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Finite T,-spaces and universal mappings
by

W. Holsztynski and F. Pedersen (Carbondale, II.)

Abstract. A universal map f: X—Y is-a continuous function such that for every continuous
function ¢: X->¥ there exists x ¢ X such that f(x) = g(x). Universal maps arise naturally as a gener-
alization of the fixed point property. In this paper, we study universal mappings of finite Ty-spaces.
Analogous to defining polyhedral trees we define T,-trees using finite Ty-spaces to play the role of
the usual intervals. An examination of universal mappings between finite Ty-trees is made.

Introduction. A universal map f: X—Y is a continuous function such that for
every continuous function g: X—Y there exists x € X such that f(x) = g(x).
Universal maps arise naturally as a generalization of the fixed point property-(uni-
versal mappings appear also in other contexis; see [2] and references given there).

In this paper, we study universal mappings (and the fixed point property) of
finite Ty-spaces. Analogous to defining polyhedral trees we define To-trees. Other
topics introduced are Artinian spaces (see Section 1) and P-spaces (see Section 2).
Section 3 contains a summary of the results from [3], the first general results related
to universal mappings into finite spaces, with finite T,-spaces playing the role of
the usual intervals. In Section 4, the concept of height of a finite Tp-space is intro-
duced in a manner similar to dimension with respect to polyhedra. In Sections 5, 6,
and 7 we discuss trees and universal mappings into trees with relationships between
P-spaces and trees studied in detail in Section 5 and general properties of trees
studied in Section 6. Section 6 also contains examples which illustrate the differences
between finite To-trees and polyhedral trees, The primary result of this paper is
Theorem 7.2. A more general but also more complicated result is possible, but fairly
complete theorems on universal mappings of trees are difficult at the present stage
of information (compare A. Wallace [6] and H. Schirmer [5]).

Conventions and notations

1. Everywhere in this paper, with the exception of Section 3, all topological
spaces are assumed to be Tg-spaces.

2. AcB means that the set 4 is contained in B but 4 # B.

3. A<B means that AcB or 4 = B.
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. A point x is called open (closed) if the set {x} is open (closed).
. 4 stands for the topological closure of A.
. % denotes the closure {%} of the singleton {x}.
7. A discrete family of closed sets is a family such that the union of any of its
subfamilies is closed.
8. U, denotes the smallest open set containing the peint x, provided such exists.
9. Examples of spaces will be given by using “o” for an open point and “s” for
a closed point. A thin line will indicate the paths between points, and dark arrows
will indicate mappings.

[ RN

Section 1. Artinian spaces. A topological space is called Noetherian if every
decreasing sequence of closed subsets is finite. By analogy a space is Artinian if every
decreasing sequence of open subsets is finite; i.¢., every family of open subsets has
a minimal member.

PROPOSITION 1.1. If X is an Artinian space and xe X, then there exists an
open subset U, such that U, is the smallest open subset containing the point x. That
isif xeV, V open in X, then U,SV.

COROLLARY 1.2. A4 function f: X—Y into an Artinian space is continuous if and
only if f~Y(U,) is open for each ye Y.

COROLLARY 1.3. 4 function f: X— Y between two Artinian spaces is continuous if
and only if f(U)S Uy for every xeX. In particular if {f(x)} is open, then
f(Ux = {f(x)} ‘

PROPOSITION 1.4. If f: X~ Y is a continvous map of an Artinian space X onto
an arbitrary space Y, then Y is Artinian.

PROPOSITION 1.5. Every subspace of an Artinign space is Artinian. .

PROPOSITION 1.6. Every finite space is Artinian. If every proper open subset of
a space X is finite, then. X is Artinian.

ExaMpLE 1.7. Let N denote the natural numbers and let

T={p,{1},{1,2}, .} u{N}.
Then (N, T)-is an Artinian space.
BxampLE 1.8. Let X be an initial interval of ordinal numbers. Let
T={{x: x<y}: ye X} u {X}
Then (X, T) is an Artinian space. If X contains an infinite ordinal p, then X contains
an infinite proper open subset.
QuesTiIoN 1.9. Is the cartesian product of two Artinian spaces Artinian?
Section 2. P-spaces. In this section we study a class of rather simple spaces.
They serve as examples for later sections and as test spaces. Any result about P-spaces
can be considered as the first step toward a more general result.

A topological space X is called a P-space if it has exactly one point p € X such
“that {p} is an open subset of X. , ‘
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ExampLE 2.1. The Alexandroff 2-point.space X = {p, ¢} with topology
{o, {p}, {p.a}} is a P-space.
ExaMpLE 2.2, The 3-point space X =.{p, g, r} with the topology

{o.{p},{p.q},{p. 1}, X}

is a P-space. )
ExaMPLE 2.3. Let X be an arbitrary non-empty set. Let peX. The family
B,={{p.q}:qe X} is a base for a.topology T, on X. The space (X, T,) is 2 P-space.
For GeX, GeT, if and only if G =@ or peC.
The spaces furnished by the above examples give us our most important examples
of P-spaces. In fact any Artinian P-space with topology t has the property that the
topology t can be refined to a T, topology as given in Example 2.3.

TrrorEM 2.4. Let (X, T) be an Artinian space. The following are equivalent:
W (X, T) is a P-space,

(i) (X, T) is a one-to-one continuous image of the space (X, T,) as described
in Example 2.3,

(iii) there exists pe X such that {p} is dense in (X, T).

Proof. In an Artinian space (X, T) every non-empty open set contains a mini-
mal non-empty open set. Since every Artinian space (X,T) is a T,-space such
a minimal open set must be a singleton {p}. In a P-space (X, T) with an open
point p there is exactly one such minimal open set, namely {p}. This shows that
T<T, (see Example 2.3). Thus we have proved ()=-(ii). The other implications
(if)=-(iii)=>(i) are easy. ‘

COROLLARY 2.5. If {p} is the unique open singleton of an Artinian P-space X and
iff: X=Yisa continuous map onto a space Y, then Y is an Artinian P-space and
{f(p)} is its unique open singleton.

COROLLARY 2.6. Every Artinian P-space is connected.

Proof. The proof follows from property (i) of the theorem. -

ExAMPLE 2.7. The compact subspace {0} U [1, 2] of the real lige is a P- space,
but does not satisty property (iii) of Theorem 2.4. Thus the assumption that X is
Artinian is essential.

Remark 2.8. Properties (if) and (i) of Theorem 2.4 are equivalent for arbi-
trary spaces. : .

P-spaces give simple examples of spaces which have the fixed point property —
as is illustrated by the following theorems.

THEOREM 2.9. Every finite P-space has the fixed point property. ,

Proof. Let X be a finite P-space, and pe X be the unique open point of X.
Let 1 X=X be an arbitrary continuous map. If p ef(X), then f Tl(p) i§ a non-
empty open subset of X. Hence, by (ii) of Theorem 2.4, p & f "1(p)-, i.e., pis a fixed
point of £ If p ¢ f(X), then consider f; = f1£(X). Since f(X) is also a P-space
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(see Corollary 1.5) and it has less points than X, the theorem is proved by induction

on the number of points in X. It is clearly true for one point spaces.

Remark 2.10. If (X, T;) is a P-space as given by Example 2.3, then (X, T;)
has the fixed point property. .

Proof. f(p) = p or otherwise f (X) = f(B)f (p) = f(p)and f (S (p)) = f(p).

ExAMPLE 2.11. The infinite Artinian P-space given in Example 1.7 fails to have
the fixed point property. '

Remark 2.12. Consider the category FinTop of finite topological spaces, As
was remarked in [3] the fixed point property (and the property of being a universal
map) is invariant under the functor FinTop — FinTop which is the identity on
mappings and which replaces open sets. by closed sets and replaces closed sets by

open sets in every finite topological space. Thus it follows that finite p’-spaces, defined

as Ty-spaces which have exactly one closed point, also have the fixed point property.
When we consider only finite spaces we can use the functor FinTop — FinTop as
defined above to obtain dual theorems for all the above results. It is easy to see
that the proof of Theorem 2.4 can be dualized word by word; thus, we have a dual
version of Theorem 2.4 for Noetherian P’-spaces.

Section 3. Universal images. A continuous map f: X—Y is called unmiversal
if for every continuous map g: X—Y there exists x € X such that g(x) = f (x).

Ji X—Y is called bi-onto (see [4]) if for every clopen set US X, f(U) = ¥ or
SXN\U) = Y. 4 connected space E is called a universal image if for every space X
every continuous bi-onto map f: X—E is universal. B

Hausdorff universal images were characterized by W. Holsztyriski and S. Kwa-
piert [4] as connected spaces E which admit a linear order < with respect to which
there is a first and a last element and such that the sets {xe E: x<a} and
{x € E: a<x} are openin E. Eilenberg’s theorem [1] characterizing what he called
ordered connected Hausdorfl spaces was crucial in this context. The characterization
of universal images and Eilenberg’s theorem about ordefing were generalized to
arbitraty topological spaces by W. Holsztyriski. These results are stated in the
following Theorems, 3.1-3.3.

Tarorem 3.1. Let X be an arbitrary connected space. Then the deleted square
X® = X X\A is connected or splits into the union of exactly two components U
and V such that V = {(x, y): (y, x) € U}. The second case holds if and only if X is

at least a 2-point space (except for the special case of a 2~ -point space with a non-T,
topology) such that

(#)  there is a linear order < on X such that for every ae X, {xeX: x<a} and
{xe X: a<x} are open subsets in the relative topology of X\{a}.

Note. If the space has at least three points, then condition (*) implies that
the topology is Tj,. . .

THEOREM 3.2. Let X be an arbitrary connected space with at least two points,
The following are equivalent:

e ©
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(a) X is a universal image,

(b) X is a universal image for connected spaces,

(c) X is a Ty-space with two distinct non-curting points and admits a linear
order < such that condition () is satisfied.

Condition (b) given in Theorem 3.2 simply means that for every connected
space Z, every continuous map of Z onto X is a universal map.

TrzorReM 3.3, Let T, (respectively T,) be a topology for I, = {1,2, ..., n} such
that the smallest neighborhood of k is {k} if k is odd (respectively even), and it is
{k—1,k, k+1} n I, if k is even (respectively odd). Then every finite n-point universal
image is homeomorphic to either (I,,T,) or (I,, Ty). Thus, up to a homeomorphism,
there exists only one n-point universal image when n is even or equal to 1. There are
exactly two non-homeomorphic n-point universal images when n is odd and greater
than 1.

Remark 3.4, Two examples of finite universal images were known prior to
the above theorem. Alster [4] had observed the two point Alexandroff space is
a universal image and F. Pedersen did the same for a three point space which turned
out o be homeomorphic to (I3, Ts).

If f: X— Y is a universal map, then Y has the fixed point property. In particular,
every universal image has the fixed point property. Using theorems from this section
and examples from Section 2 we produce examples of finite spaces which have the
fixed point property and which are not universal images.

LeMMA 3.5. Let X be a connected space and let < be a linear order in X such
that (%) holds. Then

Fi<{yeX: Vz<x, z<y and Vz>x, 22y} .

Proof. Let a<b<ec. Since {peX: b<p} is open in X\{b} the c1051.1re' of
{peX: p<b}in X is contained in {p & X: p<b} U {b}. Thus c ¢ {a}. By a similar
argument a ¢ {¢}. This proves the lemma.

COROLLARY 3.6. If a P-space X has at leasr 4 points, then X is not a universal
image. In particular, if X is an Artinian P-space with at least 4 points, then X has the
fixed point property without being a universal image. .

Remark 3.7. (X,T) where X = {a,b,c} and T = {®, {a}, {a, b}, X} is
the only 3 point P-space which is not a universal image.

Remark 3.8. Let X be an n-point space which is not a universal image. The
method developed in [4] can be followed to construct a n (n—1)-point co.nnected
space and a ndn~universal continuous map of this space onto X. The2 )resultmg map
will be the first coordinate projection from the deleted square X® onto X.

Section 4. Height of a topological space. All spaces are assumed to be non-
empty. . ’ . . lex:
The following notion is analogous to the notion of dimension of a cell-complex:

4 — Fundamenta Mathematicae XCVIII
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The height of a space X is the least integer n (or co) such that if ao, a4, ..., @,
is a sequence of distinct points with @;_, €8, for i =1,...,m, then m<n. The fol-
lowing remarks point out some properties of the notion of height.

Remark 4.1. The height of a space X is equal to the supremum of the height
of the connectivity components of X. :

" Remark 4.2. If X is a subspace of Y, then height (X)<height (¥).

Remark 4.3. If f: XY is a bijective continuous map, then height
(X)<height (7).

Remark 4.4. Height (X'x ¥) = height (X)+height (¥).

THEOREM 4.5. The height of an Artinian space X is the least integer n such that
‘for every sequence Gy, @y, ..., @y € X, where U, < U, | for k=1, .., m, it follows
that m<n.

Proof. For Artinian spaces X the smallest neighborhood of a point x, U,,
will exist. To say that a;_, €@, is the same as saying that a;€ U,,_,. Since U,, is
the smallest open set about a;, U, = U,,_,. X is a Ty-space; thus, U, has to be
proper in U,,_,. )

THEOREM 4.6. If X is an Artinian space, then the following are equivalent:

" (a) height (X) = 0,

(b) X is a finite discrere space.

Proof. This follows easily from Theorem 4.5 since U, = {x} is the only possi-
bility in a space of height 0. The fact that X can not be infinite is clear from the
definition of Artinian.

TuEOREM 4.7. For an Artinian space X, the following are equivalent:

(a) height (X)<1,

(b) X is a finite space where every point is either open or closed.

Proof. (a)=(b). Suppose {x} is neither open nor closed. There exists y ¢ U,,
y # x. Thus U, U,. There exists z€ X, z # x. Thus z, x, y form a sequence which
contradicts the height (X)<<1. To show X is finite we first observe that the set of
open points X, < X is finite. For any closed point x which is not open U, contains,
other than x, only open points. If there exists a non-open point y & U, we can con-
struct a sequence U,«U,=U,. Therefore X\X, is a discrete space in the relative
topology. Since X\X, is Artinian, X\ X, is finite. Therefore X is finite.

(b)=>(a). Assume that the height (X)>>2. There exist three points a, b, ¢
such that U,cU,cU,. The point b is neither open nor closed.

In the two assertions above.the word “finite” can be deleted and the theorems
are still true. In fact, the [ollowing more general statement holds.

TueoreM 4.8. If X is an Artinian space of finite height, then X is finite.

Proof. If height (X) = 0, then Theorem 4.8 follows from Theorem 4.5. If
height (X) = k=1 and X, is the set of all x € X such that x is open in X; then X,

‘is finite. Height (X\Xo)<k—1. Thus, by induction on the height of the space,
LXN\X, is finite. Therefore, X = X, U X\X,, is finite.
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TaEoReM 4.9. A finite P-space is homeomorphic to some (X, T,) as defined in
Example 2.3 if and only if height (X)<1. Such a space has height equal to 1 except
when it has less than 2 points.

Remark 4.10. Spaces of infinite height are of some interest and may be sub-
divided into the class of “short” spaces and “high” spaces. The former spaces do
not contain an infinite sequence dg, @y, ..., @, ... of distinct points such that
a, €84 for all i or ayyy €8, for all ; the later are the spaces which do contain
a sequence of the foregoing types.

Section 5. Universal mappings into p-spaces. A P-space X with topology given
by T, = {{p,q}: qeX } is called a p-space. A topological space X, containing
a point p, is a p-space it and only if the family of all closed subsets consists of X and
any subset which does not contain p. A topological space X, containing a point p,
is a p-space if and only if the family of all non-empty open subsets consists of any
subset containing the point p.

PROPOSITION 5.1. A function f which maps a topological space X into a p-space Y
is continuous if and only if f~1(x) is closed for every x € Y{p} and the family
{f~Y(x): x eY\p} is discrere.

PROPOSITION 5.2. Let Y be a p-space which contains at least three points.
Let f+ X—Y be a continvous function, then the following are equivalent:

(8) f is not a universal mapping, .

(b) there exists a discrete family {F,: y € \{p}} of pairwise disjoint closed subsels
of X such that y ¢ f(F,) for all ye Y\{p} and U {F,: y e Y\{p}} contains f ~1(p).

The followin: theorem is similar to Proposition 5.2 but gives a sharper criterion
for non-universality than condition (b) of Proposition 5.2.

TeroreM 5.3. Let X be a space such that every umion of closed single element
subsets of X is closed. Let ¥ be a p-space containing at least three points. Then for
any continuous function f: X—Y, the following are equivalent: .

(a) f is not a universal map, )

(b) there exists a discrete family {F,:ye I\{P}}
subsets of X such that

(OF AR I=RY) {F;i; ye Ilj\\gfp;},
if) (F,) for all ye P}

(gii) ivf;{; cylZsed point of X is an element of U (F,: ye I\{p}}-

Proof. (b)=(a). Define g: XY by g(x) = y for all xe F, and g(x) = p for
all xeX\U {F,: ye ¥Y\{p}}. By Proposition 5.1, g is continuous. g(x) # [ ()
for all xe X.

(a)=(b). There exists a continuous function g: X—Y such that g(x} #f (x).
for all xeX. Let p, g, r be distinct points of Y. Define the family {F,:
ye \{p}} as follows: .

F1= g~} g u {xe X\f}(g): {x} is closed in X and g(x) = p},
F, = g~\(r)u {xef(g): {x} is closed in X and g() =}
F, =g "(y) for all ye ™{p, g, r}

of pairwise disjoint closed

g
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TaeoreM 5.4. If X is an Artinian connected space, Y is a p-space, and f+ XY
is an onto continuous function such thatf~ Y(p) contains all the open points of X, then fis
a universal function.

Proof. Let g: X—Y be a continuous function. g~*(p) is an open set.
If g7'(p) #9, then g~(p) contains an open point x such that g(x) = f(x).
If g7Y(p) =G, then {g7*(»): y &€ Y\{p}} is a collection of clopen sets which cover X,
Since X is connected only one g~!(y) is nom-empty. Thus, g(x) = f(x) for some
xeX.

COROLLARY 5.5. Let X be a finite connected space contairing at least 2 distinct
points and let Y be a p-space such that card(YN\p) is less or equal than the number
of closed points in X. Then there exists a universal map of X onto Y.

The following theorem is a corollary to Theorem 5.3, however, we shall offer
a direct proof. :

THEOREM 5.6. Let X be a connected space such that every union of closed single
element subsets of X is closed. Let Y be a’p-space. If f: X—Y is an onto continuous
Sunction such that f~*(p) contains all the non-closed points of X, then f is a universal
Sfunction.

Proof. Let g: X—¥ be a continuous function. If g™*(p) N f~4(p) # @, then
g(x) = f(x) for some x e X. Assume g~"(p) nf~*(p) =®. Since f~(p) contains
all‘non-closed points, g~*(p) is an open set which contains only closed points. By
our assumption on X, the union of the points of g~%(p) is a closed set. Therefore,
since X is connected either g~*(p) is empty or g7 *(p) = X. g~ X(p) % X since we
assumed g~'(p) NfTI(p) =@. Therefore g~'(p) =@. {g7'(): ye I\{p}} is
a collection of clopen subsets which cover X Since X is connected only one g7 ')
is mon-empty. Thus, there exists x e X such that £(x) = g(x).

COROLLARY 5.7. Let X be a connected space containing at least 2 distinct points
and such that every union of closed single element subsets of X is closed. Let Y be
a p-space such that [card(YN\p)] is less or equal to the cardinality of the set of
closed points of X. Then there exisis a universal map of X onto V.

Proof. Let F be the set of all closed points of X. Let f: X— ¥ be an arbitrary
function such that f(F) = Y\{p} and f(X\F)<{p}. Then {f~*(y): ye Y\p} is
a discrete family of closed subsets of X. Thus, by Proposition 5.1, fis a continuous
function. Since X is connected and has at least 2 distinct points hence X\F # &
and f is onto. Thus, by Theorem 5.6 f is universal.

Section 6. Trees-general properties. A chain is a finite topological space X which
is homeomorphic to 2 finite universal image space (I,, T,) or (I,, T%). (I, T,) and
(Z,, T)) were described explicitly by Theorem 3.3. Ina space X, a path from a point p to
another point g is a set of points 4 <X such that p, q € Aand 4 with the relative top-
ology is-a chain such that p and ¢ are the non-cutting points of 4. We denote a
path 4 from p to ¢ by pg. For two points p and ¢, p is adjacent to qif {p,q}is
a path from p to ¢, i.e., if peg or gep.
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Remark 6.1. Let X be an Artinian space. If ye U,, y # x, then there exists
a path from x to y. In fact, since y is an open point in the relative topology of {x, ¥},
x is adjacent to y. - ' )

TaEOREM 6.2. Let X be an Artinian space. Then x and y belong to the same com-

ponent of X if and only if there exists a path from x fo y. :

Proof. Let x, be a fixed point of X. Define C = {y e X: x,y exists} U {x,}.
We will show that C is the component of X containing x,. Let z e X such that either
UnC#BorZnC#3.In either case there exists y € C such that {z, y} is a path
from z to y. y € C implies there exists a path xop. Let the points of x,y be' denpted
by Xp = Kq, Xzs ey Xy = P Let xy be the first point of t_he patl:l X,y for which either
x,eU,0rx €. Assume first x; & U, If x; = x,, there is nothing to prove. Let'xi' be
a closed point in the path xoux;. Then x,., & U, = U, and we have a cogtradlctlon
to x, being the first point of the path xoy. Therefore x; is an open point in the patll
xg%;. It follows that x,x; U x,2 is a path from x, to z. The other case where. x; € Z
is handled similarly. Thus, z & C. It follows that C is clopen or that Cis the component
of X containing x. ' :

A tree is a finite space X for which there exists 2 unique-path between any two
points and for any p,q,re X, :

pgogr=1{g} =pgugr=pr.

PROPOSITION 6.3. A finite space X is a tree iff height of X is'< 1 an‘d there exists
a unique path pq in X from any point p of X to any point g of X. oy

COROLLARY 6.4. Every tree X is connecied and every point of it is closed or open,
but unless X is a single-point space, never both.

Remark 6.5. When U, exists it contains at most one clos&?d point, ngmely X.
In particular, if x is a point of a space of height 1 then every point of U\x is open.
Similarly, X contains at most one open point, namely x; if x belongs to space of
height 1 then every point X\x is closed. ‘

Let X be a space of height <1. Then the ramification index t(x) of a point x
of X is defined as follows: : . .

cardU,—1 if x'is closed;
t(x) =

card%=1  if x is open.

Tf t(x) = 1 then the number of components of-X\x is the-same as of. X1 r(.x) = 1
then we call x an end-point of X. If 7(x)>2 we call x a ramification point o1 a junction
point, ’ L o s
In the case of a tree the ramification index can be characterized as ff)llowsg

THEOREM 6.6. A finite connected space X of height 1 is a tree iff ©(x) is equal
to the nmumber of. components of X\x for every point X of X - .

The proof of the above theorem is easy and will,be omitted. A s1m11:1.r_qhe01elm
holds for polyhedra. Moreover, a 1-dimensional conngcted polyhedra X is'a (poly-
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hedral) tree iff X\x is disconnected unless x is an end-point of X. The following
example shows however that the last statement fails to be true for finite spaces,

ExaMPLE 6.7. The following 8-point space X of height 1 is not a tree, but X\xis
disconnected for every x which is not an end-point (see Fig. 1).

!
|

SN
N

°
, Fig. 1

Thus the analogy between finite polyhedra and finite spaces is not mechanical.
PROPOSITION 6.8. A tree is a chain iff it does not contain any ramification point.
-Tf a subspace X of a space Y is a tree then X is called a sub-tree of Y.
PROPOSITION 6.9. Every connected subspace of a tree X is a sub-tree of X.
PROPOSITION 6.10. Every sub-tree of a tree X is a retract of X.

ExXAMPLE 6.11. X\a is a closed subset of and a path in X, but it is not a retract
of X (see Fig. 2).

o - [ ] (o]

Fig. 2

Thus not only a sub-tree but even a path which is a closed subset of a finite
space X of height 1 need not be a retract of X.

The fact that X\a above is not a retract of X follows immediately from the fol-
lowing remark.

“Remark 6.12. If function f: XY is continuous then it maps every pair of
adjacent points into one point or into a pair of adjacent points. Furthermore, if pe X
igclosed and f (p) is openin ¥, or vice versa, then f (g) = f(p) for every q € X adjacent
to p.

Above we had the simplest illustration of non-retraction phenomenon. Below
we give the simplest example of a map f: A— Y from a closed subset A of X into
a tree (even a chain) which does not admit any continuous extensiof. '

3
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ExAMPLE 6.13. There are certain circumstances when functions can be extended

and the following proposition illustrates such a case. Given a subset 4 of a tree X'
agapinAisapathpg of X where p and ¢ are not adjacent points andpgn 4 = {p,q}

(see Fig. 3).
Y e o . ° *
4 ={a,b}
X . ° 5
Fig. 3

Remark 6.14. Let X and ¥ be connected spaces of height 1. f: X—+Yi’s' con-
tinuous if and only if f preserves adjacency of points (allowing a point to be adjacent
to itself). . :

PROPOSITION 6.15. Let X be a tree and ASX. If f: A=Y is a continuous map,
pq a gap in A such that F(p) = f(q), then [ can be extended continuously to A U pg.

Proof. It follows from Remark 6.14 that f can be extended continuously to
A U pg by defining f(x) = f(p) for all xepq. ; N

It is possible to obtain some more extension theorems from Proposition 6.10.

Section 7. Universal maps into trees. A point g of a tree X is. between x and y i-
g & xy. The point ¢ is strictly between x and y if g is not equal to e1ther_x ory. A funcf
tion f preserves betweenness if when ¢ is between x anfi y,‘then fg)is betvyeen fx-
and (). For points X, y, 2, if y is between x and z this will be denoteq by x= y—2)

‘Remark 7.1. If x, ¥ ate adjacent points of a tree X then x—y—z 0T y—X—2Z
for every ze X.

TreoreM 7.2. Let X and Y be trees. If fisa continuous furiction which is onto Yand
preserves betweenness, then £ is a universal function.

Proof. Let g: X— Y be a continuous map such.the.tt g @ #S (x)-for every
x e X, Choose X, <X such that f(Xy) = ¥ and £ X, is injective. Define inductivey
a sequence of points of X as f(l)llows:

hoose x, € X arbitrarily. )

EE; Eet q, e?o be the point such. that J;(qt,,) =tg(;c‘;;1axtx;1 ;et X+, e the point

: ] jch. is adjacent to x, bul not ¢ - . .
" tl?l}ﬁac:]?oixc’:aqgf ziliil:s alwaifs possible since otherwise Xn = and this cor}gailcts
our assumption that £ (x) # g () for all x e X. The following case study will show
that $c,, is strictly between X,-y and Xy41-

Case 1. g(x,) = g(x,-1)- By our choice of X, it fquows that g; = gy—1- Thus
Ky =Xy — Gy BN X=X 41 G imply that x, is between Xy and x,,+’1. »

Case 2. g(%,) # g%y I Xyer =% then it follo?vs_ ‘tha't X, 18 betv_Je;:n
%, 4 and x,4. As was stated in Remark 7.1 the only other possibility i8 g, —Xp~1=%a-
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Since x, is between x,.; and g, the order relationship between the points is
Aqn_xn—l_xnf'qn—l' S'incefpreserves bEtweennessf(qn) —f(xrr-l)'"f(xn) '"f(CJn»—i)
(allowing for equality). Since g is continuous g (x,) is adjacent to g (x,-1). Therefore,
F(g,) is adjacent to f(g,—)- The only remaining possibility is for f(x,-1) = f(g,)
= g(x,) and at the same time f(x,) = f (¢,—1) = g(%,-y). Without loss of generality
assume x,., is open and x, is closed. First assume f(x,) is open. This contradicts
the continuity of f since f ~*(f(x,)) is not an open set in X. Conversely assume f (x,)
is closed. This contradicts the continuity of ¢ since g~*(f (x,)) is not a closed set in X.

It has been shown that {x,} is an infinite sequence of distinct points in X which
contradicts the fact that X is finife.

COROLLARY 7.3. A tree has the fixed point property.

COROLEARY 7.4 Let X and Y be trees and A a subtree of X. If f+ X— Y is a conti-
nuous function such thar f|A: A=Y is onto and preserves betweenness for points
of A, then f is a universal function.

Proof. From Theorem 7.2 it follows that f|4 is a universal function. from A4
to Y, It.follows that f: X— Y must also be a universal function. :

ExAaMPLE 7.5. This example illustrates that it is not always possible, even
under the best of circumstances, to get a connected subset of the domain on which
the universal map is onto the image space and preserves betweenness in the subset
(see Fig. 4). ’

TN

Fig. 4

EXAMPLE 7.6. This particular exampleis of specialinterest since it is a universal
map of a chain (universal image space) onto a non-chain., Morecover it illustrates
that one can not necessarily find a subset of the domain for which the function is
onto the image and preserves betweenness in the subset (see Fig. 5).

NN

Fig. 5

e—»9—0O

"The image space of Example 7.6 is called the 4-point triod. This is both a tree
and a p-space but is not a universal image space as was pointed out by Corollary 3.6.

That this space bis a universal image for any tree with at least 6 points follows easily
from Corollary 5.5. )
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In reference to a question posed in the introduction of this paper, the following
example illustrates that the composition of universal functions between trees need
not be universal. i

ExameLE 7.7 (see Fig. 6).

Let f;: K;—K, as given by the diagram.

Let fo: K,— K, as given by the diagram.

Let f = fyofi. To show that f is not universal define g: K;—Kj; such that
g(e) = b for i=1,2,3; g(x4) = p; and g(x) = a for i = 5,6,7.

a b
Ky e ®

N
RN

4 ‘\
K o o ® ——C . e
X1 X2 X3 X4 X X7
Fig. 6
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