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On orthogonal decomposition of homogeneous polynomials

by

A. Proszynski (Torun)

Abstract. The paper is concerned with the study of the orthogonal decomposition of forms
(homogeneous polynomials in the sense of N. Roby). The first three sections yields some basic
definitions and lemmas. Then the following results are proved: .

(1) Any form over a Prifer ring admits the canonical decomposition into an orthogonal sum
of forms of special types (Theorem 4.6).

(2) There exist numerous indecomposable forms of degree >3 (Section 5).

(3) The orthogonal decomposition of non-degenerate forms of degree > 3 is unique (Cor-

ollary 6.4).

Moreover, Section 6 yields some structural information related to categories of forms.

0. Preliminaries. In this paper all rings and algebras are commutative and have
the unit element 1; all modules are unitary. For any R-module M denote
M®. = M®y., and, moreover

D(M) = {re R} rm =0 for some 0 # me M},
EM) = M[Ty,Tp, .1 = MQ®RI[Ty, Ty, ...] = MRE(R).

Note also the following well-known
Lemma 0.1, If m>1 then

m m i\ _ f@ if mis not the power of a prime,
((1)’ ” (m—l}) - ( ifm = p",

Moreover, if m =p" then 2 (":) iff "X

1. Modules of degree m. We recall some ideas contained in [6] and introduce
some natural definitions.

For any R-module X consider the functor X'®. from the category of all
(commutative) R-algebras to the category of sets. Any natural transformation
F=(F):X®—~M®.is called a polynomial on (X, M). Itis called a_form of degreem
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iff Fy(xa) = F(x)a" for any R-algebra 4, ae 4, and xe X®A. Then we have
the formula B
(1.1)  Fx,®a,+..+x,Ra,) = Y Py s X) QAT L a

mytontmy=m

where F,m___“,.,,": X"—M are uniquely determined by F. Inparticular, PF = F; _, is
the symmetric m-linear form associated with F. (We assume in this papei'm‘;hat
m>0.)

. There exists a onF-to~one correspondence between forms of degree 1 (resp. 2) and
linear .(resp. quadratic) mappings given by FrF,,m = 1, 2, Let £ be an R-homo-
morphism. Then f corresponds to F = f®., and we abbreviate this to F=f.

Now introdu_ce the category R-Mody; as follows: )

(@) ijects of R-Mody are modules of degree m over M, i.e., pairs (X, F)
where X is an R-module and F is a form of degree m on (X, M).

®) f: (X, F)~(Y, 6) in R-Modj; iff f: X~ Y is R-linear and F = G of. (In
th¢ case where f: XC=Y we write f: (X, F)C(Y, G) and F = Gly.)

There exists a functor L: R-Modj; x R-Modj;—R-Mody; defined by

X, F)L(Y,®)=X@Y,FLG, flg=rog,
where
FLOx+y) = Fux)+Gyy) for any xe X¥®4 and ye Y®A.

) Let (X, F) e ObR-Modj;. A decomposition X = Y@Z is called orthogonal
{ﬂ' X, F) = (¥, G) L(Z, H) where (Y, G), (Z, H) e ObR-Mod%. Since m>0
it follows that G = Fly and H = F|,. Thenwe write X = Y 1L Zand F = G L H’

Assume that X is a free R-module with a fixed basis {e;, ..., e,}. It is known'
from [6] that any form F on (X, M) corresponds to an ordinary ;orm with co-

efficients in M, namely
Fpry)e,®Ty +...+6,®T,) = Y Fopprma€1s oovs @) QTP Ty
e M[Ty,...,T,].

We write briefly

F=3 Fpupmlrs crs @)QT™ .. Tin
In this correspondence, the operation L acts as f i ‘

, ollows: if Fe M[Ty, .., T ]
GeM[T,, .., Ty] have the same degree, then s o T nd

FlLG = F(Tys s T)+G(Tyi1s oo, Ty € MITy, oo, T

Similarly, the usual ort iti i i
deﬁnitio}; . orthogonal decomposition of forms is a special case of the above

. 0{),2: l(é’ R (f"?ﬂ‘i O;R-N(I;dg,) and (X, G) e ObR-Mod%. Then we obtain X, FG)
ObR-Modjs™" where (F*G)4 = F,*Gy. This corr g i multi
plication of forms in the ca:e of AX =AR". FrrEponds o fhe ordinary mult

.:51 1©
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2. The orthogonality relation. Let (X, F) € ObR-Modj,. We say that elements
%y, X, € X are orthogonal (in (X, F)) iff the conditions of the following lemma are
satisfied. .
Levva 2.1. The following conditions are equivalent:
1) Fux,®a+x:8a, +x) = Fy(x,®a, +3_€)+F,4(xz®az+§)—FA(§)
for any R-algebra A, a,,a,€ 4, x€ X®A. :
@ Fer®®Ty 3%, @ Tt %) = Fry(x ®@T4 +§)+FE(R)(xz®T2+BE) — Fyry(X)
where x = % @Ts+... +%,Q7T, € E(X). )
(3)( Em,...,m,,(xh X2, X’ ldd X) =0 lf n>2 and my, m2>0'
Proof. (1)<(2) is evident since F is a natural transformation.
(2)<(3) Consider the endomorphisms #;: E(R)—E(R) given by u (T = 0 and
u{T)) = T; for j# i. Let uyp =t 21y and ¢ = x;®Ty+...+%,8T,. Then

Fyy(%,®T4 + %, @ T +X)— Fpgy(*1 @T +§)—FE(R)(JC2®T2+3_C)+FE(R)(J_C)

= Fpuy()— Fray((1®uy) H)—Frw) (®u) ®) + Fryry ((1®u12) ®)
(I®1-18w —1®u,+1@u2) Femy(D)

= Y Fppom®1s s X)@TT o T4"
my,mz>0

by Formula (1.1). This completes the proof. . ’

Observe that in the case of m = 1 all elements are orthogonal, and in the case
of m =2 we obtain an ordinary orthogonality relation in a quadratic module,

We call subsets E;, E, =X orthogonal iff all pairs ey, e;, €, € Ey, €; € By, a1
orthogonal, The following lemma explains conmection with the orthogonal de-

I

composition.
Levma 2.2. If X = Y®Z then X=YLZif Y, Zare orthogonal.
Proof. Let X = Y L Z and let 4 be an R-algebra, a,bed, ye ¥, zeZ,
ye YA, ze Z®A. Then
FA(y®a+z®b+(2+g))—FA(y®a+(_)_7+g))—F4(z®b+(Jl+g))+FA(J_I+g)
= F,(y®a+y)+F,(z®b +g)—FA(y®a+z)—FA(z)—FA(z)—
—F (z®b+2) +F(p)+F2) = 0.
Conversely, let ¥, Z be orthogonal. ‘We must prove that F,(y+z) = FN+FE2)
foranyy = y1@a; ..+ @ € YRAand z = 2, @b, +...+2,8b, e ZQA. Apply-
Ing induction on k-+n, we compute
Fy((y®a+y)+(z®b+2)
= F(y@a+z@b+(y+2)
= F(y®a+y+2)+Fz@b+y+2)—F(y+2)
= FA(J’@”+J_’)+FA(Z)+FAQ’)+F.4(Z®b+§)“FA(Z)"FA(Z)
= FA(y®d+X)+FA(Z®b+£). v
This completes: the proof.
1*
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.

' The orthogonal complement E* of the subset EcX is the set of all xe X
which are orthogonal to E. Its fundamental properties are described in the
following '

Lemma 2.3,

() E* is a submodule of X,
(@ E*=R(E"
() Ei<E, = E{>E,
4 EcEY, E'=Ept,
©) (UEi'L = ﬂEi*
Proof. It suffices to prove only (1). Let x,, x, € E* and
. 15 X3 and let r,, r, € R. Th
any ec E, a,be 4, and xe X®4 s o for
Fy((rixs+ryx)@a+e®b+x)
= Fy(x,®ria+x,@r,a+e®b+x)
= FA(x'1®r1a+x2®r2a+5)+FA(x2®r'2a+e®b+§)—FA(x2®r2a+x)
= Fu((ry%: +r,%) ®a-+x) + Fy (e®b+x)—F,(x). -
Hence ryx,+r,x, € E-.
Here is an application. The fundamental pr i i
; plication. property of non-singular quadratic
forms is t}.nev fol.lowmg: it f: (X, F)~(Y, G) in R-Mod} and (X, F) is non-singular,
tl;en f 1ts mje;tlve :lnd Y =f(X) Lf (X)) (For the proof se¢ [1].) The following
opositio isfyi ‘
grogerty. n shows that there are no forms of degree m>3 satisfying an analogous
PROPOSITION 2.4. Let (X, F) € ObR-Mod}; where m>3 and Homg (X, M) # 0.

Then there exists an injection (X, F)C->(Y, G) such that X is a direct but not an
orthogonal summand of Y. l

Proof. Let e,, ..., e, form a basis of R* 1 and let ¥ = X‘GB.R"""1 Write:
Py .
Sfit Y>X>M  where 0 # fe Homg(X, M) and p is the projection,
fi = the projection ¥ — Re;x~R, i=2,..,m,
G=FLO+fi fu=FLO+(/i®) ... (fu®).

((’)fbs;rv; ;hat X, F)C—>(L Y, @) in R-Modj;. Suppose that X is an orthogonal summand *
. Then ¢, € X+ X* and hence x'+e, € X* for some x' e X, This means that
Grry(X® T+ (x' +€5) T, +)

= Opmy(X®T; + 1)+ Gy ((x + ) T, +.}_’) ~Gpwy(y)

for any xe X and any ye E(Y). Putting Yy =e@T3+..+¢,QT,, we -obtain

Frry(x®@T1+ %' Q@Ty) + (f(x)®T, +H (XN®T)(1RT,) ... 1QT,)

= Fpmy(x®Ty)+ (fF@OT)O0RT)(1RT: ) (LQT.)4 F ’
+(fENOT)(IRT,) ... (1®Tm; 3 m) + Fry(x' ®@T,)

©

On orthogonal decomposition of homogeneous polynomials 205

and hence )
FE(R)(x®T1+x'®T2)+f(x)®T1 Ty = FE(R)(JC®T1)+FE(R)(X’®T2) .
Since m33, it follows that f(x) = 0 for any xe X. This contradiction completes
the proof.
3, The operations rad and ker. Let (X, F) e ObR-Mod};. The submodule
rad(X) = X* is called the radical of X.
Lemma 3.1. The following conditions are equivalent:

1) xerad(X),
() F(x®a+x) = F(x®a)+Fy(x) for any R-algebra A, ac 4, xe X®4,

3  Fepx@T1+x) = Frry(x@T) +Frer(x) where
X = %,@T,+..+%,80T, € EQX),

' ’
@ Fppo®: X, ., X) =0 if n22 and my, my>0.

Proof. The implications (2)=(3)=(4)=>(1) are evident. "
1)=>@) Let x = X, ®ay + .. +X,Qa, = X, Qa;+. Then by induction on n we
get
FA(x®a+§) = F,(x®a+x®a;+y) = FA(x®a+2)+FA(x1®a1+Z)—FA(2)
= FA(x®“)+FA(Z)+FA(§)—'FA(Z) = Fy(x®a)+F(x).

Write K(X) = {xe X| Fp(x) = 0} and ker (X) = rad(X) n K(X).

LemMa 3.2. The following conditions are equivalent:

@O xeker(X),

(2) Fyx®a+x) = F4(x) for any R-algebra A, ac 4, xe X®4,

3) Frapx@Ti+x) = Fpy(x) where x.= %, ®@Tp+ o +%,@T, € E(X),
@ Py X, s X) = 0 if n>1 and my>0.

Proof. Observe that Fg =F, and F(x®d) = Fr(x)®ad". Hence @=1)
=(2)=>(3) are evident. (3)=>(4) follows from Formula (1.1).
Ker(X) is called the kernel of X. It is a submodule of X by (2) and is charac-
terized by the following
LemMa 3.3. Let Y be a submodule of X and let f+ X—X|Y be the natural homo-
. morphism. Then the following conditions are equivalent:

Q) Ycker(X),
(2) there exists a form F (evideritly unique) of - degree m ont (XY, M) such
that £+ (X, F)~(X]/Y,F) in R-Mody;. :
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AMoreover, rad(X/Y) = rad(X)/Y and Xker(X]Y) = ker(X)/Y. In particular,
ker (X/ker (X)) = 0.

Proof. The exact sequence 0— YCI—>X —QX 7Y -0 induces the following diagram:

(w0 s
&) XoY—=X—X|Y.

(1,0)

It is easy to see that fis surjective, and, for any x,, x, € X, f(x;) = f (x,) iff there

exists an element (x,) e X@®Y such that (1,i)(x,y) = x; and (1, 0)(x, }) = x,.

. This means that (3.1) is an exact sequence in the sense of Grothendieck (see [6],
p. 278). Then Theorem IV.4 [6] implies that (2) is equivalent to the condition

Fo(l,i) = Fo(1,0), which means that Fy(x-+y) = Fy(x) for any R-algebra 4,

any y in the image of Y®4 in X®4, and x e X®A4. This is equivalent to (1). The

last part of our lemma is evident. B
Let (X, F) e ObR-Mody};. For any submodule ¥Y<=X we have defined ¥*cX.
On the other hand, we have (Y, F|}) e ObR-Modj; and rad(Y), ker(¥)c Y.

LemMaA 3.4. If Y is a submodule of X, then Y* n Ycrad(Y). Moreover, if
X=YL1Z then '

Q) rad(N=YnY=radX)n ¥,
) Y =r12d(Y) L Z,
@ rad (X) = rad(¥) L rad(Z).

Proof. The formula ¥* n Ycrad(Y) follows immediately from Lemma 2.1
(3. Lt X=YLZ

(1) Evidently rad(Y)o¥* n ¥ orad(X) n Y. Let y erad(Y). Then
Fy(y®a+(y+2) = F(y®a+y)+Fy(2) = Fy®a)+F,(3)+Fu(z)
=F(y®a)+F,(y+2)
for any aed, ye YQA4, ze ZQA. Hence yerad(X)nY. .
(9 Evidently Y*orad(Y) LZ. Let xe Y% Then x = y+z where ye ¥ and
zeZc ¥ Hence ye ¥ n ¥+ = rad(¥).
() rdX) =(Y+2)' = ¥ 1 Z* = rad(¥) L rad(Z) by ().
LemMA 3.5. If X = Y L Z then ker(Y) = ker(X) n Y. Moreover, if rad(Y)
= ker(Y), then ker(X) = ker(¥) L ker(Z). ‘

Proof. The first formula follows from Lemma 3.4. By the same lemma
rad(X) = rad(¥) L rad(Z). Let x = y+z where y erad(Y) and zerad(Z). If
rad(Y) = ker(Y) then Fu(x) = Fp(¥)+Fg(z) = Fg(z). Hence xe ker(X) - iff
z e ker(Z). ) .

.
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LemmA 3.6.
rad o rad = rad,  ker o ker = ker o rad = rad o ker = ker .

Proof. .
rad (X) = rad (X) 0 (rad (X)) =rad (rad (X)) =rad (X) ,
ker(X) = ker (X) n (ker(X))* =rad (ker(X))=ker(X)
ker (rad (X)) = rad (rad(X)) 0 K(rad (X)) = rad(X) n K(X) = ker(X),
ker (ker (X)) = rad (kex (X)) 0 K(ker (X)) = ker(X) 0 K(X) = ker(X) .
Tt is well known that in the case of m = 2 we have Y+ n Y = rad(Y) for any
y it i i 1.
submodule YeX. For m>3 it is false in genera »
Fxawpie 3.7, Let X =R =Re@Re, Y=Re, M=R F=TI"Ty,
mz3, (m—1)¢ D(R). Since Fly = 0, it follows that rad(¥) = Y. On the other
hand, if ree Y~ n Y then
F.(R)(re®T1+e®Tz+e’®T3) , ,
’ = Fpry(re®T} +& @T3) + Fery(e®@Ty+e ®Ts)— Frry(e' ®T3) ,
ie., (rTy -1—T2)"'”1T‘3 = (/T Ty +T5 T, Hence (m—1)r=0, re= 0. This
means that Y+ n ¥ =0 ‘
Let (X, F)e ObR-Mod%. The module X (the form F) is called
(a) non-degenerate iff rad(X) =0,
(b) totally isotropic iff rad(X) = X,‘ .
(c) totally singular iff ker(X) = X (le. iff F= 0),
(d) anisotropic iff K(X)=0.
(Compare also 2] and [5] i
follows
COROLLARY 3.8.

i 2 1y isotropic, totally singular).
= Y L Z, then X is non-degenerate (tota . '
@ g")lfand Z qre non-degenerate (totally isotropic, totally singular, respectively).

n the case of m = 2.) From the above lemmas

@ IFX=YLlZadYis non-degenerate then Y+ = Z.
(3 I YeX and Y= Yt then Y is totally isotropic.
4) rad(X) is totally isorropic and ker(X) is totally singular.
It is clear that any (X, F)eOb R-Modl is totally isotropic. Hence in general
ker(X) % rad(X). For m>2 we prove ‘
ProposITION 3.9. Let m>2 and let M be an R-module. If
(1) . m is not the power of a prime or
(2 m=pandpé D(M), for some prime p,
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if;;,cki;{? is—-—- ;a.;il(g)f)sg;uc;zjf (X, F) € ObR-Mody;. In particular, F is totally iso-
Proof. Let (X, F) e ObR-Mod}; and let x erad(X). Then
Fpy(x®@T1 +x®T) = Epry(x@T1)+ Frry(x®7T5) ,
Fr®)@ (T +To)" = Fr(x)®TT +Fr(x)®T7
(':') Fy(x) =0 for 6<i<m.

Hence x e ker(X) by Lemma 0.1.

If m = p" and p e D(M), then there exi ‘
o s Xist non-zero totally i i '
R-Mod};. They are described in otally isotropic forms in

ProPOSITION 3.10.  Suppose that (X, F) ‘
: T 30. / Ny € ObR-Mody, where m = p">2
and X is a free R-module of rank N. Then the following conditions are equivfljt:

(1) F is totally isotropic,

(2) Sfor any basis {e,, ..., ey} of X, F has the form
F=0a,@T'+..+ay®Ty, pa;=0, j=1,..,N,

(3) ' F has the above form for some basis of X.

Proof. (1)=(2) Let {e4, ... i i i i
aroot )=(2) {e4, ..., ey} be a basis of X. Since F is totally isotropic, it
Frayes®Ty+... +exy®Ty) = Fr(e)QTT+...+ Frley)® T .

Moreover, the above proof shows that pFg(x) = 0 for any x e X.

B)=(1) Let F = a, @TT+...+ay®@T™ and
pa; =0, f i
o X et e e e S Tﬁen 4 or some basis {ey, ..., ey}
7

Fray®1®Ty + +%,@T;) = Fey (Y. 6,0 (% rijTi))
J i

= ;“J®(;fuTt)"' = ;“J®(¥’$Tr)

since (Z) a; = 0 for 0<k<m. Hence

Fory(x1 ®Ty +... +%,QT) = FE(R)(x1®T1)+FE(R)(JC2®T2+...+x,,®T,)
X )
and therefore F is totally isotropic.

4, The canonicﬂ decomposition. I i i
. . In this sectio i izati
of the “radical splitting” (see for example [4], [5])Il e £, fome gemersliztion
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ProposiTioN 4.1, If (X, F)e ObR-Modyy, then the following canditians are
equivalent:

(1) rad(X) is @ direct summand of X,

(2) there exists an orthogonal decomposition X =Y LZ such that Y is non-
degenerate and Z 1 totally isotropic. :

Moreover, Z = rad(X) for any decomposition in (2).

Proof. If X = Y@rad(X), then evidently X = ¥ Lrad(X). Moreover,
rad(X) is totally isotropic, and rad(Y) = rad(X) n ¥ = 0. Conversely, suppose
that X=YL1Z, Y is non-degenerate, and Z is totally isotropic. Then
rad(X) = rad(¥) L rad(Z) = Z. Hence rad(X) is a direct summand of X.

proposiTioN 4.2. If (X, F)e ObR-Modly, then the following conditions are
equivalent:

(1) ker(X) is a direct summand of X, ‘ :
(2) there exists an orthogonal decomposition X = Y | Z such that ker(Y) =0
and Z is totally singular.

Moreover, for any decomposition in @), Z = ker(X), and Y is uniquely determined
up to an isometry. More precisely, (Y, Fly)~(X/ker(X), F) in R-Mod};.

Proof. It X = Y@ker(X), then evidently X' = Y 1 ker(X). Moreover,
ker(X) is totally singular, and ker(Y) = ker(X) n ¥ = 0. Conversely, let
X=7Y1Z ker(¥)=0, ker(Z) = Z. Since ker(Z) = rad(Z2), it follows that -
ker(X) = ker(Y) L ker(Z2) = Z. In particular, ker(X) is a direct summand of X.
Moreover, the natural homomorphism fi X > X/ker(X) induces the isomorphism
11 Y-X/ker(X). Lemma 3.3 shows that f': (T, F|Y)§(X/ker(X'),F ) in R-Modj;.

Observe that the above two propositions describe the same decomposition in
the case where the assumption of Proposition 3.9 is satisfied. Then this decompo-
sition is unique up to an isometry. However, if m = p">2 and p e D(M), then the
decomposition in Proposition 4.1 is, in general, not unique. This follows from.
»  ExAMPLE 4.3, Letm = p">2 and let R be afield of characteristic p (R'= Z, in
the case of m =2). Let (X,F)= (Y, ® L(Z, H) where Y = Re,®...®Re,,
Z = Reppi, G=Tie T H=T",,. Then X=Re® .. @Re,., and
Fe=T, .. Tp+Thsy. Observe that G is non-degenerate by Corollary 5.2 and H is
totally isotropic by Proposition 3.10. Hence X=YLlZisthe decomposition from
Proposition 4.1. In particular, Z = rad (X). :

Let ¢ = e;+epirs £ =15 €'ys; = €nsq- Then

FE(R)(G;®T1+"‘+er'n+l®Tm+l) ,
= FE(R)(e].@Tl+"'+em®Tm+em+1®(T1+"'+Tm+1))
=T .. T4 T+t T )" = (Ty .. Tt TP+ v+ T+ T
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Let Y' = Rei®...@Re,,. Then X = ¥’ L Z where Z = rad(X), and hence it is
the decomposition from Proposition 4.1. Moreover, G' = Flp = T ... Tpy+T"+...
« et T in the basis {e}, ..., ¢,}. We prove that G and G’ are not isomorphic. It
suffices to show that G’ is not a product of linear forms. Suppose that
G = (T —a,T;~..~a,T,)G". Puiting T; = S§;-+a,8,+..+a,S, and T;=§,
for i>2,” we obtain

m m
SG = 8 o S+ ST+ Y a8, .. ST Syt T (@ 1) ST
i=2 i=2

If m>2then ¢; = 0 and af'+1 = O for i = 2, ..., m — a contradiction. For m = 2
we have S;|Sy Sy + 87+ (a5+a,+1)S%, and hence a3+a,-+1 = 0. This is impossible
in Z,.

Now we begin the proof that the above decompositions exist over Priifer rings.
We first prove .

LEMMA 4.4. Suppose that (X, F) e ObR-Mod’y, R is an integral domain, and M is
a torsion-free R-module. Then X|rad(X) and X/ker(X) are also torsion-free.

Proof. Let rX = 0 in X/rad(X) and 0 # re R. Then rx erad(X) and hence
" Frry(x®@a+x) = Fyp(rx@a-+rx) = Fyp)(re@®a)+ Fygy(rx)
= I"(Fpgy(x®a) +FE(R)(?_C))

for any a e E(R) and x & E(X). Since E(M ) is torsion-free, it follows that x e rad(X),
i.e., X = 0. The proof of the second part is similar,

It is known that R is a Priifer ring iff R is an integral domain and any finitely

generated torsion-free R-module is projective (see for example [3], Ch. VII, Prop-
osition 4.1). Hence we obtain

COROLLARY 4.5, Suppose that (X, F) e ObR-Mody, R is a Priifer ring, M is
a torsion-free R-module, and X is a finitely generated R-module. Then

0
@

1ad(X) and ker(X) are direct summands o X,
if-ker(X) = 0 then X is projective.

From the above facts immediately follows

THEOREM 4.6. Suppose that (X, F) € Ob R-Mod}y, R is a Pritfer ring, M is a for-
sion-free R-module, and X is a finitely generated R-module. (The last assumption

can be omitted if R is a field.) Then there exists an orthogonal decomposition
X=X 1X,L1X; such that

(1) Xy is non-degenerate,
(X, is totally isotropic and anisotropic,
B) X, is totally singular.
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Any such decomposition has the following properties:
‘() Xy and X, are projective.
(b) X, L X3 = rad(X) and X3 = ker(X).
(© X, L X, and X, are uniquely determined up to an isomeiry.
(d) If m is not a power of a prime or m = p"=2 and char(R) # p, then X, = 0.
In this case, the above decomposition is unique up to an isomeiry. )
5. Construction of indecomposable forms. Multiplication gives us some examples
of indecomposable forms, Namely
Tuporem 5.1. Suppose that D(R) = D(M) =0, X # 0, m, k>Q, ();,%
c ObR-Mod™, (R, H)e ObR-Mody, ker(G) =0, ker(H) = 0. Define '( )
c ObR-Modl™ as follows: ¥ = X®R, F=(GL0)(0 1 H). Ijhen F is non
degenerate. Moreover, if one of the following conditions is satisfied:
(i) G is non-degenerate,
(i) m>k,
(iii) m>1 and k # 0 in R,
then F is indecomposable.
Proof. Observe that D(X) = 0 by Lemma 4.4, Moreover, H ' (a@) = rd wheri
r s 0, and hence Fy(x+a) = G(x)ra*. Since D(E(M)) =0, it suffices to pu
r=1.
(1) Let x;+ry and Xy +72 be orthogonal in (¥, F). We prove that x4, X, are
orthogonal in (X, G) and ryXp+72Xy = 0. Observe that .

(CRY GA(xl®a1+x2®a2+§)(r1a1+r2az+a)k k
= GA(x1®a1—I—gc)(rial+a)k+qA(x2®az+§)(r2a2+a) — G (x)d*

for any a;, a;,a€ 4, xeX®A.Put 4 = ER), a, = Tll’c a, = I:z, x = x3®@T3+..e
+%,®T,, a =T, +fComparing the coefficients at Ty.1, We ‘obtain
b n n> n .

Ga (51 ®Ty + X, @y +3) = Grapy(x1 ®T1+2) + Crry(*2 T2 +X) = Gr(X) -

This means that x;, x, are orthogonal in (X, G).
Now we prove that ryx;+ryX% = 0. Suppose i
a; =r,Ty, Gy = 1Ty, a =.—rir, Ty, and x = x3®T

that ry, 7y % 0. Let 4 = E(R),
+ o+ %,@T, in (5.1). Then

we obtain .
Gry((ry X2 +7r2%)®Ty +2)(ry T = — GrayX) (—rir2 T
Since D(E(M)) = 0, it follows that

(5.2) Gy (rexa+ra %) ®Ty ) = (=D Gran@)
Suppose that k is even. Applying the endomorphi

in 0, and T in T; for i>1,we obtain Ggy(¥) =
shows that ryx,+r,%; € ker(@ =0.

sm u: E(R)—~E(R) which carries T}
— Ggqry(%)- Hence for any k, (5.2)
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Suppose that r; =0 and r, # 0. Let A = E(R), ¢; = Ty, a, = —T,, and
a = r,T,. Then (5.1) shows that

Gy (1 ®Ty +X) (12 To)* = Gy (r2 o) .

Since D(E(M)) = 0, it follows that x; € ker(G) = 0. In particular r; x,+r,x, = 0,

(2) I x+rerad(F), then Rx =0 = rX by (1) and hence x+r = 0. This
means that F is non-degenerate.

(3) Suppose that Y = V; L ¥, where Vy, ¥, # 0. It follows from (1) that
Vi, Va4 X, R. Hence there exist x,+r;e ¥y, i =1,2, such that x,,r, ¢ 0, Let
xeX and x =y+z where y+reV; and z+seV,, It follows from (1) that
r X, = —ryx; is orthogonal to y and z. Hence x,, x, erad(G) by Lemma 4.4,
This is impossible if ¢ is non-degenerate. Put 4 = E(R), ay, = Ty, ay = Ty, a = 0,
and x = 0 in (5.1). Since x,, x, are orthogonal, it follows that

(Greryx, ®T9) + GE(R)(XZ ®T))(r Ty +r, T

= Gpry(x; ®T1) (ry T + Gy (%2, @) (1, Th)
This means that

Grx)®TT((ry Ty + 12 T —(ry Ty)) + Grx) @ TR ((ry Ty + 1, T = (1, Tp)¥) = 0.

Let m>k. Comparing the coefficients at TPT¥ and at TETT, we obtain
% Grlxy) = % Gr(x,) = 0. Hence X1, X € ker(G) = 0, but this is impossible.

Let now m>1. Comparing the coefficients at T7*~1T, and at T, T2""*~1, we
obtain kri ™ r, Gr(x,) = kry 15 Gr(x,) = 0. X k # 0in R, then Xy, %, € ker(G) =0,
and this is also impossible. This completes the proof.

COROLLARY 5.2. Let D(R) = D(M) = 0, N>2, m=3. Then there exists a non-
degenerate indecomposable form of degree m on (RY, M).

Proof. Since, RE>M, we can assume that M = R. Define the form F, v of
degree m>2 in R[Ty, ..., Tyl in the following way:

@) Fopp = Ty a4+ Ty Ty, Foonir = FyantThsy, Foy = T7;

() Frryyyes = FonTyaq-

Observe that K(T7) = 0 and hence ker(F,, ;) = 0. Moreover, T, T, is non-
degenerate and hence ker(F,x) = 0 by Lemma 3.4 and 3.5. It follows from The-
orem 5.1 that F,, y are non-degenerate and indecomposable for any mz3 and N>2.

Consider monomials T7 .., 70 € R[Ty, ..., Ty] where my, ..., my>0. Which
of them are decomposable? If R = R, XR,,

;  axe decom then the canonical decomposition
«R" = Ry x R; is evidently orthogonal, Hence

we can assume that R is connected,

PROPOSITION 5.3. If R is connected, then the only decomposable monomials
are ’ .

()  T,T, if 2 is invertible in R,

(@) TI'TY, where p # 2 is a prime, if R is a Z,algebra.
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Proof. Observe that the above forms are decomposable. In fact, the invertible
change of variables Ty = Sy +8,, T, =8,—8, gives us

TYTY = (S, +8)7 (S, =87 = 817" =837

Conversely, let F = T ... TR" € R[Ty, .., Twl, where m;>0, be decomposable.
Since R is connected, it follows that F is decomposable over all R-alge‘tzras. We
first prove that F = T"TY where m = p", p is a prime, and 7n30. Accordingly we
consider F over some quotient field of R. )

Since ker(T™™) = 0, it follows from Theorem 5.1 that Ti"‘T'z"zlxs‘nomdegenerate
and TP ... Ty is indecomposable for N>3. Moreover, T’{”Tg".m mdecompos'a‘ble
it my # m,. Hence F = T7'Ty. Let m = P ... p¥ be the canonical decomposition
of m in Z If s>1, then rad(T7) = ker(TT) =0 by Proponsmon 3.9, and hence

is i le by Theorem 5.1. Therefore m = p".
]Tn;a&:ts ;:nie(;??ff;%‘isﬁ = pzl, and n>0 (the case m = 1 is well-known). It .follows
from Theorem 5.1 that p = 0 in R/ for any I'e Spec(R), and hence p is nilpotent

*in R. Suppose that p = 2. We can assume that R is a field. Then 2m = 2""1,2 =10

in R, and F is diagonal. Hence F is totally isotropic by ProposiFioP 3.10. On the
other hand, F is non-degenerate by Theorem 5.1. This contradiction shows that

T p#F2

Suppose that p # 0 in R. Since p is nilpotent in R, itkfollov‘/s that p' # 0 i.n
R/(p’). Hence we can assume that p  0in R, p> = 0 m R, and,. ewdelntly, that Ris
local. Since F is decomposable it:follows that there exists such invertible change of
variables T, = rSy+sS;, Ty = 1S3 +uSy, that ;

(5.3)  TOTE = (1S +8S) (88 +uSy" = (1152 +5uS3 + (ru+s0) S, S3)"
B R () L

Since F is non-degenerate over K, the quotient field of R, it follows that r, s, tf u are
invertible in R. Since p* = 0 in R, it follows from Lemma E)l th:a.t the coeﬁicxertt_a;t
(SZ™(S3y"(Sy Sz)™ in (5.3) is zero if at least one of thc; :_1;‘ s is different flzom.kp .
‘Put m’ = p"~* and compare the coefficients at ST S3 in (5.3). This gives us

() sty s = 0.
is i ible in R. Since su is also
Observe that ;’:,\) = pk, where pXk and hence k is invertible in R. Since

invertible, it follows that '
plut+s)® = 0.

From the above facts we immediately obtain
(rty" 2+ (su)" S3™ = (rtST A 5uS2Y 4 (ru-+sEy" ST S «
Since m is odd, it follows that
(’;’)(rt)‘(su)m"‘ ~0, O0<i<m.

3 — Fundamenta Mathematicae XCVIIL',

%
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Moreovet, 1; s, t, u are invertible in R, and hence p = 0 in R by Lemma 0.1. This
contradiction shows that R is a Z, -'nge‘bra

6. The uniqueness of the orthogonal decomposition. Let (X, F) € Ob R-Mod%
Put a; = T, for i<k, ay = T4+ Ts1» and a; = Ty, for i>k in (1.1). This. glves
us the formula ‘ '

Fragpevom- 1.i.j.mk+1.mn(x wwes Xs X en n) = ( me,...,myq-1.i+j.n|k+1,...,yn,,(3(v'1, wes Xp)

An easy induction shows that .

PF(x].: ...,x‘i, oty Xy vees X, ) = ml mn[ Frh,...,m,.(xls vy xn) "

my [

for any my, ..., m,. Applying Lemma 2.1, we obtain
COROLLARY 6.1. Let (X, F) e ObR-Mod}y, m>2, and (m—1)! ¢ D(M) Then

X1, X, are orthogonal in (X, F) iff PF(xl,xz, 5 ey X) = 0.

. The following facts show a difference between the ‘cases m = 2 and m>3.

-PROfoslTION -62. Let (X,F)eObR-Modl, m23, and (m—1)!¢ D(M).
F X=X 1. 1X, thet E* =X, nEY) L.. L(X,nEY for any Ec<X.
* Proof. Let xe E* and ee E. Then x = x;+¥;, € = x'-+)" where x;, x' € X,
oy e¥;=X; L. LX L. LX,. Observe that A

PF(xin e, X, TS X) = éF(xi’ x” X'i?“"": Xi)+PF(0,y', ‘Yi’ -..; Yi)
= PF(x;, %, Xy ey X)+PF (1, 7,0, ., 0)
= PF(x,e, X1, ., X)) =0 ’

since m>3. Hence x;¢e E' by Corollary 61 Tlns completes the proof ‘

_THEOREM 6.3. Let (X, F) e ObR-Mod},,. m>3 (m+1)! ¢ D(M), and let. F be
non-degenerate. Suppose that X = X, L ... L X, where X, 1% 0 are mdecompo.s'able
Then any orthogonal summand Y of X has the form ¥ = X, L ... L X, i;<.. <1s

Proof. Let X = ¥ L Z. Tt follows from Corollary 3.8 (2) and Proposition 6. 2
that X; = (Y 0 X3) L(Z n X)). Since X, is indecomposable, it follows that X, ¥
or Xj=Z. For example, let X,,.. X < Y and X;.H, . A 'I‘hen
Y=X L. L1lX,.

COROLLARY 6.4. Let (X, F) e ObR-Mod » m23, (m~1)! ¢ D(M), and let F be'
non-degenerate. Suppose that

X=X l.1lX,=¥L1.1%

where X;, ¥; # 0 are indecomposable. Then I = and Y, =Xy for some permu-
tation s € S,.

Observe that the assumption (m—1)! ¢ D(M) is necessary. In fact, Iet R be '

a field, char(R) = p # 0,2, and m—1 = p*, n>0. Then T7 +T"'ER[T1,T2] is
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non-degenerate by Proposition 3.9 and Corollary 3.8 (1). Moreover, if Ty = Sl +Sz

-and Tz = S1 Sz’ then

T4+ T3 = (S +8,)(5T! +Sz“1)+(S1 Sz)(S”“ — STy = 2ST+25% .
Let us now define a full subcategory R-Mod of R-Modj}; as -follows:
X,Fe ObR-Mo » iff X is a finitely generaled projective R~ module arid F is nons

degenerate. In the rest of this section we assume that

(1) m>3 and (m— N ¢ D(M), ) o

@ R=R;x..xXR where R, are connected rings.

Denote r(P) = rank(Py)+.. ,+rank(Py) for any fnitely generated pro;ectlve ’
R-module P = P;x..xP; It is casy to see that r(P®Q) = r(P)+r(Q) and
rP)=0=P =0 Hance the standard verification shows that any object of
R-Mod}; can be decomposed’ into a finite orthogonal sum of indecomposable

;ln'-ea.s_. This decomposition is unique by Corollary 6.4. In particular, we obtain
CoROLLARY 6.5. R-Mody has the cancellation property:
. FLGRF LG, FxF = GrG.
Tsomorphism classes of ijects in R Mod}; constitute a set, denoted by 9" M-,
The 1ndeco1nposable objects define its. subset (FW)WQW It is easy.to see that
COROLLARY 6.6. (#%, L) is a commutative free semxgroup, and KO(R Modﬁ',, J.)

is the free abelian group omn the set (F)yew-
Now we begin the study of the automorphlsms in R-Mod"’ Let

(X, F) e ObR-Mod};. Observe lhat the permutation group S, acts on the group
Aut(F),, Aut(F) % ... x Aut(F) (n tlmes) in the following way:

(fl: (L sf) = (fs(l)’ . 5j:v(n)) fo’;' SES :
Hence we can form the semi-simple product S, xAut(F),, On the other hand, any

s € S, induces the automorphism
5: (X, F) Lok (Xn:F) (Xl‘s’F) Lal&X, 5,

X) = Xupy
where X, = X, defined by 5(xg, s % ) = (Kg-1q1ys ooes Xa= ~1gny)- Since 5( o
it follow; that the mapping SHS is anGCtIVe (if, evidently, X # Q). ‘We prove the

following
TrroreM 6.7 There exists a natural group isomorphism

% (Syy X AUL(F)n) R Aut( _Lan F,)
weWw we

defined by B - i ’ v
) } (Sw; fwls --"fwnw)wsWH“TlE—;w ° (fwl‘ L -wanw) .

3
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Proof. Let F,, be defined on X, and let X, be copies of X,,. Then F = Ln,F
is defined on X = | (X, L..L1X,,,). Let fe Aut(¥). Then ‘

X =1 (f(le) L. lf(prlw)) |

and hence f(X,,) = X,,;,,; for the unique system of permutations s,, Syyy- Write
Jor =Flx,, € Aut(F,). It is easy to prove that the mapping

AUt(F)"’ X (Snkaut(Fw nw): fH(Sw,' j;vls -"!fwnw weW

is a group homomorphism which is inverse to the above. This completes the proof.

The above theorem makes possible the computation of the K-group (see [1])
of R-Mod};. Write

4, = Aut(F,)/[Aut(F,), Aut(F,)],
Z, = the multiplicative group {1, —1}.
THEOREM 6.8. There exists a unique group isomorphism

Ky (R-Mody, 1)~ @ (Z,@4,)

W

which carries [(F,,,f)] in (1,f) e 2,04, and [(F, L F,, D] in (-1,De Z,®4,,
where 1 # te S,.

] Proof. Define the group homomorphism u: Aut( | 7,F)-» @ (Z,®4,)
in the following way: if fe Aut( moF,), then f= | §,0(fy L ... L fon) by
Theorem 6.7, and we put "

U(F) = (585, Fot o Fom e -

Since @ (Z,@4,,) is commutative, it follows that u(gfz™) = u(f). Hence for any
(X, F) e ObR-Mod? we obtain a properly defined homomorphism

UE): At(E)>@ (Z,04,), . u(E)f) = ulhfh™,

where & denotes some isomorphism F-» L n,F,. It is easy to prove that

o) WFLG)fLg) = u(F)(f)uG)g).
Since also .
()] u(F)(fg) = u(F) () u(F) (),

it follows that there exists a group homomorphism
Ki(R-Modfy, 1)~ @ (Z,@4,,), [(F, )]0 u(F)(f )

Evidently, the images of the generators [(F,, f)), [(F,, L F,, D] of K;(R-Modjy, 1)
are the generators (1,f), (-1, 1) of @ (Z,04,). Moreover relations in

¢
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K,(R-ModT, L) show that there exists a homomorphism @ (Z;®4,)
1 ’ .

—K,(R-Modjy, L) which carries (1, 7y and (~1, De Z,®4,, into [(F,,f)] and
[(F, L F,, )], respectively. This completes the proof.

.
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