.

It is easily seen that (X, T_0) is a compact space. Ω is the only accumulation point of the open set $\{\alpha \colon 0 \leqslant \alpha < \Omega\}$ which does not belong to this set and such that no sequence of ordinal numbers less than Ω tends to Ω . Thus, by Corollary 2, (X, T) with topology T generated by $T_0 \cup (X \setminus \{\alpha \colon 0 \leqslant \alpha < \Omega\})$ is a *-compact space and $C(X, T) \neq C(X, T_0)$.

The result of E. Kocela, given at the beginning of this paper, means that both compactness and metrizability of the space (X, T_0) constitute for $T \supset T_0$ the sufficient condition for the equivalence

(1)
$$(C(X, T) = C(X, T_0)) \Leftrightarrow ((X, T) \text{ is a } *\text{-compact.})$$

Examples 1 and 2 show that compactness alone of the space (X, T_0) is not sufficient. The condition of E. Kocela may, however, be strengthened if one substitutes compactness and metrizability by certain weaker assumptions.

LEMMA 1. Let (X, T_0) be a Tichonov space (cf. [2]) containing at least two points and $x_0 \in X$.

The following two conditions are equivalent:

(a) one-element set $\{x_0\}$ is of the type G_{δ} ,

(b) there exists a T_0 -continuous function φ such that

$$0 < \varphi(x) < \varphi(x_0) = \frac{1}{2}\pi \quad \text{for} \quad x \neq x_0.$$

Proof. It is obvious that if a function φ defined by (b) exists, then $\{x_0\}$ is a set of the type G_{δ} .

We shall show that converse is also true. Assume that $\{x_0\}$ is a set of the type G_{δ} . Consequently, there is a sequence of sets $\{G_n\}$ such that

$$G_n \in T_0$$
, $G_n \supset G_{n+1}$ for $n = 1, 2, ...$

and

$$\bigcap_{n=1}^{\infty} G_n = \{x_0\}.$$

Then

$$X \setminus \{x_0\} = \bigcup_{n=1}^{\infty} F_n,$$

where $X \setminus F_n \in T_0$, $F_n \subset F_{n+1}$ for n = 1, 2, ... Without loss of generality we may assume $F_1 \neq \emptyset$.

By the assumption (X, T_0) is a Tichonov space. Thus for every natural n there is a T_0 -continuous function f_n such, that

$$f_n(x_0) = \frac{\pi}{2} \cdot \frac{1}{2^n}$$

and

$$f_n(x) = 0$$
 for $x \in F_n$ and $0 \le f_n(x) \le \frac{\pi}{2} \cdot \frac{1}{2^n}$ for every $x \in X$.

Furthermore, put

$$\varphi(x) = \sum_{n=1}^{\infty} f_n(x).$$

The function φ being a limit of a uniformly convergent sequence of T_0 -continuous functions is T_0 -continuous and

$$\varphi(x_0) = \sum_{n=1}^{\infty} f_n(x_0) = \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\pi}{2}.$$

Let now x be an arbitrary element of the set X different from x_0 . Then there exists a set F_k such that $x \in F_k$, and consequently $f_k(x) = 0$. Hence

$$\varphi(x) = \sum_{n=1}^{\infty} f_n(x) < \frac{\pi}{2} \sum_{n=1}^{\infty} \frac{1}{2^n} = \frac{\pi}{2} = \varphi(x_0).$$

Thus the function φ defined above has all properties listed in the condition (b). This completes the proof of the lemma.

THEOREM 2. Let (X, T_0) be a pseudocompact space (cf. [2]), in which every one-element set is of the type G_δ and $T \supset T_0$. Then the equivalence (1) holds.

Proof. First let $C(X, T_0) = C(X, T)$. To show that (X, T) is a *-compact space we consider an arbitrary T-continuous function f. By the assumption, every T-continuous function is T_0 -continuous and thus bounded, since the space (X, T_0) is pseudocompact. Hence f is bounded and, by Theorem 4 in [1], (X, T) is *-compact.

Let now (X,T) be a *-compact space. Assume that $C(X,T) \neq C(X,T_0)$. Therefore, there exists a T-continuous function f which is not T_0 -continuous. Let x_0 be a T_0 -discontinuity point of the function f. Then there exists a number $\varepsilon_0 > 0$ such, that in every T_0 -neighbourhood of the point x_0 there are points for which $|f(x)-f(x_0)| \geqslant \varepsilon_0$. Let us put

$$f_1(x) = \frac{f(x) - f(x_0)}{\varepsilon_0} \cdot \frac{\pi}{2}.$$

Then f_1 is a T-continuous function.

Let us put further

$$f_2(x) = \min(f_1(x), \varphi(x))$$

and

$$f_3(x) = \max(f_2(x), -\varphi(x)),$$

where φ is the function constructed in Lemma, i.e., T_0 -continuous and such that at the point x_0 it attains the maximal value $\frac{1}{2}\pi$ and at all other points distinct from x_0 it takes positive values less than $\frac{1}{2}\pi$. Obviously f_2 and f_3 are T-continuous functions and for each x

$$|f_3(x)| < \frac{1}{2}\pi$$
.

It is easy to verify that

$$\sup_{x \in X} |f_3(x)| = \frac{1}{2}\pi.$$

Finally, let us put

$$f_4(x) = \operatorname{tg}(f_3(x)).$$

Then f_4 is a T-continuous, unbounded function what contradicts the assumption of *-compactness of the space (X, T). This contradiction results from the supposition that $C(X, T) \neq C(X, T_0)$. Thus at those two topologies the classes of continuous functions coincide. This completes the proof.

Remark. Theorem 2 is a substantial generalization of E. Kocela's theorem because there exists an example of a compact unmetrizable space, in which every closed set is of the type G_b . Such example was given by Urysohn in [3] (pp. 936-939).

The example presented below shows that even with the assumption of compactness of the space (X, T_0) , the equivalence (1) does not imply that every one-element set of the space (X, T_0) is of the type G_δ .

3 - Fundamenta Math. CI

Example 3. Let X be an uncountable set and $x_0 \in X$. Define a topology T_0 as follows:

$$(E \in T_0) \Leftrightarrow ((x_0 \notin E) \lor (x_0 \in E \land \overline{X \setminus E} < \aleph_0)).$$

It can be easily verified that (X, T_0) is a Hausdorff space and that from any covering of this space with open sets, a finite covering can be chosen. Therefore the space (X, T_0) is compact. The one-element set $\{x_0\}$ is not of the type G_δ because if it were X would have to be at most countable. Let now T be an arbitrary essential extension of the topology T_0 . We shall show that (X, T) is not *-compact. Since $T \supset T_0$, there exists a set $G \in T \setminus T_0$. Therefore $x_0 \in G$ and $X \setminus G \geqslant \aleph_0$.

Denote by $F = \{x_n\}$ an arbitrary countable subset of the set $X \setminus G$. F is T-closed. Let us put

$$f(x) = \begin{cases} 0 & \text{for } x \in X \setminus F, \\ n & \text{for } x = x_n, \ n = 1, 2, \dots \end{cases}$$

The function f is T-continuous and unbounded. Thus indeed, (X, T) is not *-compact. Therefore, the only topology $T \supset T_0$, at which (X, T) is *-compact is the topology T_0 , and hence

$$((X, T) \text{ is a } *\text{-compact space}) \Leftrightarrow (T = T_0) \Leftrightarrow (C(X, T) = C(X, T_0)).$$

From the above discussion it is seen that in the general case the condition stating that in a compact space every one-element set is of type G_{δ} is not necessary and sufficient for the equivalence (1). However, there exist spaces in which Theorem 2 can be conversed.

LEMMA 2. Let X be a set endowed with the topology determined by order (cf. [2]). A one-element set $\{x_0\}$ is of the type G_δ if and only if the following conditions are simultaneously satisfied:

- (A) If every interval of the form (c, x_0) is non-empty, then x_0 is the accumulation point of the sequence $\{a_n\}$ of the elements preceding x_0 .
- (B) If every interval of the form (x_0, d) is non-empty, then x_0 is the accumulation point of the sequence $\{b_n\}$ of the elements following x_0 .

The easy proof of this lemma is omitted.

THEOREM 3. Let (X, T_0) be a countably compact space with the topology determined by order and let $x_0 \in X$ be such that $\{x_0\} \notin G_\delta$. Then there exists an extension T of the topology T_0 such that (X, T) is *-compact and

$$C(X, T) \neq C(X, T_0)$$
.

Proof. From the assumption, $\{x_0\}$ is not of the type G_δ . Thus, by Lemma 2, x_0 is, at least from one, say left-hand, side, an accumulation point of the set X and it is not an accumulation point of any sequence of elements preceding x_0 . Let us put $X_0 = \{x: x < x_0\}$. The assumptions of Corollary 2 are satisfied and therefore the

space (X, T) with topology generated by $T_0 \cup (X \setminus X_0)$ is *-compact and $C(X, T) \neq C(X, T_0)$. This completes the proof.

The following corollary is the immediate consequence of Theorems 2 and 3.

COROLLARY 3. Let (X, T_0) be a countably compact, Tichonov space with topology determined by order. Then for the equivalence (1) to hold it is necessary and sufficient that every one-element set be of the type G_δ in the topology T_0 .

References

- [1] R. Engelking, Zarys Topologii Ogólnej, PWN, Warszawa 1965.
- [2] E. Kocela, Properties of some generalizations of the notion of continuity of a function, Fund. Math. 78 (1973), pp. 133-139.
- [3] Р. Urysohn, Труды цо топологии и другим областям математики Москва-Ленинград 1951, П.

Accepté par la Rédaction le 22, 4, 1976