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On some functional equations with a restricted domain, II
by

Roman Ger (Katowice)

Abstract. Let (G, +) and (H, ) be two abelian groups and Jet ¢ ¢ H. The general solutions
f: G-+H of the equations

Je+y) # ¢ implies  f(x+y) = fC)+1)

SEO+S() % ¢ implies  flx+y) = f()+1D)

are given (for ¢ = 0 we got the functional equations of Mikusifski and Dhombres, respectively).
Moreover, we investigate Dhombres’ equation almost everywhere and make use of the theorems
obtained to give a result regarding the functional equation

Slet) 9 0 and J)+S() # 0 implies  flx-+)) = S)+S0).

and

The notion “almost everywhere” is introduced in an axiomatic way,

§ 1. This article is a continuation of the investigations contained in our previous
paper [6]. The notations and terminology used in the present paper follow those
of [6]. In particular, for the notions of a proper linearly invariant set ideal S
(p.Li. ideal), the associated p.l.i. ideals n(#) and Q(F), the congruence (mod.#),
the conjugacy of ideals, and also for the meaning of (a.e.), (almost everywhere with
respect to ) and some of their properties — the reader is referred to [6]. Moreover,
in the whole paper G = (G, +) and H = (H, +) will denote two commutative
groups whereas the letter f will always stand for a map from G into H. For every
ce H we put Z,: == f~1({e}); except for Lemmas 1 and 2 we shall use the sym-
bol " for the complement of a set I'=G with respect to G. If (K, +) is
a group and kg & K, then nky: = ko4 +k, (n summands), —nko: = n(~k,) and
thyi = {k e K: 2k = ky}; moreover, if ZeK is such that (Z, +) is a group, then
Z: = (Z, +). Tn the sequel, il (n) is the number of the equation, then & (i) denotes
the family of all solutions of equation (n). Every function f fulfilling the Cauchy
functional equation

0 S A+ =S )+ ()
is said to be additive. Finally, Hom(G, H): = #(1).
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In [5] (cf. also [1] and [6]) the anthors deal with the functional equation of
Mikusinski
@ C fe4n # 0 implies  f(x+)) = f()+f ().

1. G. Dhombres and the present author have investigated in [3] and [4], in addition
to other equations, the following functional equations:

€) FEO+FG) # 0 implies  f(x+y) = f(x)+f ()
and . ‘
@ fG+)) #0and fO)+/(0) #0  implies S (x+y) = F(X)+£(¥).
The results read as follows: ‘
TreOREM I ([5], Theorem 1). $(2) = Hom(G, H) provided G has no Subgroups

‘of index 2. If G does possess subgroups of index 2, then & (2) is equal to the union of
Hom(G, H) and the family of all functions of the form ‘

0 for er,
® r@={y B

where d # O is an arbitrary element of H and Z is an arbitrary subgroup of G of
index 2. .
‘ Treorem IT ([3], Theorem 2). If H does not possess elements of order 2, then
&(3) = Hom(G, H).
TeeoreM 11T ([3], Theorem 3). If fe % (3) and all the counter-images Z, of single
points ce H are members of a p.l.i. set-ideal in G, then Je Hom(G, H).
Theorems I and TI have also been ‘proved in the non-abelian case.

Making use of different methods, we are going to solve slightly more general
equations: )

@) Fat) Ee impliss  f(x4y) = FOILS )
and B
@) FOHO #c imples f(r4n) = FOIHO),

where ¢ is an arbitrarily given constant from H. In particular, we do not need the

assumption on H occurring in Theorem IL Further, we deal with the functional
equation ‘

Bae)  SEHO) #0  implies £ (x+y) = £ ()47 () (RPN

i.e. with the case where the validity of equation (3) is postulated not for all pairs
x,MNe G2 but only for those which belong to the complement of a certain set from
the p.1i. ideal Q(#) in G? associated with a certain p.Li. ideal  in G (see [6]).

Equation (2) with analogous restrictions regarding the domain of its validity
was solved in [6].
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Using the results concerning equations (3') and (3a.¢), we shall improve The-
orem II1 replacing the assumption {Z,: ¢ € H} =.# by the less restrictive one Z, € £,

In investigations of the equations postulated almost everywheré we have con-
fined oursclves (here as well as in [6]) to the case ¢ = 0. One reason is that this case
seems to be the most important. Mikusifiski’s equation (2) arose from some consider-
ations connected with geometric optics, whereas equation (3) appears in a natural
way as the symmetric case to (2). Also zero is a distinguished element of any group.
The other reason is that the case ¢ % 0 leads to a great deal of additional laborious
considerations which, however, do not bring anything essentially new to the technique
employed, so that the method is sufficiently well illustrated by the case considered.

§ 2. We start with two lemmas:

Lemma I (on o characterization of subgroups). Suppose that K = K, +) is
a group (not necessarily commutative). Z = (Z, +) is a subgroup of K if and' only
If KoZ # @ and ' s

(6 Z+Z'cZ'
where Z': = K\Z.

Proof (). The necessity is obvious, Assume that @ % Z< K and (6) is satisfied.
Take arbitrary x, y € Z and suppose that ~x-+peZ’, Theny = x+ (-x+y)ez+2,
a contradiction.

LemmA 2 (on a characterization of subgroups of index 2). Suppose that

K = (K, =) is a group (not necessarily commutative), Z = (Z, +) is a subgroup of
ndex 2 of K if and only if KoZ # &, Z': = KNZ # & and

Z+ZcZ, Z'+Z'cZ.

Proof. Only the sufficiency requires a motivation. Take a point a€Z’. Then
Z'+acZ. Suppose that there exists an x € Z such that —x € Z’. Then —x e Z—a,
e —x m z~d, zeZ Hence ¢ = x+zeZ+ZcZ, a contradiction. Thus, Z = ~Z
which thelhex' with Z+-ZaZ implies that Z is a group. Clearly, Z is of index 2,
$ince Z U (Zwg) e G, ‘

Turorem 1. [f 2¢ o 0, then & (2') = Hom(G, H) U {¢}, wherec: G—~H is the
constant function: ¢(xX) = ¢, x & G, If 2¢ = 0, but ¢ # 0, then & (2') is the union of
Hom(G, H) v {c} and the family of all functions of the form

0 for xeZ,
f(x) e {C far XEZI,

where Z = (Z, +) Is an arbitrary subgroup of G of index greater than 2, If ¢ =0,
then & (2') s described in Theorem 1: & (2') = ¥ (2).

® Y am indebted to Dy J; Tabor for this short proof. The otiginal version was a little longer.
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Proof. Obviously, ¢ is always a solution of (2'). Thus, we may restrict our
.attention to nonconstant solutions only. Assume f to be a (nonconstant) solution
of (2°). We shall distinguish two cases:

N Z,v(ZA4a)#G foral aeG,
(i) non (i).
First, we shall show that

(7) - () implies fe Hom(G, H).

To this end, suppose that case (i) occurs, fix arbitrarily x and y from G and take
‘a z € G such that z-+x $Z, U (Z,~y). Then f(z+x) # ¢ as well as f(x+y+2) % ¢,
whence

Fz+x) = f (@) +f (%)
and ’
FOty+2) =f(x+9)+f (@) = FD+f p+2) = f(x+2)+f (7).

Thus

FEANS O ~fO) = [f D+ G+2)=f D1~F @) = LF () +f (p+2)—F (+2)]
=fx+2-f(¥)-f(2) =0,
ie. (7) is proved. .
Now, suppose that case (i) occurs. Thus, there exists an ae G such that
Z,V (Z,+a) = G. Take an xeG\Z,. Then x = z+a, ze Z,, and

¢ #f(X) =Sfz+a) = fF(@D+f ().
Consequently, we get

®) f)ye{c,ctf(@} for all xeG
and
© f@#0,

since f is assumed to be nonconstant. Putting y = 0 in (2), we infer that
f(x) #¢ implies [0 =0, xeC,

whence, againby the fact that f'is nonconstant, we infer that f(0) = 0, which together
Wwith (8) implies ¢ = 0 or ¢ = —f (@. In both cases we get 2¢ = 0, since ¢ = —f(4)
implies

Fla) = ~cefc,0}

on account of (§) and,_ consequently, ¢ = —c in view of (9), Therefore, condition (i)
g;vz;) (8)and 2¢ = 0,1.e. 2¢ % 0 implies (i) and hence the additivity of f on account
of (7.

Now, assume that £ is nonadditive and 2¢ =

. - 0. The nonadditivity condition
Amplies case (ii) and hence, in particular,

relation (8). Let us consider two cases:

g ©
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1° ¢ # 0. Then f(a) = —c = ¢ and f'is of form (5) with d = ¢ and Z = Z,.
Take x € Z and y € Z'. Then, if we had x+y € Z, we would get 0 =f(x+y) # ¢,
whence 0 = f(x- ¥) = f(X)+f(¥) = ¢, contrary to our supposition. Thus, con-
dition (6) is fulfilled and hence, by Lerama 1, Z is a subgroup of G. Now, it is not
hard to check that f is nonadditive if and only if Z is of index greater than 2,

2° ¢ = 0. Then (8) implies that f is of form (5) with d = £(a) # 0 (see (9))
and Z= Z,. To finish the proof it suffices to show that (Z, +)is a subgroup of G of
index 2. For, obsetve that Z+ZcZ. On the other hand, we have Z U (Z+a)=G.-
Thus, taking ¥,y € Z', we infer that x = z,+a and y = 2,44, z,, z, € Z, whence

x4y = z+2a with 2! = z+z,e Z. I we had x4y in Z', then

05 d = [(x+y) = f(z424) = f (D) +f 24) = f 2a),
whence
0+ d=fQ2d)=2f(d)=2d,

a contradiction, Thus, Z'4Z'<Z and it suffices to apply Lemma 2.

A straightforward verfication ensures that each function mentioned in the state-
ment of our theorem yields a solution of (2). This completes the proof.

LemMA 3. Suppose that f is a solution of (3'), f()+f () = ¢ for a certain pair
(+,)eG* and

(10)  for all xe G we have f(x) e { S (), c—=F (s} or F(x+8) = f().

Then f takes at most three pairwise different values and T: = f(G)<={0,c} U }c = :C.
Proof, Observe that

(11) F(3Yyaf 5 const implies f(0)=0.

In fact, putting y = 0in (3"), we infer that £(x) # ¢—7(0) implies £ (x) = £ (x) +£(0),
ie f(0) = 0.
First, suppose that ’

@ FEe{f@), c—fls+n} for all xeG.

In such a case f takes al most two different values. If £(s) = f(¥), then %¢ is non-
empty and f(s+1)ede v {e=f(s+1n}, whence f(s+{)ec and, consequently,
Tege. T8 f(s) o f (1), then f is nonconstant and hence, in virtue of (11) and (12),
0e{f(s),/ (N}, whence f(s) = 0 and f(?) = ¢, or conversely; in both cases
T'= {0, cl. .

IETO’W,} suppose that (12) does not hold, i.c., by assumption (10), there exists
an x € G such that f(e--8) = f(5) and

S E{S@O, =S s+D}.

= = ):
Then, in particular,  (x) £ (s) # f (s) +f (f) = ¢, whence f () = f (x+8) = f () +/ (s
i.e.nfl(g)p:: clfu]e}[encc Te{0,£ (), e~ (s+1}, £(#) # 0 (whence f(s) # ¢) and

o
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f(s+1 # c. In particular, f takes at most three pairwise different values. Since
F () = c—f(?) belongs to T, we infer that

(13 fE©=0 o fE=fO or [flE+D)= ) #F()%0.

In the first case, because of £ (f) = ¢ # f(s+1) and f (s+1) e T, we get T C. The
second possibility of (13) implies f (£) € k¢ and £ (s+1) € k¢ U {0} and, again, T,
The last case of (13) gives
' T={0,f @),/ W)}

It f(s) € C, then so does £ (£). So, suppose that £ () # (1) = f(s+£) and neither ()

nor f (7) belongs to C. We shall show that such a supposition leads to a contradiction,
First, note that (Z,, +) must be a group. In [act

Zo+Zsio Y Zsy) = Qo+ Zp) Y (Zo+Zy) S Zpisy Y Zygy
and it suffices to apply Lemma 1.

Since 2f(s) # ¢ and 2f(f) # ¢, we infer that 2/(s) = f(25) as well as

2f(f) = f(2f) belong to T
2f($) e {0, £ (D}

Thus the following cases are possible:

1°2f(9) =2/ () =0,

2° 2£(s) = 0 and 2/(t) = f(s),

32 2F(s) = f () and 2/ (2) = O,

4° 21 () = £ () and 2F () = £ (5).

Case 1° We must have ¢ # 0. Hence 2, 2t ¢ Z, and Zyy=Zy—s as well as
Ziy<Zy—t. Since (Z,, +) is a group, we obtain

and 2N e{0,f(H}.

ZpycZy=t = (Zy+2)~t = Zy+1<Zy ,

whence Zg,, = Z,+t Likewise,
S+1eZy,, we get

Zsy = Zo+s. Consequently, recalling that

Zo+S+tcZy+Zyy Ly = Zo+t.

Hence Z, ) = Z,+s5<Z,, a contradiction,
Case 2° As in the preceding case we infer that 28 € Zy, whence

Zf(x)CZO-*S = (Zo'i'zs)"'é' = Zu“l"u"CIZﬂ.,) ’
in ‘virtue of the facts that (Z, +) is a group and that f(s) ¢ €. Consequently,
Zio =Zo=s = Zots = —~(=Zp=8) = ~(Zy=8) = ~Zy(y -
Since ‘
= =G = (~Zg) U (=Zs) Y (= Zsr)
=2y U Zy W (=Zsy)

2oV Zpy W Zyy =
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we come to the equality
Zry = —Zpy - .
Now, since 2f(1) =f(s), we get Zy,cZ;y—t and ZyticZyy, = ——Z,(,)c
c=Zpgtt = Zpy+1, le. ZyeZy,, a contradiction.
Case 3° it is symmetric to 2°.

Case 4° It implies £(s) = —f (), i.e. ¢ = 0. We easily get

(14) 2yt 8 =Zpgy

and

(15) Zio+Zrny<Zyy »

whence

(16) Zyy 2yt S Zpiy+Zpiy S Zps) -

(14) and (15) imply also
Ziy +S T Zyn 1S Ziy+Zpiy < Z s -
On the other hand, by (16),
Zpwy+s+HicZig+ZncZy—S.

Consequently, Z;, n(Z 7—5) # @. This is a contradiction, since if we had

S @) =f@) and f(x+8) = f(s), we would get ¢ 2/ () =@ +f ) = f(x-l-s)
=f(s), whence f(s) = 0. This completes the proof.

THEOREM 2. Suppose that f is a solution of (3"). Then the following four cases are
the only possible ones:

(i) fe Hom (G, H), ‘
(i) c*: = $e\{0} # @, f(x) = dec* for all xeG,
(iil) c* # @, f is of form (5), where Z is such-that (Z, +) is a subgroup of G
and d is an arbitrary element of c*,
(iv) ce0%, fis of the form

0 for xek
J(x)y=1 d for =xek,
—d for xek,,

where K is such that (K, <) is a subgroup of G of index 3, Ky, K, are the cosets of G
with respect to K and d is an arbitrary element of %c.

Conversely, every function f for which one of these four conditions is satisfied
yields a solution of (3").

Proof. Assume f to be a solution of (3"). Obviously, if £ (§)-+f(?) # ¢ for all
5,1€ G, then f is additive, i.e. we have case (i). Suppose that

M:={(s,0eG f()+f() =c} # .

We shall distinguish two cases:
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Case A. For every (s, {) e M there exists an x € G such that
FEAf@, f&)#c—fG+D) and  fx+s) #f(9).
Then, taking an arbitrary pair (s, 7)€ M and a corresponding x & G, we get

SE+D+f ) # e, fEH)+H O #c and L +F(s) # c.

Consequently

Sl+t+x) = Fl+D+f(x), [Fls+i+x) =Fx+)+) and
S48 = fx)+f () .
Hence
SE+n=f©-f()
=FEtt+x)—f )+, X)=f (X +9)+ x4+ —f (s+14+X) =0,

i.e. fe Hom(G, H).

Case B. non A. Then there exists a pair (s, /) & M such that (10) is satisfied.
By means of Lemma 3, f takes at most three distinct values and
T: = f(G)={0, ¢} w %e. If f is a constant function, then either f = 0 and we have
case (i), orde # Gand f(x) = de e, d # 0, forall xe G, yielding case (ii). If £ is
nonconstant, then necessarily 0 e T (see (16)). In particular, Z,  @. First, let ¢ # 0,
We shall consider three possibilities:

1°Z, = 0. Then T = {0, d, €} with d, e € $¢\{0, c}. In the case where ¢ = d,
Sis of form (5) where d € ¢* and Z = Z,; clearly Zy+2Z = Zywhence, on account of
Lemma 1, (Z,, +) is a group and we have case (iii). In the case where e 3 d, because
of e+d # ¢ = 2d, we infer that e+ de T, whence ¢ = —d and 2d = ¢ = 2¢ = ~2d.
Thus, T'={0,d, ~d) and ¢ = —c¢; if we had 2d = ¢ = 0, then we would get
d = —d, a contradiction. Consequently ¢ e O* Put K: = Z,. Since

K+K' =Zy+(Z,0Z_)) = (Zy+Z) U (Zo+Z.)eZyUZ_y =K',

we infer that (X, +) is a group. Now take an x €Z;and a yeZ..;. On account of
the inclusions Z,cK—y and Z_.,cK—x we get the equality

G = ~G = KU (K+x) U (K+)) -
On the other hand,

Kii = Kt+xcZy+Z,cZ; and Ky = KtyeZy+Z. ,cZy,

whence we infer that K is of index 3, K, K, are the cosets of G with respect to K
and flg, = d as well as f Ik, = —d. Thus we have case (iv).

2°Z, % @ and card7 = 2. Then T = {0, ¢} and, because of 2¢ # ¢, we get
2¢ = 0, whence Z,+Z.<Z,. Since, moreover, Zy+Z,<Z,, we infer, applying
Lemma 2, that (Z,, +) is a subgroup of index 2 of G. Thus, f is additive,

icm
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3° Z, # @ and cardT = 3. Then T = {0, ¢, d} with 2d=c¢ # d # 0 and,
since ¢ # c+deT, we get ¢c+d =0, i.e. d= —c # c. The following inclusions
result immediately from the fact that f'is a solution of (3'):

an Zo+Zo=Z,,

(18). Zy+Z.=Z_,,

(19) Z+Z,cZ_,

(20) Z+Z.,cZ,.

Take an xeZ, and a yeZ_,. Relation (20) implies that ‘,\
@ Z,cZy—y ‘
and

(22) Z_,cZy-x.

Suppose that —Z, N (Z,~x) ¢ . Then, there exists a zeG such that
f(~2) = 0 = f(x+2), whence

¢ =f() = f(—z+x+2) = f(=D+f(¥+2) =0,

éontrary to our assumption. Consequently, —Z, n (Z,—x) = &. The equality
~Zy N (Zy—y) = @ may be derived analogously. Hence, by means of (21) and (22),
—~ZyZy, which jointly with (17) states that (Z,, +) is a group. ‘

Now we shall prove that (Z,—x) n (Z,—y) = @. In fact, otherwise we would
get the existence of a ze G such that z = z,+x = z,+Y, 2, z,€ Z, This means
that x = z—z, and f(2) = f(z,+¥) =f(zy)-|—f(y) = —c.;é ¢. On the other hand,
¢ = f(x) = f(z—z,) = f(®)+f(—z,) = —c¢, a contradiction. Thus

’ Z,=Zy—y and Z_,=Z,—x,
whence
Zo'l'zc = Zo+Zo_y = Zo—y = Z'c .
Observe that x+y e Z, because of (20), and 3x e Z,, since
xeZ +(Z+Z)cZ +Z_ .2y
in view of (19) and (20). Therefore
Zo o Z oy = Zy—= XA Zy~x = Zo—2% = Zy—(X+¥)—2X
= Zy=3x—y = Zo~y =Z,.

Thus, f is additive, _
Now let ¢ = 0. Then Lemma 3 implies T'=}0, which means that 2f(x) = 0
for all x e G. Thus equation (3") may equivalently be written in the form -

(23) FO) £F0)  implies  f(x+3) =FR)HFG) -


Artur


258 R. Ger

Suppose that f takes three pairwise different values: 0, a4, b. Then, by virtue of 23),
f=a#b=f@ implies f(x+))=fC)+/ ()= at+be{0,q,b},

which is impossible since @ # —b = b, b % 0 and a # 0. Consequently, f takes
at most two different values, whence either f(x) = d& 40 for all xe G (i.e, we
have case (i) or (ii) according as ¢ vanishes or not), or f'is of form (5) with d e 30\{0}
and Z = Z,. In the latter case (Zy, +) is o group because of Zy = Z,o Zy+2,
and of Lemma 1. Thus, f'e Hom (G, H) or we have case (iii) according as the index
of (Z,, +) is 2 or greater than 2.

The last part our assertion is obvious.

As a consequence, we get the general solution of equation (3):

TrEOREM 3. If H does not possess elements of order 2, then & (3) = Hom(G, H).

If H has elements of order 2, then & (3) is equal to the union of Wom(G, H), the Jomily

of all constant furictions f:
Jx)=de$0, xed,
and the family of all functions of form (5), where Z = (Z, --) is an arbitrary sub-
group of G and d # 0 is an arbitrary element of order 2 in H,
CoroLLARY. If fe S (3), then 2f: = f+fe Hom (G, H) (cf. Proposition 9 in [4]),
§3. In the present section we shall deal with the functional equation (3a.c.).
Let us start with the following '

LemMA 4. Suppose that we are given a p.l.i. ideal S in G and p & HN\{0} is an
element of order 3. Put P: = {0, p, —p} and P = (P, -). Let a function @GP
satisfy the conditions:

e@)+p0) #0 implies  ¢(x+y) = ¢(x)+ ()
Sor all (x,y)e G*\M, MeQ(S) and.
(29 cardp(G\T) = 3 for all Te s .

Then there. exists an additive function ®: G~P such that Px) = G(x) (a.e)y In
particular, ¢ is Q(F)-almost additive, ie., ¢ satigfies Cauchy’s functional equation (1)
almost everywhere with respect to Q). “

Proof. There exists a set U(M)e S such (hat VM)t s {pe G (¥, ) € M}
belong to . ‘Whenever x & G\U(M). Put Qy: = ¢~ '({g]), ¢ & . Assumption (24)
says, in particular, that Q, ¢ s and Q% G (mod.#) for ge P, Wrile

Q: = Q\(=U(M) L U(M)) .
Evidently, 0=, = 0 (mod#). We shall prove (hat
25) Q= ~0,

To this aim, take an x e Q. Let us first note that

@26 ' Qo U (Q-pmmy—=x) # G (mod.s).
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Actually, if we had
(=0 or @@+x)=—e(—x) forall zeG\T, Tes,
then, taking a ze [Qo U T L V,(M)), we would get
—p(=%) = p(z+%) = (D +0() = 0(2),

i.e.,
(@) = ~p(—x),

which means that carde([TU Vi(M)]')<2. This contradicts. (24), since
Tu V(M)e S Thus (26) is proved and we are able to find a ye G such that

Y& Qo U (Quppony=X) U VM) U (V_o(M)—X).
Consequently
(=%, x+NEM,  xNEM, 0@+ #0 and @(-x)+e(x+y) #0.
Hence |
p(x+y) = 0 +9() = 0() = e(=x+x+)) = o(—=X)+ox+Y),

which implies —x € Q,. Evidently, if x does not belong to — U(M) v U(M), then
neither does —x. Thus we get —x € @, whence Q< — Q and relation (25) is proved.
Next, we are going to prove that

(vy)) Q—~z=Q (mod.s) forall zeQ.
In fact, if we had (Q—2)\Qe f for a ze Q, then we would also get
A: = ([ONVLM)+2)]—2)NQo ¢ 7 .
In par'ticulm‘, A4 # 9. Takix?g an x € 4, we get
o(x)e{-p,p}, x+zeQ and Cx¢ V(M)

Hence . ‘
0=+ = p()+0o(@) =0k #0,

a contradiction. Now, in view of (25), since (0-2)\Q e #, we have also
S 3 (= 0+\(— Q) = (Q+2\Q whence O\(@~2) = [(Q+2)\Ql-ze s,
As a consequence of (27) and (25) we obtain also

(28) (Q+u) A (@)= .(mods) forall u,veQ .
Let K= (K, +) be the group generated by Q. We shall show that
@9 0=K (mod.#).

Since 0=Q, (mod.#), in order to prove (29) it suffices to show that

(30 KnQ,es and Kn Q.,ef.
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Obviously, in view of (25), every element of K can be represented’ (in general not
uniquely) as a finite sum of elements from Q:
xeK implies x=z+..+z,, zeQfori=1,.., ny .
Suppose that Kn Q,&.#. Then (Kn Q)NU(M) % @ and. the definition
n: = min{n,: xe(Kn QINU(M)}

is correct. Byvidently, we have 722, Take an xe (K N QNU(M) which admits
a representation of the form

X=Zidtz, ze€Q i=1,.,n.
By means of (28) we may. find an ¢ such that

s€{(@+21) N (Q=)N(ViM)+27) U (UM) 42~ )]} .
Then

§-71€Q, z,+5€Q, (x,5~z)¢M and % = Xt sz ¢ UM) .

?bserve that @(x)+@(s~2z) = p # 0, whence e Q,- On the other hand
%= (z?+s)+...+z,, e K. Consequently, %e (K ONU(M) and % admits ax;
expansion which consists of #—1 summands only. This contradicts the minimality
of n. The second part of (30) may be derived in a similar way.

The next step is to show that there exist X { x
" ’ st elements x,& Q, and x_,€ Q_, such

2y Q= 0+x, mods) and Q_, = Q+x_, (mod.s) .

To this aim, take an arbitrary element x,e Q
N ‘ N\U(M) and observe that
(O\V., (M) +x,< Q,, whence e . ©

(Q+x NG, =V, (M es.

Suppose that the relation Q\( O0+x,)e s i ; i
. » 1s not true. Then, since Q = mod
we have O \(Q, +X,) ¢ F or, equivalently, % (mod)

0y 0 Q%) U (Qupbx)] ¢ 5 .

However,

Doty = (QNV4, (M) 43,2 0., .
Consequently,

TR 01040 (Qmptx)] = 0y 1 (Q- iy
Take an %€ Q N[V, (M) U (UM)=x,) U U(M)]. For such an ¥ we have

and - Zopi =S+x,€ Q. \U(M)

(o320 (Q-pt2-) = [Q, A (O3] +5 ¢ .
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Hence also
@ = 0., 0 Q2 (QANVE(M))+5] 0 [(Q- NV, (M) +2_,1¢ 5,
a contradiction. Along the same lines one can prove the other part of (31).
Relations (29) and (31) imply the congruence
Ko (K+x,) U (K+x.,) = G (mod.s).
Recalling Lemma 3 [rom [6], we come to
G = K4 [K U (K4x,) O (Ktxo )] = Ku (K+x,) U (K+x_,).

One can easily check that every two summands on the right-hand side of the latter
relation are digjoint, This means that K is a subgroup of G of index 3. Obviously,
the function ®: G—P given by the formula
0 for xek,
() =1 p for xeK+x, x€G,
-p for xeK+x_p

is additive and ¢(x) = ®(x) (a.e.),. Thus our proof is complete.

The result just obtained will be useful in the proof of the next i

LeMMA 5. Suppose that we are given a p.l.i. ideal & in G: If fe & (3a.e) and

(32) card F(GN\T)>2  for all v Tes,

then f is Q(F)~ulmost additive. i
Proof. Let f satisty (3) for all pairs (x,y) e G*\M, where Me Q(F). We
introduce the sets U(M) and V(M) in the same way as in the preceding lemma.
Moreover, put . .
Mpy= Mu(TxG) U (GxT)u {(x,)eG: x+yel}, Ted,
Eo: = {(X, y) 5] G‘Z: ye Z"I(MJ} and E = -EO\MU(M) .

Clearly,

(33) S@+a) = f()+f(@) for all xeG and s G\A,.
Morcover,

(34) Ay = Z. 5, (mod )  for all x e G\U(M)

and, since Q(#) » M = My (mod Q(#)) (see Lemmas 1, 2 and Corollary 1 in [6]),
(3s) MpeQ(s) forall Te s ' ‘
Since G*\ My < E U (G*NEo\Myqp), We get |

36) (s, It)kes E or fl+)=f(@+f(@ forall(s,)e G\ Myan -

6 — Fundamenta Mathiematicae XCVIIX
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Fix a pair (s, f) € E. Observe that
37 s, 4, s+t¢ UM and  f(5) = —F ().

Note that 4, # G. In fact, otherwise (37) and (34) imply Z_,, = G (mod.s),
i.e. f(x) = —f(s) (a.e)y, contrary to (32). So we may find an a € G\4;, whence

(38) Sls+a) = f($)+f (@)
in view of (33). Now, we are going to show that
(39) AU Ay U (Agsa—t) # G (mod.f).
To this end, suppose that (39) does not hold. Hence
. Z_jiy Y 2oy (Z-peamy—1) = G (mods),

since ¢ U(M), a¢ U(M) and s+a¢ U(M) (by (37), the fact that a ¢ 4, and the
definition of 4) and since (34) holds, This means that there exists a set W, e  such
that

@) @ =S o fG6)= 1@ or f+)=—f(s+a),
for all x e G\W,. Take an xe& G\(W U V(M)). Tf f(x) # —f(2), then
F&®) = ~fla) ~fE)—f @ = ~f(s+a) = f()+/ (),

on account of (40), (38) and the fact that (x, /) ¢ M. Recalling the second part of (37),
we infer that the latter alternative reduces to its first part, Thus

F@)e{-f®), -f @}

which is incompatible with (32). Consequenﬂy, (39) is true and, since §+41 ¢ U(M),
we may find a be G\[4, U 4, U (4yia—1) U (V,y (M)~ —a)], whence

FO+0) = f®)+f 1), f(a+b)~f(fﬂ)+f(b),‘

or or

or

for all x¢ W, L V{M)e Jf‘,

1) Slstttatd) = fls+a)+f(b+1) = S+, (@ +f G+,
=f(@)+/(®) = f(a+b)

and ‘ .

2 (s+t,a+b)¢ M, a+b¢UM), a+b+s+1¢ UM),

on. account of (33), (38) and the second part of (37).
Now, we shall consider two cases:
10 dyye O (Aypp—s—1) U Asirigry = G.

Then, in the same way as in the preceding step, by means of (37), (41), (42)
and (34) we obtain the alternative

SO = —fls+0) or  fx+s+8) = —f(a+bh) or

S@) = ~fs+t+a+b)y= —f(a+b),
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for all x € G\W,, W, € 4. Suppose that x e G\(Wz v Vs+,(M)) I # =L+

and f(x) % ~f(a+b). Then
~f@+B) = f (e +5+1) = £ () Hf (s+1),

whence the relation )

“3) Fe{—f+), ~f (@b, —f(a+b)=f(s+D} (a.e),

follows, If we had f(a+b)+f (s+1) s 0, then, by (41) and (42), we would obtain

Sla+b) = fla+b+s+i) = f(a+b)+f(S+z),
i.e f(s+7) = 0, which compared with (43) leads to

S e{0, ~f(@+b)} (a.e)s,

contrary to (32). Consequently, f(s-+7) = —f(a+b) = : p and (43) assumes the
form .

S e{0,p, —p} =P for all xe G\T,, T, es.

(32) excludes the possibility p = . —p. Therefore 2p # 0. Hence 3p = 0; this results
from the fact that 2p e P. Conscquently, (P, +) is a group. Put

for
for

xe Ty,
xeTy.

o ={%
Evidently, ¢ maps G into P, ¢ satisfies (24) in virtue of (32) and
CO) F() = 9(x) (e)s.
Moreover,
Px)+p () # 0 Px+3) = p(x)+¢ () for all (x,y)¢ My, e Q(F).

Thus, ¢ satisfies the assumptions of Lemma 4 and hence ¢ is Q(#)-almost additive.
On account of (44) so is 'ﬂso /> which proves our assertion in the case under con-
sideration. i

2° AS-H Y (AM-‘IJ""S"") W As-&-!»m»f‘b # G
Then we may find a ¢ & G\[dyy; U (grp—5—1) U Ay rpass], Whence by (33)
Sls+i+e) =fs+D+f (e,
flatb+ct+s+0 =f(c+s+r)+f(a+b)
Sla+b+cts+1) = f(a-]-b+s+t)+f(c)

implies

Hence we get in view of (38) and (41).
FE+D=f @) ~f @) = [f+t+)-f()]- [f(s+a)—f(a)] [f(b+t)~f(b)]
= f(a+b+c+s+0)—f(a+b)—f(c)—
~f(a+b+s+)~f(@—Ff(®) =0
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This proves that relation (36) reduces to
Fls+D =&+ for all (s, 1) e GP\Myqy »

which states that fis 2(#)-almost additive, in view of (35) and the fact that U(M) e s,
This completes the proof.

THEOREM 4. Suppose that we are given a p.lLi. ideal # in G and f satisfies (3a.e).
Then there exists a function F: G—~H, Fe & (3), such that f (x) = F (x) (a.e.) 5. In the
case where f satisfies (32) the corresponding function F is unique.

Proof. Let the symbols: M, U(M) and V(M) have the same meaning as in
the last two lemmas. The proof is divided into three cases:

1° There exists a set Te.# such that card f(GN\T) = 1. Then f(x) =de H
for all x e T" and one can easily check that d € $0; on the other hand, the function
F: G- H given by the formula F(x) = 4, xe G, belongs to & (3) (cf. Theorem 3) and
we have f(x) = F(x) (a.c.),.

2° There exists a set T'e # such that card f(G\T) = 2. Then f(x) e {d, e cH
for all xeT”, d # e. We may also assume that neither Z, nor Z, belongs to #;
otherwise the situation reduces to the previous one. First we shall show that the possi-
bility e = —d is excluded. To this end, suppose that f(x) € {d, —d} for all xe T",
Clearly 2d # 0, since otherwise f would be “almost comstant”. Equation (3a.e.)
implies that 0 % 2de {d, —d}, whence 3d = 0. Put S —(UM) v T) U UM):
We shall prove that

(@5) —(ZN\S)=Z_; and Z_~S=-Z,
For, take an x € Z,\S. Then —x ¢ U(M) U T and if we had —x ¢ Z;, then, takinga
Y € (Za—XN(V_o(M)—x) U UM) v (U(M)~x)]

and a

ze(Zd+x)\[(Vx(M)+x‘) U V(M) U (Ve (M) +x)],

we wéuld get
Fx+)
(x: Z"'x) ¢ Ms

=flz~x) =
(—x,x+y) ¢ M, (. DéM  and

whence

(x+y7z_'x)¢ M:

FO) = FG49)+f (=x) = dtd = —d,
. bt =fE-X)+f(x) = d+d = -
Consequently, d = —d—d = f(y)+f(z) = f(p--Z). On the other hand,
d= ~d=d = f(x+3)+f =) 4 (=) 47 () = f -+ =d,
i.e. f(y+2) = 2d = —d. This contradiction proves that the first of the inclusions (45)

is true. The other may be derived in a similar way. Relation (45) says, in particular, .

that g
(40) . Z_,=27; (mod.ﬁ)
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Now, take an arbitrary x e G\(U(M) L T). Tf x e Z,, then
Zy=ZN\VM)cZ_;~x

Since Z_4 U Zy = G (mod.#), we obtain Z_, U (Z_;+x) =
in view of (46)

47) Zy Y (Zy+x) = G (mod.s).

Similarly, if x € Z_.4, then Z_; = Z_\V,(M)<cZ,~x, which again leads to (47).
Thus congruence (47) is satisfied for all x ¢ U(M) U T =: S,. Hence

Zog 0 (Zy+x) = Z.y (modS),
and, as a consequence, we get
(le']'x) N (Zd'l"y) ¢ S

Note that for every ze G one can find an se G\[S, U (Sy—2)], whence, putting

G (mod#), whence

xeG\Sy,

for all x,ye G\Sy.

“x=z+s and y = 5, we obtain z = x—y, x,y ¢ S,. Thus

Za N (Z,,-I-Z) ¢f
In particular, taking a ze ZN\U(M), we get
IBZ, N (Zy+2) = Z; 0 [(ZNV(M))+2]lcZinZ_; =0 .

for all ze G .

This proves that ¢ = ~d is impossible. Consequently, d+e # 0, which leads to
d+ee{d, ¢}. Without loss of generality we may assume ¢ = 0, i.e. £(x) e {0, d}
for all x e G\T. Evidently, we have 2d = 0.

If we had —Z, n Z, ¢ #, then, taking an x € (—Z, 1 Z)N(— U(M) U U(M))

and a y e Zy\[V, (M) v (V- (M) =x)], we would get f(x)+1(¥) = d # 0, whence
x+yeZ;. Then
d=fE+N+/(—x) =) =0

a contradiction. Thus, W: = ('—Zo NnZH)wTu(~T)es, whence'

Z=ZN\—-Wu W)= Z, (mod.s)

and —Z = —Z,\(—W v W)cZ, which gives Z = —Z. Let K = (K, +) denote
the group generated by Z. Making use of the 1net:1md. applied in the proof of Lemma 4,
one can show that

K= 2Z, (mods).

Define a function F: G-+H by the formula

for =xek,
F(x)"{d for xeKk'.

Fis a solution of (3) (cf. Theorem 3) and f(x) = F(x) (a.e.)s.
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30 Neither of the cases 1° and 2° occurs. Then f satisfies (32) and we may
apply Lemma 5. Thus f is Q(#)-almost additive. On account of de Bruijn’s result
contained in [2] we infer that (with' the aid of our termmology) there exists exactly
one function Fe Hom(G, H) such that f(x) = F(x) (a:e.)s, Thus, our proof has
been completed.

Remark 1. Fneed not be unique prov1dcd condition (32) is not satisfied. Thxs
can be seen from the following

* Exadrere 1. Put

xeT,
xeG\T,

_fax) ‘ for

S = {dé 30 for

where 0 & Te # and a: T—H is an arbitrary function. Then one can take F(x) =

xeG, or }
x =0,

x e G\{0}.

0 for
'F(x) = {d for
A mot so trivial, but less general situation is shown by the following
ExAMPLE 2. Take G = H = R\{0} and G=H= (R\{0}, -) the multiplicative
group of all nonzero real numbers, £ -the p.1.1. ideal of all at most countable subsets
of R\{0}, and
- x & ON\{0},
x € R\Q,

where Q stands for rationals and «: 0-R\{0} is an arbitrary function. Then,
similarly, one can.take F(x) = —1 for x ¢ R\{0}, or

xe ON{0},
x & R\Q.

for
for

£ = {“(’1"

1
F(")={—1 for

The result obtained in the latter theorem may also be formulated in a slightly
more general form: ‘ :

THEOREM 5. Suppose that we are given lwo canjugate p.Li ideals S, and #,
in G and G, respectively. If f satisfies (3) almost everywhere with respect to J,, then
there exists a solution E: G—H of (3) such that f(x) = F(x) (a.e.)y,. F is unique
provided f satisfies (32) with S = S,

Proof. It suffices to extend the p.Li. ideal &, to Q(#,) (cf. Corollary 1 in [6])
and to make use of Theorem 4.

In the case where J, = n(#;) the above result may be strengthened. The
corresponding theorems will be preceded by two lemmas:

LEMMA 6. Suppose that S is ap.L.i. ideal in G and (K, +) is a subgroup of G such
that K'e #. Then K = G-+

Proof. Since K= G (mod.ﬂ) and K = K-+K, it suffices to apply Lemma 3
from [6].
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LemMA 7. Suppose that is a p.l.i. ideal in G and (K, +) is a subgroup of G with

K¢ F. Then, for all We %, we have

@“8) (B\W)+(K'\W) = K'.

Proof. The case K = Gis trivial. So we may assume K 5 G. It suffices to prove
that for a given We ./ we have K'c(K\W)+(K'\W). Take a ze X' = K+X'.
Then z = x+y, x€ K, y e K'. First, let us note that
(“49) K-y n =)0 K+ 0 (=W ¢S,

In fact, since evidently (W' —y) n (x W' = G (mod.#), it suffices only to observe
that K—y<K’ and K'--x = K', whence

K= (K+x)=K~y¢.sf.
(49) allows one to find an se G such that
s+yek, s+y¢éwW, s—xek' anci s—xe-W',
or, equivalently, 1
s+yeK\W and  x-seK\W

because of XK' = —K'. Hence

Z = x4y = (x—5)+@+) e(K’\W')+<K\W),

which ends the proof.
To simplify some further statements let us- adopt the following
_ DEFINITION. . Suppose that we are given a p.Li. ideal # in G. A function
g: G—H such that g(x) = de$0 (a.e.), is said to be a d-function. Moreover,

= U {g: G-oH: g is a d-function} .
de}0 '

THEOREM 6. Let S deriote a p.1i. ideal in G. Suppose that f¢ D and f satisfles (3)
Sfor dll x,ye G\W, We S, Then
xel,
xel’,

o(x) for
f @) = {F(x) - for

where ' is an arbitrary member of & (3N, Tis a subset of W F~*({0}) and a: T~H
i an arbitrary function. Conversely, every such function f satisfies (3)forallx,y e G\W.
Proof. Suppose that
SE)+f) #0 Fx4y) =f@)+f0)

for all (x,3) e G*\[(Gx W) U (WxG)], where We #. This means that (3) holds
almost everywhere with respect to 7(#). Theorem 5 ensures that there exists a func-
tion F: G-H, Fe &(3), such that

T:={xeG: f(x) #F(x)}ef

(50)

implies
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Evidently, we must have F ¢ 2. Consequently (cf. Theorem 3) F is either additive or
0 for xeK¢JS,
Fx) = {d for xek/,
where (K, +) is a subgroup of G (of index greater than 2) and de 10\{0}. Now, we
are going to prove that in both cases we obtain
TeW n F~{0}) .

Assume first that F is additive and that TN\W # @. Take x € I\W and y e G\E,,
where

(5D

Egx=TuWu(T-x).

(52)
Then

FEO+F®) £ 0 implies Fx-+y) =f)+F©®),
whence

CFO) # —f() imphes F(x) =f(%).

Since xe T, we get F(3) = —f(x) for all y¢ E.e #. An additive and “almost
constant” function vanishes identically. Hence F should be a 0-function, contrary
to our hypothesis. Thus T< W. Now take an xe T and an se G\[W v (x—W)].
Then, if we had

F(x) = F(x—5)+F(s) = f(x—)+f() # 0,
~ we would get F(x) =f(x), which is impossible because of x e T. Consequently,
T<W a F-1{0)).
Now assume that F is of form (51). Suppose that (I\W) n K 5 & and take
an se(T\W) N K and a fe K\E; (cf. (52)). Then
F@)#0 F(s+8) =1,

a contradiction, since f(s) £ °F(s) = 0 and ‘$+te K. Thus TN\W<=K’. Now, if we
had T\W # @, then, taking x e IN\W <K' and y € K\E,, we would gét F(x)+F(»)
=d #0 and f(y) = F(y) = 0, whence, since x¢ W, y¢ W and x+y ¢ T,

S # 0_ implies F(x) = F(x)+F() = F(x-+y) = f(x+p) = fO)+f Q) =),

which is incompatible with x € T. Thus f |\ = 0. Taking a w e TNW and a v € G\E,,
we come to

implies

f@) #0 implies f(u+d) =s(v),
whence, since v ¢ T and u-+vé T,
F(v) #0 implies, F(u+v) = F(v).

Hence the inclusion K'\E,cX’—u follows. Consequently

K~ucKUE,.
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Since K ¢ S and E, e S, we infer that K n (K —u) % @, whence u ¢ K, a contradic-
tion. This proves that T W. :

Now take x € K\Wand y e K'\W (K’ ¢ & ; otherwise F would be a 0-function
by Lemma 6). In particular, x,y €T’ and we get

FE+/0) = FG+FG) = d # 0,
whence
( fe+y) = F(x+y),
ie.,
K\ +E\W)<T" .
Applying Lemma 7 (relation (48)), we obtain K’'cT’ or -equivalently
TcK = F~1({0}). S
To check that a function f given by (50) (with Fe & (3\Z, T=W n F~1({0})
and o: T—H an arbitrary function) satisfies (3) for all x, y e G\W, it suffices to
consider the case where x,ye T’ and ¥+yeT, only. In thus case F(x+y) =0,
which implies
0 = F(x)+F() =fx)+f0) -
This completes the proof.
Regarding d-functions we have the following:
TreoreM 7. Suppose that we are given a p.L.i. ideal S in G and a d € H such that
2d =0, If f is a d-function, i.e. :
T={xeG f(x) #d}e S,
and f satisfies (3) for all x,y € G\W, We S, then either
(a) d=0, TeW and

xeT,
xeT’,

a(x) for
f(x)={0  for

where o: T—HN{0} is an arbitrary function, or
(b) d 5 0, T satisfies the condition

(53) (TNW)+(T\W)cT'
and
0 for xeT\W,
FE) =1{p(x) for xeTnW,
d - for xeT,

where B: T~ W~ HN{d} is an arbitrary function. Converslely, each of the fun‘ction‘s fde-
seribed in () and (b) is a d-function Sulfilling (3) for all (x, y) € G\W provided T e 4.

Proof. First assume d = 0. If we had T\W # @, then, taking an xeT'\W
and a y e GNE, (cf. (52)), we would get f ) #0,f (J{) = f(¥+y) = 0"and, since
X, PEW, 0= f(x+)) =f()+f() #0, 2 contradiction, Thus T'< W.


Artur


270 R. Ger
Now let d # 0. Take an x e T\W and a y e G\E,. Then we have FE)+F ()
=f(x)+d # 2d =0 and f (x+y) = d, whence d = f(x+) = f(x)+d, and finally
f(x) = 0. This means' that | = 0. Now take an x e TN\W and a ye T\W.
Then f(x)+f(y) = d # 0, whence d = f (x)+f () = f(x+), i.e. x+yeT". Thus
condition (53) holds. o , .

The last part of our assertion is obvious.

Remark 2. Condition (53) is trivially. satisfied whenever T W or Te.# is
such that (7', +) is a group. However, it may happen that none of these two con-
ditions is satisfied and relation (53) does hold. This readily seen from the following

EXAMPLE 3. Suppose that G does not possess elements of finite orders and . is

a p.li. ideal of finite subsets of G, and take
T={b,2b}, W=1{0,20},
where b # 0 is an arbitrary element of G. Then
(T\W)+(T\W) = b+(G\{0, b, 2b}) = G\{b, 2b, 3b} =T",

i.e., (53) is satisfied. The d-function

0 for x=b,
f@E)=1c for x= 2b, .
d for xeG\{b,2b},

where ce H is an arbitrary - constant
x,ye G\{0, 2b}.

and  de%0\{0}, satisfies (3) for all

’ § 4. Here we are going to strengthen the result from [3] régarding equation (4).
On the other hand, we shall simultaneously illustrate the applicability of results
of the kind presented in Theorem 4. Namely, we have the following

THEOREM 8. Suppose that f is a solution of (4) and no finite union of sets of the
Jorm (Zo—x) v (y~Z,), x,y€G, coincides with G. Then fe Hom(G, H) pro-
vided H does not possess elements of order 2. If there exist elements of order 2. in H,
then fe€ Hom (G, H) or i

0 Jor  xeZz,

(54 de30\{0} for xeZ.

fm={

Proof. Let .# denote the Iin_early invariant set ideal generated by Z, i.e. the
family of all sets of the form

!91 jgl (Zo—x) © =21,

where n, m are arbitrary positive integers, X 9€G i=1,.,nj=1,.., m and
all their subsets. Our assumption on Z, simply states that # is proper. Consequently,
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J# yields a p.Li. ideal in G. Obviously, Z, e 4. Write
M:={(x,y)eG2:x+j)eZo}; T
By Lemma 2 ‘f‘rom [6], M e Q). NoW equation (4) may be writteﬁ in ﬁhel form
f(x)+f(y) #0 ‘ir‘nplies Af(x+y) = f()+f() for all (x,9) e GA\M )
and we may apply Theorem 4: there exists a function F: G—H, Fe & (3), such that
f(x) = F(x) (a.e.)s. By means of Theorem 3 and the fact that Z, e # we infer
that f is a d-function with d # 0 or F is additive. Assume that
S:={xeG: f(x) # d}ej
for a certain d e 30\{0}. Taking an x& S and a y € G\[S U (S—x)], we come to
S+ =d#0 and FE)+FO)=fl)+d#£2d=0.

Hence

d=f(x+y) =@+ ) =7 x)+d,
i.e. S=Z,. Thus f is of form (54). Conversely, every function of that form yields

- a solution of (4) (V).

Now assume that FeHom(G, H). Put T: = {xe G: f(x) # F(x)}. Clearly,
Te #. Take an xe G. We have
VAT x) # (mod.f)

(otherwise f (i) = const (a.e.)y, whence F(f) = const (a.e.)y, which implies, in
view of the additivity of F, that £ (¥) = 0 (a.e.)y, i.e. Z, = G (mod.#), a contradic-
tion). Choose an

§€ O\[Zpay-py VZo U T U (T+X)].
Then f(s) # 0 and
S @)+ (s=%) = F (@) +F(s—x) = f )+ F)—F(x) = f (&)= (F)—f (%)) %0,
whence :
F(s) = £ () = f(x)+f (s—x) = FE)+f (x)~F(x) .
i.e. f(x) = F(x) and our proof is completed.
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C-S-maximal superassociative systems
by
H. Liinger (Vienna)
Abstract. Let (4, ) be an n-dimensional superassociative system, C the set of its constants
and S the set of its selectors. Further assume, that for any i = 1, ..., n there exists at least one ith

selector in (4, ). The problem of determining all the pairs (n, |C]), for which (C v S, %) is already
a maximal irreducibly generated subalgebra of (4, %) is solved.

This paper is devoted to the study of certain superassociative systems. The notion
of superassociativity was introduced by K. Menger, who was the first to point out
the importance of considering such algebras (cf. [1]).

Let # be some positive integer and for each set X denote its cardinality by |X].
Now we define an n-dimensional superassociative system or an n-system — as we
shall call it briefly — to be an algebra (4, ) of type n-+1 such that the equality

HHXG coo XV vee Vi = HXGHXL V1 oo Yy oee XXy VL oo Vg

holds for anY Xg, s Xus Y1» e» Vu € 4. (4, %) is called trivial, if |4] < 1. A sub-
algebra of (4, %) is an algebra (B, 1) of type n+1 such that Bis a subset of 4 and
A oon Xy = HXg ... X, TOT ANY Xo, ..., X, € B. By a constant of (4, ») we mean some
element ¢ of A, for which xcx; ... X, = ¢ for any Xy, ..., X, € 4, and denote the set
of all constants by C. An element s; € 4, 1 <i<n, is called an ith selector of (4,%)
provided that xs;x; ... x, = x; for any xq, ..., %, € 4. Let S; denote the set of all ith
selectors of (4, x). We put §: = §; U...US, and call the elements of S selectors
of (4, %). Further we define an n-tuple (sy, ..., 5,) € 4" to be a complete system of
selectors for (4, %) provided that 1) 5, is an ith selector of (4, ») forany i = 1,u,n
and 2) the equality %xs ... s, = ¥ holds for any x € 4. An element & of A is called
symmetric, it the equation xax, .. X, = %aXg(1) -+ Xn(n) holds for any xy,..,x,€4
and for any permutation 7= of the set {1,..,n}. An irreducibly generated (i.g.)
n-system is an n-system (4, %) such that we have xXg ... X, € {Xg, ..., %,} for any
Xosor X, € A. L g n-systems were also considered by H. Skala (cf. [2]). CU S
obviously induces an i.g. subalgebra of (4, ). Applying Zorn’s Lemma to this
special case we see that there exist maxima] i,g. subalgebras of (4, %). Now there
is the question, whether (C' U S, %) is already a maximal i.g. subalgebra of (4, %)
or not. Tf the first comes true, we shall call (4, ) C-S-maximal. Obviously each
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