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w-models of second order arithmetic and admissible sets
by

W. Marek (Warszawa)

Abstract. Tt is proved that w-model of second order arithmetic (without choice) is continuum
of an admissible set. Problem of standard part of nonstandard models of various set theories is
discussed. ‘

This paper is devoted to w-models of second order arithmetic and admissible
sets and interconnections between them.

In § 0 we introduce the results and the notation, to be used in the sequel.

§1 is devoted to the interconnections and models of KP: We prove the
following: : '

(2) Under interpretation by trees, the 4,-collection is provable in &Z; (CA in
Kreisel’s notation). This fact extends former results by Srebrny and Marek [11] and
Kreisel [9].

(b) If M is an w-model of o7, then there is an admissible set M such that
M= M n p(0). >

This in turn leads us to another proof of the following result, extending that of
Enderton [6]:

(c) It Misa f-model of 5, then Constr™ is a f-model of &, +(X) Constr (X).

This in turn implies:

(d) The hard core of the transitive models of Z ~ + A,-collection is Ly, (where o
is the closure ordinal of the ramified analysis). @

§2 is devoted to the discussion of various conservative extensions of &/;. As
pointed to us by G. Kreisel, the choice of such an extension is far from arbitrary.
We propose a certain theory (in the language of set theory) which seems to .corre-
spond to the second order arithmetic 7. We then discuss various independence
results.

§ 3 deals with the problem of the standard part of nonstandard models of various
set theories. We are interested in models of the form L,. Then very peculiar results
are obtained;

(a) If L, is a model of KP+V = HC, then L, is not a standard part of a non-
standard admissible set. :


Artur


104 - W. Marek

Indeed, we find that: If L,k KP and it is a standard part of a nonstandard
admissible set, then L, satisfies the X,-collection and is power admissible.

These results naturally extend to relative constructibility, which leads to the
following result: “

(©) If MEXP+V = HC and is a standard part of a nonstandard admissible
set, then

ME@)(V # Llx]) .

Unfortunately the most general problem, namely under what criterion an
admissible set is a standard part of a nonstandard model of KP, remains unsolved.

We are grateful to Professor MOStO\;VSki, Krzysztof Apt, Marian Srebrny,
Pawel Zbierski and other colleagues in Warsaw for discussions and advice.

§ 0. Preliminaries. There are two main groups of results to be used in the paper.
The first group deals with models of second order arithmetic, the.second with those
of Kripke-Platek and other set theories.

I. Second order arithmetic. =, , second order arithmetic, is a two-sorted first-
order theory based on a language with the function symbols +, *, S, the relational
symbol < (for Oth sort objects) and the relational symbol . The axioms of &/ are:
the Peano axioms for natural numbers (including the induction axiom as one sen-
tence), the extensionality axiom and the full comprehension scheme.

o, is o5 with the following scheme of choice:

@DEN)I(x, N->ENX) S, Y™
If Mcp(w) then we say that Mt is a model of <5 (s£,) iff the structure
{w,M,...> is a model of o5 (,).
M is called a f-model iff M preserves the notion of well-ordering. A f-model
preserves all X1 and IT} notions. If 9t is 2 model, then an ordinal « is representable
in M iff there is an X'e M such that {(x,)): J(x,») e X} = a

(for all formulas &) .

) = U {«: a is representable in M} .

@f* is the first non-recursive ordinal. Notice, that 2 ()3 w$X. Finally let us note
that although the scheme of choice is unprovable in o/, we still have some partial
inferences, namely the o/, + ITi-scheme of choice (and thus the o/ + Zi-scheme

of choice). This fact results from the following observation: the Kondo-Addison
uniformization theorem is provable in &/ .

. ]] Set theories. KP is the following theory in the language of set theory: exten-
s101‘1a11ty, pairing, sum, infinity, A,-comprehension, d,-collection and full foun-
dation scheme. KP€ is KP plus the following scheme of choice:

()40 (*)u(Bp) 9 (x, »)—>(Bf ) (func(f) & Df = a & (x),¢(x, fx))

(for all Ay-formulas g).
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Z~ is the following fheory: Extensionality, pairing, sum, infinity, full com-
prehension scheme and foundation scheme. Z is Z~ plus the power set axiom.
ZFC~ is KP plus the scheme (¥) for all formulas. Transitive models of KP are called
admissible sets. Non-wellfounded models of KP are called nonstandard admissible
sets.

If M = (M, E) is a structure, then x is called standard in M iff

“1(Bx) (1) (x4 1 Ex, & 3 = x0) ,
otherwise x is called nonstandard.

If M is a model of KP, then SpM is a structure {Sp M, E | Sp M) where Sp M is
the collection of all standard elements of 9. The system SpIt is transitive in I
(i.e., M is an end extension of SpM). Unless W = Sp M, Sp M isnot definable in M.
M is also a rank extension of SpIM, i.e., the rank of x, ¢ (x), is standard iff x is stand-
ard. The following result is attributed to several persons. The proof may be found
in Friedman [7]: :

PROPOSITION 1. If M E KP and M is an w-model, 1hen SpIt k KP.

An admissible set is power-admissible iff it satisfies collection and comprehension
for a wider class of formulas, namely those 4, in the graph of power-set operation.

Let us note that the power-set of a standard element — if it exists — is also
standard.

The following important result is due to Friedman [7]:

PROPOSITION 2. Every countable power-admissible set is of the form SpIt for
some nonstandard power-admissible M. Conversely, SpI is power-admissible when-
ever M is.

The formula 'V = HC denotes the following sentence:

) ES)(f injects x into w) .

1t is equivalent to the following model-theoretic form: (HC)™ = |M|. Analogically
V = Hg is the formula: .
(x)(BS)(f injects x into K).

TII. Intercommections. Constr (-) is Addison’s X7 formula such that
©(w) E Constr[X] «» XeL n ()

and #(+) is a ¥, formula such that & (x) <> xe L (where L is the constructible
universe).

L, is the oth constructible level (i.e., Ly = @, L,y = Defly; Ly = LllL“ for
"

a limit ) o is called a gap iff (Ly,1—L) nP(@) = G ois the beginning of a gap
iff o is a gap but (B((Le—Ly) N (@) # @). The following facts connect gaps,
transitive models of ZFC~ and &f,:

PROPOSITION 3. (Marek and Stebrny [10]). o is the beginning of a gap iff
L,EZFC"+V =HC iff L, n p(w) is a B-model of A, of the height a.
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_Finally let us note the following Basis Principle of Gandy, which is useful in
the construction of patological models:

If a 237 collection of reals' ¥ is nonempty, then. 9L contains an element of
a hyperdegree less then those of OT.

§ 1. Trees and admissible sets.
DEFINITION. A tree is a partial function X from w to @ such that:
1° There is exactly one element MAXy e RX— DX such that

‘ (@x(En) (X (@) = MAXy).

2° X is wellfounded, i.e., there is no sequence x € “DX such that

(”) (X(xn-%l)‘ = xn) .

3% X has no automorphism, i.e., there is no nonidentical

¢: DX U RX —> DXU RX
such that .
o Mpxorx(X () =y & X(e() = 00)).

This definition is formalizable by a IT%-formula Tr(-).
DrerINITION. Let X, Y be trees, ae DX U RX;;
(@) X, = X} {xe DX U RX: En)(X™ = @)} {a};
(b) AMAXy = X' « {MAXy};
(c) XEqY <« There is an isomorphism of X and Y;
(d) XEps Y > (Ea)AMAXy(XEq Ya).
As defined, both Eq and Eps are Zi. _
Using the method of Barwise-Gandy-Moschovakis [4], we have.
LemMA& 1.1. Both Bq and Bps are A4}
Proof. It is enough to show Eq to be IT} on trees.

Let I'yy(U) be the following operator:
Ty y(U) = {<x, 3, 2): [(a)x-1«{x}(Eb)y~1w(y)(<ﬂs b,0>eU)
& (b)}"’w{y)(Ea)X“1*(10)((“7 b,0>0eU)&z =0]v
v [((Ea)X'1*[x}(b)l"1w{y}(<as b,1el)v
v (Eb)y-1, (y}(a)x-lm(x;«as b,1>e U)) &(z=11}.
It is easy to show that <x,y,0>eI'ty« X,Eq7,.
Thus XEqY « (MAXy, MAXy, 0y € 'Yy, which is IT. m

Alternatively one can prove the lemma by using the strong reflexivity of &5

Define [|x[x = {Iyllx: X() = x} and |X| = |[MAXxlx. We call [X| the
realization of X.
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We interpret the language of set theory within that of second order arithmetic
as follows:

(xey)T = xEpsy,
(x =»T = xEqy,
(@19 = o7|¥7,

(Ex®)T = (Bx) (Tr(xj & o7TY.

LemMA 1.2. If @ is @ Aq-formula, then ®T is equivalent to both a IT L formula
and a Ii-formula. ‘

Proof. By induction on the length of @, using the fact that both Eps and Eq
are AL m

1t is well known that while working in s, we have a uniform procedure allowing
us to find the form of &7 in the analytic hierarchy when & is in Levy’s hierarchy.
In the case of &5 (i.e., without the axiom of choice) there is no such general

method.

One can ask what statements of the language of set theory are true under the .
interpretation ()"

The following results have been obtained by several investigators:

1) (Kreisel, Zbierski) (ZFC™)" is provable in «;

2) (Zbierski) (V = HO)T is provable in .s/; ;

3) (Kreisel, Marek & Srebrny) (Z™)T is provable in &7, .

Our purpose is the following addition to 2) and 3).

TueoreM 1.1. (dq-collection)” is provable in of5 .
Proof. Assume ((x),(E)@(x,»)", i.e.,
(X)(XEpsd & TFX - (BY)(Tr(¥) & 7) and Tr4.
Since XEpsd & TrA—TrX, this reduces to
() (XEpsd — (BY)(Tr(Y) & 7)) & Tr(4) .
But
XBps4 < (Ba)amax (XEQ4,) -
Thus, by the substitutivity of the relation Eq we get
(@) amax,(E Y) (TI(Y) & ‘PT) .
Using the ITi-choice, we get
B Y) (@) anax(Tr (YD) & &7(4,, Y.

Clearly we may assume that DY = AMAX,.

We now proceed as follows: We divide o—{0} effectively into. w-parts. In
the nth part we copy as an initial segment Y™ (this needs no choice since natural
numbers are wellordered). Then we glue the copies together as they are being produced
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and put O on the top of the constructed relation. There may be, however, one small
difficulty. Namely, the function constructed may have an automorphism. It is
clear, however, that subfunctions starting in almost maximal elements have no auto-
morphisms. We now erase the superfiuous parts in the relation, getting a tree. Thus
if Z is the tree obtained as above we have

(@ amax (Y@ EpsZ) .

Thus since Z‘ is a tree we get

(@ amax EV)(YEpsZ & (A4, ).
And so

(X)(XEps 4—(EY) (YEpsZ & &7(X, Y)).

Finally we have

EZ)(Tr(Z) & (X)(XEpsAd—..)),
which gives the Ay-collection.

CoroLLARY 1.1 (Model-theoretic version I). If MEsf; then

{TrM, Eps™, Bq™) k Z~ +dg-coll. +V = HC.

(Note that we consider here models for the equality relation).
CoroLLARY 1.2 (Model-theoretic version II). If ME oS, then

(T, Bps™jpqm b Z7 4+ Ag-coll. +V = HC .

In the case where M is an w-model, so is the model from Corollary 1.2.
One easily proves that the continuum of the latter model is isomorphic to 9.
Using Proposition 1 from § 0. Preliminaries, we get

, THEOREM 1.2. If M is an w-model of of 5, then there is an admissible sei A such
that

® M=Adnpw).

Moreover, this admissible set can be chosen so as 1o satisfy V = HC,
Under the latter assumption this admisible set is umique and consists exactly
of the family of the realizations of trees in M. Finally, under this assumption,

AnOn=h).

Warning. In this theorem we mean trees in 9t and not sets satisfying in 9 for-
mula. Tr(-). One easily shows that, if X is a tree and X e M, then M F Tr[X].
However, if (X)(ME Tr[X]-Tr(X)), then M is necessarily a p-model.
Proof of Theorem 1.2, Consider & = (T™, Epsm>/Eqm. By Corollary 2 it

is a;;t admissible set (possibly nonstandard). As we noticed, @ (w)* is isomorphic
to M.
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Using Proposition 1 of the preliminaries, we get 4 = Sp.4",a transitive admiss-
ible set with a continuum isomorphic to M.

The uniqueness of A follows from the fact that if the tree X belongs to the
admissible set A4, then its realization || X|| also belongs to 4. (Once more we point
out that we mean that X is a tree and not only that it satisfies formula Tr(:) in D).

However, if 4 is an admissible set satisfying V = HC, then every element of 4 is
a realization of a tree in 4. (An appropriate tree is obtained from any enumeration
of TC(x).)

Finally, the last claim follows from a similar reasoning concerning wellor-
derings. @ :

The unique model A from Theorem 1.2 is called A%,

THEOREM 1.3. There is a M such that A™ does not satisfy T, comprehension.
We first prove a lemma interesting per se.

Levma 1.3. If A is an admissible set satisfying Z-comprehension, then I also
satisfies X-comprehension.

Proof. If g e, then o is also Z;.

Let a e LA By Z;-comprehension there is y such that witnesses for @™ may
be found in L, (y<4 n On). But then we may use Ao-comprehension (since the
existential quantifier in (pl’ may be bound by L,), which holds in L4

Proof of Theorem 1.3. Since 4 n On = L* n On, it is enough to have A® of
projectible height. By Gandy’s basis theorem, since (-) is a code for an w-mocel
of o7 is A}, we have a set X which is a code for an w-model of &5 such that
of = o$¥. Taking M = {X@: ac v}, we get an M such that RN = oF¥. Thus
A% A On = of*. But L,gx does not satisfy X,-comprehension. @

Let us remark here that since o} = o we have Lx[X] = L,e=[X]. On the .
other hand, X e L,¥[X] and so Me Lx[X]

The fact that an admissible set may contain a structure (say, an admissible set)
with the same height is well known. Here, however, let us point out one intéresting
fact. If N is a code for an w-model of KP, then there is an injection of L,gx into N.
We can find an injection which is recursively enumerable (partial recursive) but
cannot be extended to a total recursive one. This follows from the fact that the
existence of such a map implies the existence of the power set of w in L,ex[M],
which cannot happen. In particular, L,gx does not contain a code for an w-model
of KP (this also follows from the fact that Logx 0 {2 (w) = H. A.). Using the con-
struction from the proof of Theorem 3 combined with the result of Sacks—Jensen—
Friedman on the form of countable admissible ordinals, we get

THEOREM 1.4. For every countable admissible ordinal o there is an admissible set A
such that A On = o and A A P(w) is a model of 545 of the height o.

Part of this result was previously proved by Ms. M. Dubiel.
We now pass to the case where 2 is a B-model.
In this case A% is isomorphic to {Tr™, Eps®>/ggm and therefore satisfies the-
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whole of Z~ + 4,-collection+V = HC. This follows from the fact that Tr(-) is IT H
and so is absolute w.r.t. f-models of &5 .

The following lemma clarifies the connection between the formulas Constr(-)
and Z(-). ' ‘

Lemma 1.4. If M is a B-model of o5, then

M E Constr[X] < A®F L[X].

Proof. To make the situation clear let us choose an appropriate form of the
formulas Comnstr(-) and £ ().

Constr(X) « (BY)(EZ)(Z is a well- ordering
& Y is a sequence with domain FldZ
& Y is a sequence constructor
& The last term of Y codes X),

where Y is a sequence constructor means that Y is a sequence such that Y, is a tree
obtained from ¥, and ¥, by appropriate operations (as prescribed by Godel’s
functions K and L).

Z(x) < (Bf)(Ee)(Ord(x) & f is a sequence on o
& f is a sequence constructor
& the last term of f is x).

Now we prove — as follows. Since M is a f-model, the formulas X is a tree
and X is a wellordering are absolute. But if T is a tree (wellordering) and T'e A™,
then |T| (T) belongs to- 4™ and also the realization function (similarity function)
is in 4™,

Thus if ¥ and Z are an appropriate sequence and a wellordering (as required
by the formula Constr(-)), then we define a sequence f and an ordinal « as follows:
=T ‘

{B,x)yef « (for a unique s such that Z s = B, ||y = x)

f and o make £(x) true,

To prove « it is enough to prove that an appropriate sequence constructor
exists. So let « be an ordinal. Since 4™k V = HC, there is a T such that T = a.
It is enough to prove that there is a sequence constructor on Fld 7, Here is the point
where we use the Z}-scheme of choice.

Clearly it is enough to consider the case where « is limit, Then, for all x e FldT
there is a sequence constructor on T | Or(x). By the Xi-scheme of choice there is
a functifm which to every x gives an appropriate sequence. We now produce an
appropriate sequence on FldT.

Remark. The assumption that M is a B-model is necessary, as is shown by

the following example: Let 3 be. a f-model of o7, Let Mt be an elementary exten-
sion of M such that
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1) M, is not a f-model,

2) h(O®) = h(M,).

We may assume that M F (X) Constr. Then also M, k (X) Constr.
Consider now A% and A%, A®k (x) £(x). Since h(4™) = 1(4™"), we have

AW

a0y
L AT

’ =L

In fact L4 = 4™, Now
xeA™ - (AT F L(x)>xe A7) .

Thus

Xed™ - (4™ F 2(X)~XeM).

Thus, for X'e My —M : .

9, E Constr[X] & A™ k 1Z[X].

The existence of an extension of M satisfying 1) and 2) was shown by

Ms. M. Dubiel.
However, let us point that if 4™F £[X], then necessarily 90tk Constr[X].

LemMA 1.5. If M is a f-model, then h(IM) is a gap ordinal.
* Proof. Let o = h(M). A% is admissible and A(4™) = o, and so we have

A =1,

Thus if X & (Ley;—Ly) 0 @ (w), then X is definable over 4™, But 4™ models
the whole of Z~ and so X e A™.

Thus (L, —L) N ©(w)<A™. But, among the sets of natural numbers con-
structed in L, there is an arithmetical copy of L,, E, (here we use the result of
Boolos and Putnam [3]). Thus E, € 4™ and since A™ is admissible, the result of the
contraction of E, is also in A™. Thus L, e A% and so h(4™)>a, which contradicts
the assumption. & A .

Using Proposition 3 of §0. Preliminaries, we get: @

TreOREM 1.5 (Enderton). If M is a B-model of o5, then Constr™ is a B-model
of o ,+(X)Constr X, .

Proof. Let o = A(P). By the above lemma

Constr™ = I A p) =L, n (o).
But, since o is a gap, there is a beginning of a gap B, B<a, such that
L,np(w) =L;np) .
But Ly n @ (o) is 2 f-model of o, +(X) Constr(X). &
COROLLARY 1.3. If M is a B-model of sZ5 , then there is a B-model of o, N, such
that N<M. .

COROLLARY 1.4. If A is a transitive model of the Z~ + Aq-collection, then there
is a transitive model B of ZFC™, BSA.
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Proof. If 4 is a transitive model of Z~ 4 44-coll., then 4 N P (w) is a f-model
of o5 . (Here the X,-comprehension is used to show that 4 n ©(w) is a f-modell).

Consider now Constr®"#@®, Itisa f-model of 7 ,. AC"“S"MKJW c4. But AConstrAn@ ()
models ZFC™. &

CoROLLARY 1.5. Under the assumptions of Corollary 2 if h(L* A () = h(4),
then B may be chosen of the same height as 4. If h(L“ A P(w))<h(4), then B may
be found in A.

Proof A= @ _ 1 tor some o

If o = h(A4) then the first part is true.

If a<h(A) then L, A and the second part holds. m

Let us point out that the analysis of the proof shows that Constr is an inner
interpretation of &, in /5.

Let us also remark that, as pointed out by W. Powell, the fact that Constr™
a f-model does not imply that M is a f-model. The proof may be found in Apt
~ and Marek [2].

Tt follows from the results of Kreisel [9] and Zbierski [12] that, if M is a f-model
of o,, then A(M) is Z,-admissible for all 7. -

The situation drastically changes in the case of &/;. For instance, consider
as M a continuum of a Levy model Ni 111 which w; = wg (as presented in Cohen [5]).
1t is easy to calculate A(M) = o) = =", The latter ordinal is not X, admissible.
Tn this case Constr™ is codable within 9% and (Constr™) = ot

We may add to our list of corollaries the following:

COROLLARY 1.6, The hard core of transitive models of Z~+Ag-collection is
exactly Lg,, the least transitive model of ZFC™ (where By, is the height (and at the same
time the closure ordinal) of ramified analysis).

Let us finally note that there is an extension of Theorem 2 for models of some
fragments of analysis. Since A3-comprehension is sufficient to prove the Z}-scheme
of 'ehoice (one has to check what is exactly necessary for Kondo-Addison), an ap-
propriate version of Theorem 2 holds for models of the4 3-comprehension axiom.

The results of our Section 1 lead us to the following two directions:

(2) What does a hard core for subsystems of Z~+4y-coll. look like?

(b) What do standard parts of admissible sets look like?

§ 2. Independence results.
Hard core problem.
DEFINITION. The rank of the tree X is the least ordmal o such that thereis a norm

for X on o, i.e., there is an f: DX U RX'»—>a such that X (x) = y = f(x) ef ().
This definition is formalizable within &5 with a wellordering instead of an
ordinal.

Lemma 2.1. If M is an w-model of o5 2> and X e M is a tree, then X has rank
in M.
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~ Proof. Instead of directly using the bii I.choice, work in 4™ If X is a tree,
then | X e 4% and TC(|X|) belongs to A™. Then ¢(a) = g(|X,]) is the desired
function. B

Lemma 2.2. If T is a wellordering, Te M, X e M, and X is a tree then:
MET is a rank of X « T is a rank of X .

Proof. By induction on the height of X. &

DEFINITION. The following formulas are called a bounded collection scheme:

DI)(EY) (B (x, ) & yz) ~ EBHXEN(y sz & 8(x, )] -

The following is immediate:
LemMaA 2.3. Z + bounded collection.
Proof. ©(z) serves as ¢. W

DERINITION. - (2) Tr<®® = {X: X is a tree of rank {a& XeM}.

(b) If USTr then U = {|X||: Xe U}.

THEOREM 2.1. If M is an w-model of o5 and w<a<h(W), for a limit o, then
Tr<%% iy o transitive model of Z~ +bounded Ay-coll.+V = HC+ HF exists .

Proof. Tr<*® is a definable subclass of M. Indeed, by Lemmas 1 and 2 we
find that if T = o then:

XeTr™*® « Mk Tr[X]& Rank of X is less than 7.

Since T'is a wellordering, if the rank of X is less than T, then T is really a tree.
The proof of full comprehension follows as in the general case. Bounded the 4,-col-
lection is proved in the same way as the Ay-collection was proved in § 1. V = HC
is proved as before. HF is a realization of a recursive tree of rank . The transitivity
of Tr<*® follows from the fact that XEps ¥ & T Rank of ¥ is T implies that, for
some se FIdT, Rank of X is T S. &

COROLLARY 2.1. Z~ +bounded Ay-coll.+V = HC+HF exist not |- Aq-coll.

Proof. Tr<*® has height a. If the 4o-collection were provable in the above
theory, then o would necessarily be admissible, which does not always happen. M

In particular, Z~ not I 4dg-coll.

We show that Z~ not - Bounded — A4g-coll,

THEOREM 2.2. There is a transitive model M of Z~ +V = HC in which bounded —
Aq- collection is false. Moreover, M can be chosen so that HF ¢ M (Thus M F THF
exists).

Produce the model M as follows:

Let 4 = {a;}1cn, B = {bi}ico be two disjoint sets of mlelduals We form
HF(4 v B), the family of hereditarity finite sets over 4 U B. Thus the elements of
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HF (A4 U B) are built from a.’s and by’s by pairings and unions. Now let I be a
denumerable model of &5, M = {X,},e0. For re HF(4 U B) define

n if t=a,,
It =X, if =05,
{IS]: SeHF(4 u B)"}

Let M = {|t]l: te HF(4 u B)}. M is transitive. M models Z~. (This is shown by
an appropriate coding of M in M and by comprehension in M.) Mk V = HC,
o e M. But HF ¢ M and bounded 4,-collection is false in M.

The first fact is obtained from the following result:

If xeM, o(x) = o, then there is a y ¢ HF and an XSo such that x =y u X
(but HF is not of this form).

Similarly, for all n, ®—n € M but {w—n: n € w} ¢ M. This implies that bounded
Aq-collection is false in M.

THEOREM 2.3. Z~ +bounded Aq~coll. & If every tree of rank <o has a realzzatzon,
then every tree of rank <o-+w has a realization.

otherwise .

Proof. We proceed by induction; assume ‘that every tree of rank <oa+n has
a realization. We show that trees of rank a-+n-+1 have a realization.

Let X be a tree of rank a+n+1. Form X' as follows:

X' =X-[(MAX;} xAMAX) v U ({x} x AMAXy )] U

x e AMAXx

v I{MAX % U

xs AMAXx

AMAX, ].

We depict X ’gas follows:

MAXy

Fig. 1

Fig. 1: X' is formed from X by erasing AMAXjy and linking the elements im-
mediately below AMAXjy directly ‘with MAXy. The rank of X’ is o+n and
(x) AMAX,(J X, | X'])). Now using bounded A,-coll., we get the desired result.

COROLLARY 2.2. If M is a transitive model of Z~ +bounded Ay-coll. +HF exists,
then the realizations of all hyperarithmetic trees of rank less than w+w are in M.

. Proof. Since HF belongs to M, trees of rank  which are in M have a realiz-
ation in M (since they are included in HF). But, in particular, M n @ (@) F &/ and so
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H.A. =M (by the results of Grzegorczyk—Mostowski-Ryll-Nardzewski [8]). By
Theorem 2.3 all trees of rank <w+w in M have realizations in M. Thus all H. A.
trees of rank less than- w+w have a realization in M. &

Let H be the hard core of all transitive models of Z™ +bounded 4,-coll. +HF
exists.

THEOREM 2.4, L,ox N R, ., S H.

Proof. L,gx consists exactly of realizations of ‘H. A. trees. Indeed, Lyex 0
N P(w) = H. A. Since L,gx is admissible, therefore, if X is a tree, XelL,ex,
then [X| e L,cx. On the other hand, if xeL,¢x, then TC(x) € L,g= and, since
the latter satisfies V = HC, TC(x) may be enumerated in L,ex. From the enumer-
ation it is easy to construct a tree X such that [ X|| = x. Clearly X belongsto L,cx. M

Similarly we show that:

I M is an admissible set, M EV = HC, then M = Tr n M. Notice that Tr™
may be different from Tr n M. In particular,

Tr nL,ex & Trlogx .
We finish this section with the following
Conjecture: H = Lyex N Rypqp.
Let us note that the conjecture easily reduces to a certain omitting type problem
for Borel sets.

§ 3. Standard parts of nonstandard admissible sets. We consider here the follow-
ing problem:

Let 4 be an admissible set. Under what assumption is there a nonstandard
admissible set 9 such that 4.= SpMN?

The only known positive result was obtained by Friedman [7], who proved
that a power-admissible set is a standard part of a nonstandard admissible set. In
the same paper he announced that L,cx is not a standard part of any nonstandard
admissible set.

DeFNITION. () Adm is the. class of all admissible sets.

(b) If T2KP, we define Uy to be a class of those admissible sets which are stand—
ard parts of nonstandard models of T.

() Vr = Adm—"Us.

Derintion. KPC€'is KP plus the scheme of choice for Ag-formulas.

Let M = (M, E) be a model of KP. HC®is a submodel of M consisting of all
hereditarily countable sets in M. Clearly HC™ is transitive in M.

TrEOREM 3.1. If M = (M, E) k KPS, then

CHC®, E } HC™) F KPC.

Proof. If Mk V = HC, then HC® = M and there is nothing to prove. Since
HC® is transitive in M, Aq- formu]as are absolute and so 4,-comprehension holds
in HC®™,
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Similarly, since HC™ is definable in 9%, the foundation scheme holds in HC™,
It is enough to prove the 4y-choice scheme in HC™.
Let us note that 4,-choice implies ¥, choice. Assume now that

HC™ F (x),(E) e (x.9) .
Then also
ME ().(Ep)olx, y)
and finally

M E (x),(Ey) (y is hereditarily countable & ¢ (x, »)) .

But “y is hereditarily countable” is X, and so by Z; choice we have a func-
tion f on a such that Mk (x),0(x, fX).

Since Df jis denumerable and f<HC™, we have feHC®™, which shows
Ay-choice. ®

LeMMA 3.1. If M is a nonstandard admissible set, then SpIM is nor definable in M.

Proof. If ¢ defines SpM in M, then by foundation there is a y =SpI such
that “@(y). But then y e SpMM and o (). A

COROLLARY. If M is an admissible set, MV = HC Bt = (N, E) is « non-
standard admissible set,

if M=Sp®h then M #HC".

TueOREM 3.2. If M is an admissible set, w e M, Mk V = HC and M has f-prop-
erry, then M € Vggpe. .
Proof. Assume M e Ugpe. Then there is a M such that M = Sp”, R non-
_standard. ‘
By Theorem 3.1 we may assume that 9tk V = HC since M = SpHC™ Let { be
a nonstandard ordinal in M. { is denumerable and let T be an ordering on w such
that Rk T'~{. Then Nk T is a wellordering | and, since M is smaller than 9,
METT is a wellordering |, and so T is a wellordering, contradicting the fact that
{ is nonstandard. ‘
Lemva 3.2. If L, € Ugp then L, & Ugpe.
Proof. Let 9 be nonstandard admissible and such that L, = Sp . Consider L”.
It is nonstandard since it has the same ordinals as 9. The constructibility for-
mula Z(-) is Z,, and so
Sphk Zx] » NEL[x].

But L, k (x) £ (x), and so L,sL™ Thus L, is Sp.L™. (Because a smaller model cannot
have more standard sets and L% is transitive in 9t.)
But L*FKP+V =L, and so L*-KP®. m

%EMMA 3.3, If M is an admissible set, MEV = HC then M E T (w) does not
exist

Proof. Assume Mk yis (w) . Then y is enumerated in M and we produce
a diagonal set. m
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THEOREM 3.3. If L, is admissible, o € o, L,EV = HC, then I, € Vgp.

Proof. Let N be a nonstandard admissible set such that L, = Sp9t. Let { be
a nonstandard ordinal. If X and X e R, then X e Sp” (i.e. XeL,). Then

P = p @',

But go(a))l‘gl e M. Since P(w)" = @(w)™ and the power-set of a standard set (if it
exists) is standard, therefore ©(w)**eL,, which contradicts V = HC (by
Lemma 3.3). B

CoroLLARY 3.1 (Friedman). Lye< € Vie.

Proof. L,exFV =HC. &

COROLLARY 3.2. If M = (M, E)> is a nonstandard admissible set, being an
w-model, M EV = HC, then SpMEV # L.

Proof. Since o € Sp M, therefore SpM F V = HC. If in addition SpMEV = L
then there is an «>w such that SpIt = L,, which contradicts Theorem 3.3.

Note that 3t may satisfy V = L and still SpIM & V. L; indeed, some standard
elements will be constructed through nonstandard ordinals. Thus we have:

THEOREM 3.4. If M =M, E) is a nonstandard admissible set, which is an
w-model, MEV = HC = L, then there is a subset X of w such that

SpMYk 1L[X] and Mk L[X].

DEFINITION. Let XS . X is called pseudo constructible in T(PCT(X)) iff there
is an w-model M of T such that X is constructible in M.

THEOREM 3.5 (Putnam). PC¥* = p(w).

Proof. The statement PC** = p(w) is a IT; statement true in L. @

In the case of PCZC an analogous theorem is true under the assumption that
there is a standard model of ZFC with uncountable height. The latter assumption
is provable in the Kelley~-Morse theory of classes.

An w-model of KP in which X is constructible may be found in Ly¥,,[X].

After the above digression let us come back to the reasoning -of Theorem 3.3
and corollary. The construction can be generalized in two directions:

(2) To relative constructibility.

(b) To models of V = Hg.

THEOREM 3.3*. If M = (M, E) is a nonstandard admissible set which is an
w-model MEV = HC, then SpTE (x)(V # Lx]).

THEOREM 3.3%*, If Mt = (M, E) is a nonstandard admissible set, K a standard
ordinal in M, MEV = Hg, then SpMEV # L.

COROLLARY 3.3 (Final version). If M = (M, E) is a nonstandard admissible
set, K a standard ordinal in M, MEV = Hy, then

"SpME ()(V # L[xD.
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There are admissible sets A satisfying both (x) (V # L[x]) and V = HC. Does
then 4 € Ugp necessarily hold?

LemMA 3.5. If L, is admissible, L, & (n)8, exists and L, F &,, does not exist, then
L,eVgp.

Proof. Assume L, € Ugp. Let M be a (nonstandard) extension of L, such that
L, = So9. Then M is a rank extension of L, i.e.:

It xe M, o(x) e SpIM, then x e SpM. Thus the cardinals of L, are cardinals
in M. Thus ME (m)(s, exists). There are nonstandard ordinals in M. Pick one,
say {. Then s = . Thus {NF: ne o} e M and finally () NI e 9. But the

neaw
latter ordinal is o.. ®

Similarly we get:
THEOREM 3.6. If L, is an admissible set, L, F (), (% exists) and L, F %, does not
exist, then L, e Vgp. .
COROLLARY 3.4. If L, Ugp, then L, satisfies the power set axiom.
CorOLLARY 3.5. If L, € Ugp, then L, satisfies ({) (w; exists).
" COROLLARY 3.6. If L, & Uy, then L, satisfies ({) (H exists).
Proof. It is enough to prove that, for { being a cardinal of L,, L, = Hf“.
This, however, is a standard reasoning. @
CoRrROLLARY 3.7. If L, € Uxp, then L, is recursively inaccessible and thus L, has
B-property.
Proof. If { is a cardinal of L,, then L, F L, is admissible and thus L;iis admissible:
By Corollary 3.5 « is a limit of cardinals of L, and so is a limit of admissibles. B
LEMMA 3.6, dssume L, = SpM, M nonstandard, weL,, MMk KPC. Then
L,< M. .
Proof. Let ME (Ex)@(x, x4, ..., %), ¢ €4, when xy, ..., x, €L,. Applying
the Skolem-Léwenheim theorem within M to the set TC({x, xy, ..., x;}), we get
a subsystem of the latter set containing HL* (where x,, ..., x, € H:) and of power x.
Since this system is of power % and wellfounded in L,, its copy in ()™= is well-
?ounded in L,. Thus, by Corollary 3.7 it is wellfounded. Thus it has a realization
in L, and so we get a transitive system N eL,,
NEED @, X1, o0y 1) -
Thus
LB EBx)o(x, %1, s X). B
TreoreM 3.7. If L, e Ugp, then L, is Z,-admissible and power admissible.
Proof. Assume L, = SpM, M nonstandard; we may — as before — assume
MEV = L. Let { be a nonstandard ordinal in Wt

Then L,<;L;" (by Lemma 3.6). Assume now L,k (x),(Ey)p where ¢ ell;;
then

ME (x)(E)Bo.
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‘We now modify ¢ and write instead @: ¢ &y is of least possible rank. Then

ME ()o(EP)r,(@)x, -

But any y which makes (¢)™ true is necessarily standard. Now, using the fact
that M is choice-admissible, we find the appropriate function f. But f has a standard -
domain and takes only standard values, and thus f is itself standard. Thus Rf is
a standard set making ¥, collection true in L,. B

Power admissibility is shown by the same reasoning with the use, instead of
the lemma, of the following fact: If L, is SpI then L, preserves 4o() formulas.

But Friedman [7] shows that if L, is power admissible, then L, e Ugp, and
thus: :

COROLLARY 3.8. L, € Ugp iff L, is power admissible (for o€ w,).

COROLLARY 3.9. If L, is power admissible, then L, is Z,-admissible.

The converse implication is obviously false — take B, as a.

Also for admissible sets of form other than L, it is easy to show a set which
is power admissible but not X,-admissible. Indeed, Friedman [7] shows that for any
countable admissible ordinal o there is a power admissible 4 such that 4 n On = «.
But for o = 0 no such A4 is X,-admissible.

Applying the Gandy-Basis theorem together with the Sacks-Friedman—Jensen
theorem on the form of countable admissible ordinals, we get:

THEOREM 3.8. If ¢ € 4, o admissible, then there is an admissible set A€ Ugp +v=nc
such that A On = a. :

This theorem does not follow from the results of Friedman [7] since he finds
an 4 e Ugp of the height o but one which is power admissible and so necessarily
satisfying V # HC.
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A decidable w,-categorical theory
with a non-recursive Ryll-Nardzewski function

by

James H. Schmerl * (Storrs, Conn.)

Abstract. According to the theorem of Ryll-Nardzewski, a complete first-order theory T'is
wo-categorical iff for each n<w, the set Sy(T) of its n-types is finite. For such theories T, we call
the function n—+|Sy(T)| the Ryll-Nardzewski function of T. Waszkiewicz asked if the Ryll-Nardzewski
function of a decidable theory is recursive. It is shown that this question has a negative answer.
More specifically, for any Turing degree b there is a function G: w->w of degree b with the following
property: whenever a is a degree such that 4 is recursively enumerable in a, then there is a complete,
No-categorical theory of degree a whose Ryll-Nardzewski function is G.

According to the classic theorem of Ryll-Nardzewski [1], a complete first-order
theory T is s,~categorical iff, for each n<w, the set S,(T) of its n-types is finite. For
such theories T let us denote the function n—|S,(T)| by Ry, which we call the Ryll-
Nardzewski function of the theory T. Th(? following question was posed by Wasz-
kiewicz in [2]: Is the Ryll-Nardzewski function of a decidable ,-categorical theory
always recursive? It is the purpose of this note to give a negative answer to this
question (*). More -generally, we consider a relativized version of Waszkiewicz’s
question: If the Turing degree of T'is a, then what are the possible Turing degrees b
of Rp? It is a straightforward matter to show that b must be recursively enumerable
in a. Our theorem shows that this is the only restriction. What is perhaps more
surprising is that the Ryll-Nardzewski function of degree b canbechosen independ-
ently of a.

THEOREM. For any Turing degree b there is a function G: w—w of degree b with
the following property: whenever a is a degree such that b is recursively enumerable
i a, then there is a complete 8q-categorical theory of degree ain a language consisting
of one binary relation symbol whose Ryll-Nardzewski fumction is G.

* Research partially supported by NSF Grant GP-32463.

(%) A negative answer was also given by E. Herrmann of Humboldt University in Berlin. His
results, obtained independently of ours, are contained in a manuscript entitled “About Lindenbaum
functions of §,-categorical theories of finite similarity type”. Thé examples he gets are-not, however,
as extensive as ours. : .
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