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Nonstandard analysis and the theory of shape *
by

Frank Wattenberg (Amherst, Mass.)

Abstract, This paper develops and exploits an approach to the theory of shape using the
techniques of nonstandard analysis. Suppose that X is a metric space and that e: X— ¥ is an em-
bedding of X into the normed linear space ¥ such that e(X) is closed in its convex hull. Let * ¥ be an
appropriate nonstandard extension of ¥ and let §(X) be the set of all y ¢ * ¥ suchthat y is infinitely
closed to *X. Then one can apply essentially the usual homology and homotopy theory in *Y¥ to
£(X). This approach produces results very much like those obtained using shape theory. The paper
then applies these techniques to obtain a classification theorem for covering spaces without the usual
local connectivity assumptions on the base space. The result obtained is analogous to that obtained
by Fox in his paper, On shape [6].

Consider the “Warsaw Circle”,
K= ({0} x[—2,1]) v ([0, 1]x {=2) u ({1} x[-2,sinl) v
U {(x, sin(1/x)| 0<x<1},
picture below.

The usual functors of algebraic topology .are not very useful for this space. For
example, all its singular homology groups are trivial despite the fact that it discon-
nects R? so that Alexander duality [14, Theorem 6.2.16] would seem to indicate

~ * This paper was presented at the summer 1974 Oberwolfach Conference on Nonstandard
Analysis, dedicated to the memory of Abraham Robinson,
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that H;(X) = Z. Similarly, the fundamental group of K is trivial although its cover-
ing spaces are entirely analogous to. those of the circle, which indicated that
7,(K) should also be Z. In fagt, K behaves in many ways as if it had the same homo-
topy type as the circle, S.

This situation has been resolved for some time in homology theory by the use
of Cech or Vietoris homology theory. D. E. Christie in [3] developed analogous
techniques for studying the homotopy groups of such spaces. However, it is only
in the past few years that Borsuk [1], [2]; Fox [6] and others have developed and
exploited systematic homotopy theoretic techniques for investigating spaces like this.
In particular, Borsuk’s notion of shape is a natural variant of homotopy type by
which § and X have the same shape. In [11] McCord used nonstandard analysis to
provide a natural approach to a Vietoris-like homology theoty.

The main idea of the present paper is to obtain a unified approach to the

. “algebraic topology” of spaces like K by interposing a natural nonstandard topo-
logical functor between topological spaces and the usual functors of algebraic
topology. For example, let £(K) denote the set of all points in a nonstandard
model *R? of R? which are infinitely close to K.

i~
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It we define 7, (#(K)) to be the group formed by the (external) set of equivalence -

classes of internal *continuous maps *S—& (K) with the usual homotopy relation
and group operation, then it is straightforward to check that n (#(K)) = *Z exactly
as one would expect from studying the covering spaces of X,

Throughout this paper we will deal only with metric spaces. When several
spaces X, X, .. are being considered, their nonstandard extensions will -all be
taken in a single nonstandard model *.#. That is, we let 4 denote the complete
) higher order structure on X’ = (JX; and let *.# be a higher order clementary exten-

sion of #, [10], [13]. The sets *X;, *X, ... will then all live in *.#. It P denotes
an object in. . then the corresponding object in *.4 will be denoted by *P, In particu-
lar, aninternal function f: *X—*Y¥ will be said to be *continuousif it is in *C X, Y)
where C(X, Y) is the (standard) set of all continuous functions g: X—Y. We will
always take *.4 to be x* saturated where x is any cardinal larger than the cardinality
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of the universe of .#, although many of our arguments go through for weaker non-
standard models. If X is a topological space and x e X, the monad of x in *X, denoted
u(x), is given by w(x) = {y| *d(x,y) is infinitesimal}. If ye*X, and for some
xeX, yeu(x) we say y is nearstandard and write x = St(y). Notice, St(p) is
necessarily unique.

In the first section of this paper we define a category & which is convenient to
work in. The “envelope” functor we wish to interpose between topological spaces
and the usual functors of algebraic topology is developed in the second section.
Finally, in the last section we use this technique to obtain a classification of covering
spaces pt £—B in terms of 71 (6 (B)) without the usual connectivity conditions on B.
This result is analogous to Fox's classification [6] in terms of the fundamental
trope of B.

1. The category &. Throughout this paper we will be working with external sets
and mappings which we want to behave as much as possible like internal sets and
‘mappings. The category & defined in this section seems to be appropriate for our
purposes.

I. 1. DEFINITION. An &-sct is a subset 4 (frequently external) of a nonstandard
model *X of a topological space X. If 4 =*X and BS*Y are two &-sets a mapping
F+ A—B is said to be an &-map provided for every internal set C =4, f|c is internal
and *continuous. Let & denote the category of &-sets and &-maps. (It is straight-
forward to verify that & is a category.) ‘

Notice, in particular, that if X is a topological space and 4 is an internal subset
of *X then A is an &-set. I B<*Y is another &-set then the £-maps f: 4—B are
preciscly the *continuous maps f: A—*Y such that f4) B

The most obvious examplés of &-maps f: A—B are obtained by restricting to 4
some internal *continuous map g which is defined on an internal set 4’24 and
maps 4 into B. It is natural to conjecture that all £-maps arise in this way. HOWCVEII',
Ward Henson using techniques he has developed in [7] has shown that even if
A4 = p(0), the monad of 0 in *R, there are &-maps £+ u(0)~*R which cannot be
extended to any internal set containing u(0).

The usual basic definitions and results of homotopy theory (see, e.g. [8] or [14])
carry over unchanged to the category & as follows.

1. 2. DgrinrmioN. Tt A<B and CeD are all &-sets then an &-map
fi (B, A)=(D, C) is an @-map f: B~D such that f(A)<C.

IE A c* X is an &-set then so is Ax *1S*(X x I) where I = [0, 1]. Thus, we can
make the following definitions. '

1. 3. DERNITION. Suppose 4 £ Beand C& Dareall &-sets, and f: (B, A)—(D,C)
and g: (B, A)—(D, C) are &-maps. A homotopy F trom f to g is an &-map
F: (Bx*I, Ax*I)~(D, C) such that:

" (i) for every be B, F(b,0) =f0),

(i) for every be B, F(b, 1) = g(b).
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If such a homotopy exists we say f is homotopic to g and write f~g: (B, 4)—(D, C),
or sometimes, simply, f~g.

The proofs of the following propositions are exactly the same as the standard
proofs with the observation that the usual constructions (e g G(x,0) = F(x, 1-1)
all work within the category &.

1. 4. PROPOSITION. ~ i an equivalence relation.

I. 5. PROPOSITION. If f~f": (4, B)—(C, D) and g~g': (C, D)~(E, F) then
&f~gf": (4, By~ (E, F).

I. 6. DeriNITION. Two &-sets 4 and B are said to have the same homotopy
type provided there are &-maps f: 4—~B and g: B~4 such that gf~1; and fy~I,
(where I, and Iy denote the identity maps on 4 and B respectively.)

I. 7. PROPOSITION. Having the same homotopy type is an equivalence relation.

I. 8. DerNITION. Suppose 4 is an &-set and ae 4. Let Q(4, &) be the set
of all #-maps : *I-4 such that w(0) = w(1) = 4. Notice, the elements of Q(4, a)
are all internal *continuous maps but the set Q(4, a) itself is, in general, external.

If u,ve Q(4, ) we define usve Q(4, a) as usual by

u(2) if
ws)(®) = {v(2t~— 1) it

We write u~v if u~v: (*1, {0, 11)—(4, a) and let [u] = {ve Q(4, a)| u~v}.
Finally the fundamental group of 4 based at a, denoted (4, a) is defined by,

0<r<t,
Il

m1(d, a) = {[ull ue R4, a)},
[u] * [v] =

[uxv].

I. 9. PropostTiON. m,(4, a) with the operation  is a group.

I. 10. ProrosITION. Suppose ay,a, €4 and there is a path from a, to a1
in 4 then m (A, ap) is isomorphic to 7 (4, a,).

Notice that when the &-sets in the preceding definitions are internal, these
definitions are the usual ones (or, more precisely, the nonstandard extensions of the
usual ones).

I. 11. DEFINITION. An & -map f: A—B s said to be strong if there is a standard
set S such that 4 <*S and a standard continuous function F defined on § such that
S = *F|,. Two strong maps are said to be strongly homotopic il there is a strong
homotopy between them. Two &-sets have the same strong homotopy type if the
maps and homotopies of Definition 1.6 are all strong.

Throughout the remainder of this paper unless explicitly stated to the contrary

all sets and mappings will be in the category &. We close this section with one of
the examples which motivates this work.
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. 12. BxampLe. Let C = {(x, sin(1/x)) e R?*| 0<x<1} v (Ox[—-1,1].

V

{xe*R* St(x)e C}.

I

let A =

W

Then we can see that A4 and *I have the same homotopy type by considering the
maps f: *[—4 and g: 4—*1 defined by

1
<x, sin1—> if —<x<1,

f( 2my
£x) =
i < <"":
(x,0) if 0<x by
J 0 if x<0,
g, =4x i 0<x<l,

1 if 1<x.
where v is any fixed infinite positive integer. Both maps are clearly £-maps, ¢f = Ly
and the following homotopy F shows fy~Iy

Fix,y, 1) = (=), 9)+1(fa(x, 7)) -
Thus A has the same homotopy type as *I and, hence, by Proposition ]é7dancsi ltll(l)tz
remarks following Proposition L.10, as a point. Notice, however, that ﬂi):mme
have the same homotopy type as a point and that A and apoint do not have |

strong homotopy type.
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II. The envelope functor. In this section we will make extensive use of the follow-

“ing two results which can be found, for example, in [5].

IL 1. THEOREM. Suppose X is a (metric) space. Then there is a normed linear
space Y and an isometric embedding e: X— Y such that e(X) is a closed subset of its

convex hull H(X, Y) in Y [5, XIIL 5.2].

II. 2. THEOREM. Suppose A is a closed subspace of a (metric) space Y, and L is

a normed linear space and f: A—~L. Then there is an extension F: Y—L of f such
that F(Y) is contained in the convex hull of f(A) in L [5, IX. 6.1].
Asin [15] and [16] we define the monad of an arbitrary point x & *X as follows.
II. 3. DEFINITION.

p(x) = {y e *X] for every standard, continuous
o: X=(0, 1), *d(x,y)<*o(x)}.
Recall from [15] and [16] that the monads form a partition of *X and are pre-
served by standard continuous functions. In fact, a standard function fi X—=7Yis
continuous if and only if for every x & *X, *f(u(x)) Su(f(x)). Notice, in particular,

that if x is near-standard then u(x) = #(St()) and thus for standard points the two

definitions of x(x) agree. The proofs of the following lemmas are completely straight-
forward.

II. 4. LemMA. Suppose F is a standard closed subset of X, U is a standard open
subset of X, FEU and x € *F. Then u(x)c*U. !

IL 5. LeMMA. Suppose F is a standard closed subset of X. Let u(x, F) denote the

monad of x in the space *F and let u(x, X) denote the monad of x in the space *X.
Then p(x, F) = u(x, X) A *F. .

We can now define the envelope of a (metric) space as follows.

IL. 6. DerINITION. Suppose X is a (metric) space. By Theorem IL 1 we may

assume X'is a subset of a normed linear space S and that X is a closed subset of its
convex hull H(X, S) in S. The envelope of X in S, denoted & (X, ) is defined by,

EX,8) = {ye*H(X, )] p(y) n*X # B}
where u(y) denotes the monad of y in *H X, 9).

We have immediately the following alternative description of #(X, S).
IL. 7. PrOPOSITION. & (X, S) = *y
XSVSH(X,S), Yopen
Proof. Let E = *p.
XSVSH(X,S), Vopen

(1) By Lemma IL 4 £(X, S)= E.

(i) Now suppose y ¢ &#(X, S).

We claim there is a standard continuous function J: X—(0, 1] such that for
every x € *X,, *d(x, y)>*f(x). If no such f exists then the relation R(f, x) = x e *X
and *d(x, Y)<*f(x) is finitely satisfiable for stand

ard continuous functions,
f: X=(0,1]. Then since *.4 is »*

saturated there is some xe*X such that

e ©
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*d(x, y)<*f(x) for all standard continuous f: X~(0, 11. Thus, y € u(x) =(X, ).
herefore, the claim is true. '

b Let £ besuch a function and let V= {z e H(X, S)| for some x € X, d.(x, 2)<f(x)}.
¥ is a standard open set containing X and y ¢ *V. Thercfore y ¢ E which completes
the proof. ‘ '

The set &(X, S) is locally convex in the following sense.

11, 8. LiMMA. Suppose x € *X and (x,, X5, ..., X,) I8 an internal *finite sequence
of alle‘n‘wnm’ of u(x). Suppose (Ay, Agy o, Ay) s an internal *finite sequence in *1 such
that A, = 1. Then Yo Aax e ux)sé X, S).

« [3‘ )
rree A(Th)— (The)
"‘HZ/%(xi—X)llSZMH%—A‘H .

{ standard conti s functi - H(X, 8$)=(0, 1] we have for each i,
Now, for any standard continuous function [ H( have fo
K, 3l <H(x) since x; & p(x). Hence, Yhillxi—3ll<TA() = (). Thus
2ox, e uxed X, S). -
2 ll\ifex!t, we use Theorem IL. 2 to define the envelope &(f) of a map f: X—=7Y.
11. 9. PROVOSITION. Suppose X and Y are embedded in the normed linear :s'paces'S
and T respectively as closed subsets of their convex hulls. Suppose f: X - Y 1; a Zon-
tinuous map. Then there is o strong &-map F; 8(X, S)~& (¥, T) extending f.' urther
more, if Fy and I, are any two such maps then they are strongly homotopic.
Proof. By Theorem II. 2 f can be extended to a map g: H (X, S)*—»H ()Y, g’g.‘
ince g is standard and continuous for cvery xe*X, *g .(u(;_c))gué g.(x()i m 5 R
*g(¢(X, 8)) =& (¥, T). Hence, we may define F= glsx,s Whl‘Ch is the es;e ; Fp
Now, suppose Fy and F, are two strong &-maps extenihng f. lelfn 1322%1 y;
are resirictions of standard continuous maps Fy: A,—~T, Fy: A,—T tesp .
Let A = A, N4, and define G: AxI-T by
G(x, 1) = Fy(x)+(1-)Fylx) . ) )
Now, if xe &(X, S) mere‘is an x, € *X such that x e u(xo). Since bFlLand 1;21 Iarse
{ o ‘ * emma 1. 8,
standard and continuous, F; () € p(*(xo)) and Fa(x) St gf “f %O)g)‘;ilo’cr i
G(x, e u(*f(x)) & (Y, T). Thus, G(eX, 9)=eé(Y, £04,T)
desired strong homotopy. . r
T1. 10. COROLLARY. Suppose X is embedded in the normed Iznza; i};zc;f) é;‘l ;zvr;dth;
in each case as a closed subset of its convex hull. Then (X, S)‘an )
same strong homotopy type. ‘ . ST
" Proof, By Proposition II. 9 the identity map I: X—X Tnglz;is ;;f}g(x’ n Pis
f: 40X, 5)»6 (X, T) eud gt £, 7.’)—"5(X: %, N;{w’bﬁ.so is jthe identity map
a strong #-map extending the identity map I X=X, O e dontity map
on &(X, T). So, by Proposition I 9 Sy is strox}gly 11om9toplg oma L. 5.
on & (X: ). Si;nilarly, gf is strongly homotopic to the 1detnt1ty ; f (
Hence, #(X, ) and &(X, T) have the same strong homotopy type.

i

(T A) =1

i
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In view of Corollary II. 10 we write & (X)) instead of (X, S) and note that (X
is well-defined up to strong homotopy type. Similarly, if /1 X—¥ we write
&(f): €(X)—~& (Y) which is well defined by Proposition IL. 9 up to strong homotopy,

In general, X and £(X) do not have the same strong homotopy type or even
the same homotopy type (see Example I. 12). However, for absolute neighborhood
retracts we have the following. :

IL 11. PrOPOSITION. Suppose X' is an absolute neighborhood retract (ANR)
(see, for example, [14]). Then, X and &(X) have the same strong homotopy type,

Proof. Let X be embedded as a closed subset of its convex hull H(X, §) in
a normed linear space S. Since X is an ANR there is an open neighborhood U of X'in
H(X, S) and a retraction R: U—X. By Proposition IL. 7 &(X, S)=*U so R restricts
to a strong &-map r: £(X, S)-*X. Let i1 *X—&(X, S) be the inclusion map.
Since r is a retraction ri = Liy. Define F: UxI-S by

. F(x, 1) = tRG)+(1~b)x.

It xe &(X, S) then for some x, € *X, x e u(x,). Since R is a standard and conti-
nuous  *R(x) e n(*R(xo)) = u(x,). Hence, by Lemma IL 8 for all fe*I
*F(x, 1) € u(xo) €€ (X, S). Hence F restricts to an &-map F: #(X, S) x *I-& (X, S)
which is clearly a strong homotopy from iR to the identity on 8(X, 8. '

One of the valuable properties of Cech Homology is that Ho(X) measures the
number of components of X while in singular homology H,(X) measures the number
of path components of X. The following theorem shows that interposing the envelope
functor also has the effect of converting connectedness into path connectedness.

IL. 12. Tueorem. (i) &(X) is path-connected if and only if X is connected.

(i) Moreover, if X is connected then for every internal set A< & (x) there is an
internal, path-connected, locally convex set A" such that A< A'c&(X).

Proof. First, we show if X is not connected then & (X)) is not path connected.
Then we prove (i) which implies the other half of (i).

(i) If X is not connected there are two nonempty disjoint closed sets G and H
such that X' = G'U H. Let X be embedded as a closed subset of its convex hull
H(X, S) in a normed linear space S. Then G and H are closed subsets of H(X, S).
Since H(X, ) is a metric space it is normal and there are disjoint open subsets U
and ¥V of H(X,S) such that G<U and HcV, By Proposition II. 7
E(X, S)c*U u *V.

Now choose ae G and be H. If w: *I-&(X, S) is a path from a to & then
©”'(*U) and o~(*V) are nonempty disjoint *open subsets of *I such that
@™ *U) U 0 I(*V) = *I which is impossible since *J is *connected.

(if). We may assume *X < 4. Since A and *X are internal we can define a (discon-
tinuous) map t: 4—*X such that *d (a, t(@))<2inf{*d(a, x)| xe*X } and a map
o1 *X—>*I'such that ¢(x) = sup {*d(x, a)| ©(a) = x}. Since *.# is an enlargement
there is an internal, *continuous function a: *J& (X, $)-(0, 1] such that for every

icm°®

Nonstandard analysis and the theory of shape 49

x & *H(X, §) and every standard continuous function f: H(X, $)~(0, 1], a(x) < */(x).
Let A" be given by
A = {ye*H(X,S)| for some xe*X, *d(x, y)<o(x)+a(x)}
U {ye*HX, S)| *d(x, y<o(x)+u(x)}.

x X
By the choice of ¢ and a, ASA'SE(X,S). Since .for each xe*X, the set
{ye*H(X, 8)| *d(x,y)<o(x) +¢x(x)} is *convex, 4’ is clearly 1oca.11y convex.
Furthermore, since cach of these sets intersects the *connected set *X, A’ isalso *con-
nected and, hence, path-connected.

We close this scction by remarking that the exact relationship between the
techniques developed here and Borsuk’s “Theory of Shape” ([1], [2]) is unknown,
In particular, the relationship between the homotopy type of #(X) and the shape
of X is unknown.

I, Covering spaces. For reasonably nice spaces B (connected, locally pathwise
connected, and semi-locally 1-connected) the theory of covering spaces p: E—B
is particularly elegant. Such covering spaces are completely classified by subgroups
(p4(m1(E, ©))) of the fundamental group of B. For more general spaces, however
this classification breaks down. For example, the Warsaw c1'rcle has a trivial fu1.1da—
mental group but essentially the same covering spaces as the circle. In [6] Fox' obtained
a classification of covering spaces p: E—B for more general sg)aces B using shape
theory and particularly his notion of the “fundamental-tr.ope of B Thempurpo;e
of this section is 1o obtain a classification of such covering spaces in terms of sub-

roups of 7, (£(B)). ' i
glou?;‘;c(:'le ?ntg a( .n)t?mber of possible definitions of the notion of “covering space.1
For reasonably nice spaces these definitions co.incide.' However, for mote genere;1
spaces these definitions do not coincide. We V&flll be interested herf: in three suc
definitions. The first and strongest is due essentially to Fox [6] and is the definition
we will eventually use. ‘ .

TIT, 1. DerNiTiON. Suppose E and B are gonnected spaces and .p: E—»Bfls
surjection. Suppose be B and F = p~i(b) is discrete. An '(.)verlay structur;.s nzz
p: E=B is an open covering W= {U} of B together with homeomorphi
@at Uyx Fp~1(U,) such that :

(i) For each o the diagram o
Uyx F—> P—l/(Uu)

N
U,

o

it

commutes (where py(x, 1) = x). ‘ ’
(ii) For cach a, f§ there is a homeomgrplnsm Jap’
xeU,nU; and teF

F—F such that for every

(Poc(xy t) = ‘Pﬂ(x, gaﬁ(t)) .

(Notice g,, does not depend on the point x & Uy N Us.)
4 — Pundamenta Mathematicag XCVIL
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An overlay is a map p: E—B as above with a given overlay structure,
III. 2. DEFINITION. Suppose p: E—B is an overlay with a given overlay stryc-
« ture ({U,}, {@.}>. A second overlay structure {{V,}, {¥,}> is said to refine

{Ua, {@u}> provided

(@) {V;} refines {U,}.

(if) For every o, § suchthat ¥, < U, there is a homeomorphism a,;: F—F such

= that for every xe ¥y, 1€ F, @ fx, 1) = W, (x, 0,509).

Two overlay structures are said to be equivalent if there is an overlay structure
which refines both of them.

The other two notions of covering space we are concerned with are the usual one
and that of a unique path lifting fibration. These definitions are given below for
convenience. .

III. 3. DEFINITION. A covering space consists of two connected spaces, E and B
and a map p: E-B such that for cach x e B there is an open set U containing x such
that p~*(U) is a disjoint union of open sets {V,} and for each x, Ply: Vo= Uis
a homeomorphism. )

III. 4. DEFINITION. A unique path lifting fibration (UPL-fibration) is a Hurewicz
JSiber space [14] p: E—~B such that

() E is connected.

(i) For each path : I-B and each eep™*(w(0)) there is a unique path
@: I-E such that pi = » and @(0) = e.

' Clearly, every overlay is a covering space. It is well-known that every covering
space is a UPL-fibration. The following example is a UPL-fibration which is not
a covering space. For examples of covering spaces with no overlay structures, or
with two .inequivalent overlay structures see [12].

I 5. ExampLE. Let S denote the unit circle in the complex plane and let
8% = §x 8% Sx... with the Tychonoff topology. Let R denote the real line and
R”= RxRx Rx ... with the Tychonoff topology. Define p: R®~S® by p(t,, t5, ...)

= (e21u21, ezﬂitz’

ever, it is also easy to see using, for example, [14, IL. 5.11] that p: R®—S% is not
a covering space.

Most of the useful properties of covering spaces result entirely from the unique

path lifting property, Thus, one would really like to obtain a classification theorem for

UPL-fibrations. Unfortunately, both the Ppresent work and [6] is limited to overluys.

Our approach to the problem of classifying overlays p: E~ 5 is to work instead
witlg covering spaces f: F—+&(B) in the category &. Since &(B) is locally convex
P E~&(B) will necessarily be an overlay. Our work is divided into three parts. First,
starting with a standard overlay p: E—B we show using essentially the same technique
as Fox [6] that there is an extension B: E~&(B) of p: E~B. Then we show how
certain covering spaces g: F—& (B) give rise to standard overlays p: E—B. Finally, we
show that in the category & the theory of covering spaces g¢: F—&(B)is particularly
nice. Before defining covering spaces in the category & we consider an example.

«). It is easy to verify that p: R%+S§®is a UPL-fibration. How- '
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T11. 6. ExaMpLE. Let. S denote the unit circle in the complex plane and let
F<*Rbe the set of all finite nonstandard reals. Let p: F—*§ be given by p(f) = ™.
Clearly p: F—*S satisfies the definition of an overlay (Definition III. 1) and is an
&-map. However, it does not have the path lifting property. In fact, if 1 is any
infinite real the path w(?) = ¢** has no lifting. Hence, we need a more careful
definition of covering space in the category 4.

II1. 7. DEFINITION. An &-covering space consists of two &-sets, E and B,
and an &-map p: E—B such that

(i) E is path connected. .

(i) For every internal set A< B, E, = p~'(4) is internal and plg,: E;—4 is
a *covering space (except that E, is allowed to be disconnected).

The following lemma due to Kuratowski (see [9; Chapter II, §21, XI,
Theorem 2]) and theorem due to Fox [6] allow an overlay p: E—B to be extended
to an &-covering space j: E—&(B). _

IIT. 8. LEMMA. Suppose B is a closed subset of a (metric) space X and % = {U,}
is a covering of B by open subsets of B. Then there are open subsets {V,} of X such that

@O U,=BAV,.

(i) For each oy, 0y, ..., O,

Vi OV a0V # B o Uy n U, 000U # 0.

Proof. [9].

TIL. 9. THEOREM (Fox [6]). Suppose p: E—~B is an overlay and B is a closed subset
of a metric space X. Then there is an open subset U of X containing B and an overlay
p: B-U such that p~*(B) = E and plg = p.

Proof. Suppose {{U,}, {¢,}> is an overlay structure for p: E—+B. Let g,p g F>F
be the homeomorphisms provided by Definition IIL 1. Let {V,} be a collection of
open subsets of X provided by Lemma IIL 8. Let U = |J ¥, and deﬁne H to be the
disjoint union U (V, xF). If (x, ) € V,,x F and (x, 5) & V; x F we write (x, H~(x,s)

provided § = g,:;,(r). This is an equivalence relation since ¥, n ¥V n ¥, ; (9] lItl;lp]tI;S
U, n Uy 0 U, # @ which implies g,0u = 9uy- Le.t A= H//‘v and p: H—U be the
obvious map. This is easily seen to be the soughtfor extension of p: E—B. .

TI1. 10. COROLLARY. Suppose p: E—B is an overlay. Then there is an &-covering
space B: E-r&(B) such that p~'(*B) = *E and Plsg = p.

Proof. Immediate {from Theorem IIL 9.

The following proposition shows that such extensions exist <.)n1y for owfrlays
and that two such extensions are equivalent as &-covering spaces if and only if the
given overlay structures are equivalent. .

I 1L ProPOSITION. (i) Suppose p: E—B is a (standard) covering space ;md
p: E—8(B) is a &-covering space extending p: E—~B. Then p: E~B is an overiay.

(i), Suppose <{U,}, {pa}> and {{Vy}, {¥s}> are two overlay strulc]tgzre{s ;7)1

p: E»Band p: E~8(B) and p: E—8(B) are extensions consfructed Sfrom{U,}, {0

4w
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and <V}, {¥p}> respectively as in 1119 ond M. 10. Then p: E—~&(B) and
p: BE—~&(B) are equivalent as &-covering spaces if and only if {U,}, {0.}> and
AV}, (Wa}> are equivalent overlay structures. ‘

Proof. (i) Since *.4 is an enlargement there is a *continuous function
o: *B—*(0, 1] such that for every standard continuous function f: B—(0, 1] for
all xe*B, o(b)<*f (). Let V = {xe*X| Ab*d(b, x)<a(B)}. V is internal, so
E, = p~X(V) is also internal and Blg,: E,—~Vis a *covering space. For each b e *B,
let ¥, = {xe*X] *d(b, x)<o(b)}. Each ¥, is *convex and, hcnce,'ﬁ'i(‘Vb) is
a disjoint union of *open sets Wy, such that Ply,,: Wy~ V) is a *homeomorphism
for each i. If ¥, n ¥, # @ it is *convex and, hence, each W, intersects a unique W,
Thus, flg,—V has a *overlay structure which restricts to a *overlay structure on
*p: *E— B and, since *. is an elementary extension of J, p: E—B has an overlay
structure.

(ii) (-») Since B is paracompact we may assume {U,} and {¥} are locally finite.
Let V, ¥,, £y, and E, be defined as above. The covering {V},} of *B refines both
{U,} and {V;} by [15, Theorem 2.12]. The *overlay structure defined above on
*p: *E—*Busing {V, n *B} is easily seen to be a *refinement of both *({U,}, {o,}>
and *¢{V,}, {¥4}>. Thus, they have a common *refinement and, hence ({U,}, {(p“}>'
and {{¥;}, {{s}> have a common refinement. )

(«) This is immediate from the straightforward observation that the implication
is true if <{V3}, {¥4}> refines ({U.}, {0.}>-

' Next, suppose p: E—B and p': E'—B' are two overlays and that (f, f) is a co-
vering transformation (i.e. f: B-B, f: E»E' and p'f =f,). In view of [12],
o, f) might not have an extension to an &-covering transformation (&(f), f ) from
p1 E»&(B) to j': E'->&(B"). Thus we make the following definition.

IIL. 12. DEFINITION. Suppose p: E—B is an overlay with a given overlay
structure <{U,}, {¢,}y and fiber F, and p’: E'—B’ is an overlay with a given overlay
structure {{V,}, {Vs1> and fiber F'. An overlay transformation is a pair of maps
f: BoB, f: E~E'

@ pf=rp.

. (i) There is a refinement {{W,}, {g,}> of ({U.}, {¢.}> such that for each y there
is a § such that f(W,)SV; and a map o,: F—F such that for each x& W,
F(@0x, ) = ValF ), 0,(0). | - ’

Two overlays with the notation above are said to be isomorphic if there are

overldy transformations ‘

! i
E—>F E—>F
AN
I g
B—>p' BB

such that gf = Iy and f§ = Iy.

3 ~III. 13. PROP?/SITLON. Suppose .p: E—~B and p': E'—B are overlays, and
p: E=&(B) and p': E'~& (") are their respective associated &-coverings. Suppose

icm

" Nonstandard analysis and the theory of shape 53

(f,F) is a covering transformation from p: E-B to p': E'—B'. Then (f, f") can be
extended to an &-covering space transformation (8(f),f) from P: E-~&(B)
to §': E'—»8(B") if and only if (f,]) is an overlay transformation.

Proof. The proof is straightforward using the technique of Proposition IIL. 11.

Next, we wish to consider the converse of Corollary IIL. 10. Suppose j: E-e(B)
is an &-covering space, Let E = 7 1(*B) and p = p|g. Notice E and p are internal
and p: E—*B is a *covering space. We wish to known if there is a standard overlay
q: H—B such that p: E—~>*B and *q: *H-*B are isomorphic. This is not always
true. Consider the following examples. ‘

TIT. 14, ExampLs. (i) Let S denote the unit circle in the complex plane and
consider the *covering space p: *S—*$ given by p(2) = 2" where v is a fixed infinite
positive integer. Thus, p: *Gy kS is a y-fold *covering of *S which has an obvious
extension to &(S) and which clearly has no standard counterpart. This example
shows that we must at least tequire that the fiber p~(b) be standard. However, the
following example shows that this condition by itself is not sufficient.

(ii) Let B be the figure eight and construct a *covering space p: E-*B by
covering the right hand loop with countably many disjoint v-fold *coverings and
stringing them together with the universal *covering *R—*S over the left hand loop
as pictured below with v = 2. Notice the fiber is *Z but if v is infinite p: E—*B has
no standard counterpart. ‘

U

In order to formulate a sufficient condition for the converse of Corollary IIL. 10

we need some machinery.
101, 15, LemmA. Suppose f: E~&(B) is an & -covering space. Let E = 5~(*B)
and p = Blg. Then there is a *overlay structure MUY, {p}> onp: E-B such that
*(U,} is a standard open cover of *B. :
Proof. We will show there is a standard continuous function f: B—(0, 1] such
that the standard open covering (Uy}sep Where Uy, = {ye Bl dlx,»)<f (x)} will do.
First let T'be the set of all internal #continubus functions g: *B—=*(0, 1] suchthat
(@) For each xe*B, if U, = {ye*B| *D(x,¥)<g(x)} then p'\‘(U,,) can b.e
written as a disjoint union of open sets V. such that for each x, £, Plyxe: Va2 Ux 18
a homeomorphism, and
(ii) For each x,y €
that Vi, N V,, # @. In other wor

*B if U, n U, # @ thenfor each ¢ there is‘a unique § s:uch
ds T is the set of all internal *continuous functions
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g: *B—*(0,1] such that there is a *overlay structure {*{U.}, {p.}> with
U, = {ye*Bl dx,y)<g(x)}. ‘

Now, consider the internal relation R(f, g) defined by g¢ 7 and O<g<f.
If there is no standard fe T this relation is finitely satisfiable for standard continuous
f: B—(0, 1] and, hence, since *.# is an enlargement there is an internal *continuous
o: *B—*(0, 1] such that ¢ ¢ T and for all standard continuous f: B—(0, 1] o<*f.
Let ¥ = {xe*X| Jbe*B*d(x, b)<o(b)}. Let Ey = YY) and p’ = Blp,. Now
the argument of Proposition XL 11 (i) shows p’: Ey—V has a *overlay structure
Vo), {op}> with V, = {xe V| *d(x, b)<o(b)} which restricts to an overlay
structure {{U,}, {¢,}> with U, = {x & *B| *d(x, b)<o(b)}. Hence o e T and this
contradiction completes the proof.

III. 16. CoNSTRUCTION. Suppose p: E—&(B) is an &-covering space. By the
preceding lemma and paracompactness we can find a *overlay structure <*{U,}, {¢,}>
such that {U,} is a standard locally finite open cover of B. Given such a *overlay
structure an admissible sequence is a sequence oy, 0y, ..., o such that

@) be U, n U,

(i) for 1gigk—-1 U, n U,,, # .

Let o be the set of all admissible sequences and define @: *o/ —H(F), where
H(F) is the set of homeomorphisms of F,by ®(cty, ty, vy 0,) = Guy _ 10, -
using the notation of Definition III. 1.

III. 17. DEFINITION. An &-covering space j: E—&(B) is said to be costandard
if there is a *overlay structure as above, a standard set H and an internal bijection

Y: F-*H such that the mapping y: *o/—*H(H) defined by y(s) = yd(sHy~* is
standard.

+ Gogas Jusar

A straightforward argument shows that an &-covering space associated with
a given standard overlay p: E—Bis costandard. This condition is thus an appropriate
one. for the converse of Corollary III. 10.

INL. 18. TrEoREM. If f: E—~&(B) is a costandard & - covering space there is a stan-
dard overlay q: K—B such that *q: *K->*B is isomorphic to p: E—*B where
E = p™(*B) and p = pl;.

Proof. We continue using the notation established above.

By a straightforward connectedness argument, for each standard o there is
a standard sequence oy, o, ..., such that

@) bel,, @=a0, !

(i) for 1<i<k~1 U, n Uy, # @.

Fix such a sequence for each . Given the sequence Oy s Olgy oory O LT o0 and the
sequence By, B, ..., B, for B if U, n U, # @, notice the sequence

Sup = 0gy Ggy ey iy Py ooy Bas By
is in o, Let @, = y(s,).

Let XK' be the disjoint union of the sets U,xH. If (x, e U,xH and
*DSUpx H we say (x, f)~(x, s) provided s = @up(f). Define I't *K'—E as
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follows. If (x, e U,x*H and ay,0,..,4, is the sequence for o, I'(x,?)
= g, (%, Pltgs 02y wovs a,) (D). ‘
Notice if (x, ) e U,x*H and (x,s) € Uyx*H then (x, f)~(x, s) if and only
it I'(x,f) =TI(x,s. Now K =K'/~ and I' induces an isomorphism *K—E.
[IT. 19. Remarks. The condition that : £—&(B) be costandard seems some-
what ad hoc at this point. If B is compact (or, if the open covering {U,} is finite)
we can weaken this condition to — for each s € of, YyP(s)y~ is standard: However,
it is casy to construct an & -covering j: & (B) where Bis not compact which satisfies
this weaker condition but does not extend any standard overlay. In particular cases
the costandardness condition may be very easy to check. o
Tn view of our work thus far, standard overlays,~ p: E—B, are in bijective cor-
respondence with costandard &-covering spaces, p: E—& (B). Thl.xs, the next step is
the classification of #-covering spaces. From now on we work in th.e category &.
The basic facts of covering space theory carry over unchanged to this category as
follows. .
TIL.20. DEFINITION. Suppose p: E—B is an &-covering space and f: X-B.
A lifting for f is a map 7. X—E such that pf = f.
E
i/
7
X—>B
111, 21. BASIC LEMMA, Suppose p: E—+B is an &-covering, X is path-connected
and f: X—B. If fy and fo are two lifiings of f and for some x € X, f1(x) = fo(x) then
fi=rf
Proof. Completely analogous to the usual proof [14]. .
IIL. 22. PROPOSITION. Suppose pi E—B is an &-covering sp_ace, w: *I-+B
and e e p~1(w(0)). Then there is a unique lifting @ of w such that ®0) = e. .
Proof. Completely analogous to the usual proof [14]. s
TIL. 23. PROPOSITION. Suppose p: E—B is an &-covering space, f: ()I :>B
and eep~(f(0,0)). Ther there is a unique lifting J of f such that 70,0 =e.
Proof. Completely analogous to the usual proof [14]. ,
IIL. 24. COROLLARY. Suppose p: E—+B is an &-covering space and p(€) = b.
Then py: 7, (E, ¢)-m (B, b) is injective.
Proof. Completely analogous to the usual proof [14]. bep ad
1l [ i & -covering space, be
I11. 25. COROLLARY. Swuppose p: E—B Is an . g
eeF = p=i(b). Suppose we Q(B,b) and let @ be the unique lifting of szuch”tl}eurz:
@(0) = e. Then @ is a loop (i.e. ®(1) = &) if and only if [w] € px(m:(E, f)()i);(l)us,w11ere
is a bijection t: (B, b)lpu(ms(E, ¢)—+F defined by © ([CUE]:) 5)] x];or e
74(B, b)[py(m:(E, €)) is the set of all cosets of the form [py(mi(E,
x e ny(B, b). .
Proof. Completely analogous to the usual proof [14].
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The following technical property is needed to establish the usual theorem about
liftings of maps f: X—B. }

TIL. 26. DEFINITION. An &-space X is said to satisfy property (P)if for every
internal set 4 <X there is an internal set 4’, 4 €4’ =X which is *path-connected
and *locally-path-connected.

I 27. Lemma. (i) If X is connected, & (X),‘ satisfies property (P).

(ii) If p: E~B is a(standard) overlay and p: E~& (B) is its associated & -covering
space then E satisfies property (P).

Proof. (i) is an immediate consequence of Theorem IT. 12,

(ii) If A<= £ is internal, we may assume *E< 4. Since § is an & -map, F(4) is
internal and by (i) there is an internal, *path-connected, *locally-path-connected
set C, P(A)=C=E(B). A" = p~*(A) is easily seen to be the desired sct.

II1. 28. THEOREM. Suppose p: E—B is an & -covering space and X is a space which
tatisfies property (P). Suppose xe X, be B, ecp™Y(b) and f: (X, x)~+(B, b). Then
shere is a lifting f of f such that f (x) = e if and only if fu(m, (X, x)) Spu(m(E, e)).

(B, e)
i,

(X, x) —> (B, b)

Proof. The proof is entirely analogous to the usual proof [14, Theorem 2.4.5]
with the observation that the construction of f'is internal on internal subsets of ¥ in
view of property (P).

III. 29. CoroLLARY. Suppose p: E—B and p': E'~B are two &~ coverings,
and E and E' satisfy property (P). Suppose b B, e p~(b) and ¢' € (p')~'(b). Then
these two & -covering spaces are equivalent in the sense that there is a homeomorphism
0: (E, e)~(E’', &) such that p'p = p if and only if pa(ri(E, €)) = pi(my(E", ).

Proof. Immediate.

IIL 30. COROLLARY. Suppose p: E—~B and p’: E'-+B are two (standard) overlays.
Suppose be B, ecp~'(b), and e'e€ (p)"'(). Then p: E-B and p's E'—B are iso~
morphic overlays via maps J: (E, &)—(E', ¢') and g: (E',e)~(E, e) if and only if
Pu(my(E, €) = py(ny(E, e')) in n,(€(B), b) (using the notation of 111. 12 and 111. 13).

Proof. This would be immediate from Corollary IT1. 29 and Proposition 1T, 13
except that Proposition ITI. 13 is not in terms of the points ¢, ¢’. However, since the

‘maps f, § extend J, g this implies J'(¢) = F@ =¢ and §(&) =j(e') = e. Con-
versely, given internal &-covering space isomorphisms f: (&', ¢)=(&, e) from
Corollary III. 29 there are standard covering space isomorphisms h: (E, €)~ (£, ¢')
and k: (E', ¢')—(E, e). Then the Basic Lemma IIL 21 implies that F extends *A
and § extends *k.

Corollary IIL 30 solves half of the classification problem. Next, we turn to the
problem of constructing an &-covering space p: E—B such that Pul(m (B, €)) is

a given subgroup of n,(B, b). It is clear from Example III. 5 that not every such

icm°®

Nonstandard analysis and the theory of shape 57

subgroup gives rise to an &-covering spacc. .In particular, the t.rivial subgroup of
7 (€(5°), b) does not. The following condition seems appropriate.

IIT. 31. DEFNITION, A subgroup G of m,(B,b) is said to be Q-subgroup
PrOVl(Cgf) For every internal subset 4, such' that'b € ASB, iy Y(G) is an internal
subgroup of m,(4, b), where i denotes the inclusion 4<B.

(Q2) There is an internal set 4,be A= B such that

b
ny(A, B) =5 7,(B, b) (B, B)/G

ol is onto where 7, (B, b)/C is (he set of cosets of the form Gx and g is the obvious
surjection.

111, 32. PROVOSITION, Suppose p: E—B is an &-covering, ec E, be B and
p(e) = b. Then (B, €)) satisfies condition (Q1) of Definition III.. 31.IfB = £(X)
for some standard space X and p: E-B is the & - covering space associated to a standard
overlay then pu(my(E, €)) is a Q-subgroup of 7,(B, b). ’

Prool. (i) Suppose b € A =B and A is internal. Let E; = p_l.(A) and p’ = plg,-
Then p': E A is an internal *covering space, s p;(?ri(EA, e)) is an internal sub.-
group of m((A, b). Let i denote the inclusxon. map A—B. B-j-[ Corollary EII. 25_ if
[w] € m (4, b) then, [w] e pi(ny (Eyn ©) o 0 hfli to a loop @ suchlx_that a)((g =e
in £ <« [i0] & py(i(E, €)). Thus, pi(Ey, €)= iy *(pa(m,(E, e))) and i (p4(my(E, )
is internal. ‘ -

(i) Now suppose B = &(X) and p: E~Bis the é"-.covm:mg associated to some
standard overlay. By the proof of Lemma III. 27 there is an internal set 4 suc]i 1that
*YcAcB and both A and E, = p~'(4) are path connected. Let F =p , o).
For cach ¢ & F there is a path w, in E, such that ©.(0) = e and w.(1) = ¢ By
Corollary IIL 25 the map 7: (B, b)—F defined by

(] = 5(1)
whete § is the unique lifting of v such that v(0) = e establishes a bijection between

ny(B, b)/pu(n,(E, €)) and F. Mence, since r(lawej) = ¢ the map f defined by

(A, B) > (B, B> my(B, BYlpu(my(E €)

is surjective so ofy is also surjective completing the proof.

i i iven subgrou
The construction of an &-covering space corresponding to a given subgroup
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is essentially the same as in the standard case. However, as in the case of The-
orem III. 28 a technical property is necessary to stay in the category &.

TIL. 33. DERINITION. An &-set B is said to satisfy property (S) provided for
every internal set 4 B there is an internal set A, 4 =4’ < B such that 4’ is pathwise
connected, locally pathwise connected, and locally simply-connected. Notice, by
Lemma IL 12 if X is connected, &(X) satisfies property (S).

III. 34. ConsTRUCTION. Suppose B is an internal, connected, locally path
connected and locally simply connected space, b & B, and G is an internal subgroup
of ny(B, b).

Let @ = {w: *I-B| w(0) = b}.

If u,ve Q we write u = v provided

@ u(1) = v(1) and

(i) [g] € G where g is the loop defined by

a() = {u 29 lf

O0srsy,

v(2-20) if }<r<1.

Define p': Q—B by p'(@) = w(1). Let E = Q/~ and let p: E—B be the map
induced by p’. Let ee E be the equivalence class containing the constant path
‘() =b.

Then p: E—~B is a covering space and Pi(my(E, ©) = G.

Proof. This is just the nonstandard form of the usual existence theorem for
covering spaces [14], : .

This theorem then allows us to prove the following theorem.

III. 35. THEOREM. Suppose B is a &-set with property (8), be Band G=n,(B,b)
is @ Q-subgroup. Then there is an &-covering space p: E—B and a point e & p~*(b)
such that py(m(E, &) = G. '

Proof. Essentially the construction is the same as III. 34 except that B is not
internal and we wish to stay within the category &. This forces our construction to
be more circuitous.

Let X be a standard topological space such that B=*Y. Let O = {K4, B 4is
internal, path connected, locally path connected and locally simply connected;

beAc*X and His an internal subgroup of (4, b)}. Notice 2 is internal. In fact,
Q is the nonstandard extension of a standard set.
For each ¢4, H>e Q let

Eiupy = {0: I-4] »(0) = b} N

If u,ve B, pmy we write u ~ v provided
() u(1) = v(l) and
(i1) [q] € H where g is the loop

_fu@d i oxi<t,
“O“ﬂa-m i p<r<l,

icm

Nonstandard analysis and the theory of shape 59

Now let Eequy = Beamy/=, and give Ey gy the quotient topology. Let
Peayyt Ecans—A be the obvious map,
"Now if <A, Hy, (A" H') € © we write {4, HY<(4', H"> provided
@) AsA,
(i) iy *(H") = H where i is the inclusion 4 C- 4'.
Notice, it {4, H)<<{A", H') then Eyyy SEypy and if u,ve E¢y g, then
uew in By gy <> usv in gy, ‘ .
Now, let E’ be the disjoint union

B = U

Eepmy -
A as D

Now suppose u, ve £ where u& Eqypy, v6 By py. We say usv provided
there is a 4", H''> e @ such that

(i) <d, HY<{A", H'"Y and {4', H')<{4", H") and

(i) considered as clements of E¢gr o, uxv. .

Next, let E' = E''[~ with the quotient topology and p': E'—*X be the obvxou,s
map. Notice for each (A4, H) € Q E¢4 y, may be .regarde'd as a subspace of ,E
Let g,y denote the inclusion E¢ 4y Cj E’. Notice E’ is internal. In fact E’ is
the nonstandard extension of 4 standard set.

Recall that our original subgroup G (B, by) was a Q-subgroup; so that f_o.r
each internal 4 such that b e A &8, Hy = iy *(G) =m(A4, b) is also internal where iis
the inclusion map A S B, .

Finally, let :

E = {xe[E'| there is an internal set 4 s.t. bye A=B and xeImicen,y) -

Notice, £ is our first external set and ESE’ so E is an £-set. Let p: E—Bbe
P'lz. Let ee E be the equivalence class containing the constant path w(f) = b. We
claim p: E—B is the soughtfor &-covering. ' . ]

Let 4 be any internal subset of B. Since B satisfies proper_ty (S)and Gisa (123111];
group we may assume 4 is pathwise connected, locally pathwise connected and locally
simply connected and

(A, b) S (B, b) > 7,(B, G

is onto. Since G is a Q-subgroup H = iy (G) 7, (4 , b) is internal. lSlo A, fc(l >sio§\i}
By construction YIT. 34 pears Ecduy=rd i8 il. *covering space, S0 a ‘?(eAl)leLet hov
is that p™1(A) = E¢qry. Clearly Ecauy 0™ ({1 ). Nc?w. suppose x z P N -'1(,4) ube
a path in A from b to p(x) and let & be the unique lx'ftmg of u t'o QA; 1; e
that ii(1) = x. Let ¢’ = 11 (0). Since giy is onto there is a_loop v 1r,1 L(t , lje e path
if % is the unique lifting of v 1o E, such that 5(0) = e, 5(l) =¢. Letg ‘
in 4 given by :

01y

<<l

21) if
“”“{ﬁu~n if
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Let g be the unique lifting of ¢ to E, such that §(0) = e. In fact § can be represented
by the path

Q(D(s) = gls7) .

Clearly Q is a pathin E¢ p, and x = §(1) = Q(le E¢ 4,1y completing the proof.
Finally, we define a Q-subgroup G sx,(6(B), b) to be costandard if the cor-
responding &-covering space is costandard as follows.

IIL. 36. DeFINITION. Suppose G <y (6(B), b)is a Q-subgroup and p: E—&(B)
is the corresponding &-covering space. Let ee E be as above. G is said to be
costandard if

(i) p: E»&(B) is costandard and

(ii) using the notation of Definition ITI. 17, 1 may be chosen so that () is
standard.

The results of this section can then be summarized by

T11. 37. TeEOREM. Equivalence classes of overlay structures p: E-B with dis-
tinguished points e are in bijective correspondence with costandard, Q-subgroups of
7,(€(B), b).
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Collectionwise normality and absolate retracts
by

T. Przymusinski (Warszawa)

Abstract, In this paper we present a generalization and a unification of the classical theorems
concerning absolute retracts for metrizable spaces, which were proved in the early fifties by Arens,
Dowker, Hanner and Michael, )

To illusirate possible applications of the obtained results we derive from them a generalization
of Borsuk’s homotopy extension theorem, which is a slight strengthening and reformulation of the
recent result of Morita and Starbird,

§ 1. Xntroduction. Let Q be an arbitrary class of topological spaces. A space
XeQ is an absolute retract for the class Q (briefly: an AR(Q)-SP;Lce) if for every
space Z & Q containing X" as a closed subspace there exists a continuous retraction
of Z onto X, A topological space X is an absolute extensor for the class Q gan
AE(Q)-spacc) if for every space Z € @, its closed subspace F and continuous mapping
fi F—X there exists a continuous extension f: Z—X of f onto Z. .

Note, that in the definition of an absolute extensor we do not require X to be
a member of Q. A space X & Q is an absolute neighbourhood retract for the class Q
(an ANR (Q)-space) if for every space Z e @ containing X as a closed subspace there
exists a neighbourhood U of X in Z and continuous retraction of U onto X. A topo-
logical space X is an absolute neighbourhood extensor for the class Q (an ANE (Q)-
space) i for every space Z e @, its closed subspace F anfi a contlnuogs mapping
F: F—X there exists a neighbourhood U of Fin Z and a continuous extension f U-X

to U. . :
: fle:s?vlutc relracts for normal spaces are called briefly abso{uze retracts
(AR-spaces). Similarly absolute extensors (AE-spaces), absolute neighbourhood
retracs (ANR-spaces) and absolute neighbourhood extensors (ANE-spaces) are
defined. | N 1

Facr 1 (The Tietze~Urysohn theorem). The real line E and the unit mtgrva
I =10,1) are absolute extensors. B ,

One can easily check that if a space X belongs to @ and is an AE(Q)-space
(resp. an ANE(Q@)-space), then X is an AR(Q)-space (resp. an .ANR(Q)-SPaCE)‘
It turns out that in “good” classes of spaces the inverse implication holds.

Facr 2 (Fanner [12], Michael [15]). If @ denotes the class of normal (resp.
metrizable; resp. compact) spaces and if X belongs to Q, then:
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