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Abstract. In this paper we shall show thét if a locally connected continuum embeddable in E? is
a Cartesian product of non-trivial topological factors, then one of the factors is an arc or a simple
closed curve. Then with the help of Claytor’s results [2] we shall prove that if one of the factors
is a simple closed curve then the other is flat (smbeddable in E?). If one of the factors is an arc,
then with the triviality of the first and the second Cech cohomology groups, the other factor has to
be flat. This theorem leads to the following corollary: every proper topological factor of an AR
embeddable in E* is flat.

A space Y is said to be a topological factor of anon-empty space X if there exists
a space Z such that Y'x Z is homeomorphic to X. The space Y is a proper topological

" factor of X if Y is a topological factor of X and it is not homeomorphic to X and

contains more than one point. By E” we will denote an n-dimensional Euclidean
space. When o is an arc, its interior will be denoted by 4.

1. On 1-dimensional factors. In this section we shall consider 1-dimensional
topological factors of a 3-dimensional locally connected contmuum embeddable
in E3, A set T'is said to be a riod if it is the union of three arcs pa1 s paz, pa3, pair-
wise disjoint outside point p. Let us notice that the following simple lemma holds:

LemMA 1.1. 4 non-empty non-degenerate locally connected continmm X which
does not contain a triod is an arc or a simple closed curve.

Next we shall prove

LEMMA 1.2. 4 Cartesian product of two triods is not embeddable in E®.

Proof. By F" we deriote the n-dimensional skeleton of a (212+2)-dimensional

s

simplex. By G” we denote a juncture F~4 4 F*2=1 4 x F*~* such thatiz ky=p+1.
=1

Then, as was proved by Claude Weber [4], the cone over G"~* is not quasi-embed-
dable in R2"~1, Hence, if we denote by K, the juncture F°+ F* of two 0-dimen-
sional skeletons of a 2-dimensional simplex, the cone over K, is not quasi-embed-
dable in E®, Hence it is not embeddabled in E*. It is easy to see that the product of
two triods is homeomorphic to the cone over Kj.
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Now we can observe that the following theorem holds:
TurorEM 1.1. If @ locally connected continuum embeddable in E? is a Cartesian
product if non-trivial factors, then one of the factors is an arc or a simple closed curve.

Proof. Let X% Y ZcE3. By Lemma 1.2 the product of two triods is not

embeddabled in E3; hcncc X or Y does not contain a triod. By Lemma 1.1 a locally
connected continuum that does not contain a triod is an arc ot a simple closed curve,

2. The case of a 1 -dimensional factor being a simple closed curve, At the beginning

of this section we shall give some definitions and quote a theorem by Claytor [2].

DEFINITION 2.1. A graph is said to be Kuratowski’s gmplz Kl i‘l? it is 4o union of

L8 2 2 8 o 0o o

six points a, b, ¢, 4, p, g, and of disjoint open arcs ab bd, dg, qa, ac, de, cp, pb, gp,
that do not contain any of the points &, b, ¢, d, p, q

This definition is equivalent to the definition of Kj on page 141.

b

Fig. 1

DEFINITION 2.2. A graph is said to be Kuratowski’s graph X, if it is homeomor-
phic to a 1-dimensional skeleton of 4-dimensional simplex. We shall denote the
. ramification points as in Figure 2 by a, b, ¢, p, ¢.

a

Fig. 2
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DEFINITION‘ZJ. Let the graph Z, be as in Figure 3, Consider the family of
gmphs {Z}ien, where N is the set of natural numbers, such that, for every
=1,2, 00 210 Zyyy = 0}, Zy 0 2y = i | j—1] > and the diameters of sets Z,

o
converge to zero. Let by, = lim b, and let the intersection of the are Izw p with U Z,

t-ren

at ;
be empty. Then we obtain Kuratowski’s curve Ky = U VARV bw 0.

f=1

i

o 4

Yig. 3

B

DEFINITION 2.4, Let the graph R, be as in Figure 4. Consider the family of
graphs {R;};cy, N-natural numbers such that for every = 1,2,.., Rin Riyy
={a..1}, Ry Ry = @il j = i-+1, i—1and thediameters of the setsR are convergent

to zero as i diverges to infinity. Let &, = lim &; and aw po U R; = . Then we
i—rw i=1 .

ar
have Kuratowski’s curve K, = U R v aw p.

b

i
m @

CLAYTOR’S THEOREM. A locally cormected contimnum X is embeddable in S2if
and only if X does not contain any of the Kuratowski curves Ky, Ky, K3, K.

Now we shall formulate the main theorem of this section:
5 — Fundamenta Mathematicae, T. XCIX

Fig. 4
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TrroreM 2.1. If a locally connected contimuum embeddable in E® is homeomorphic
to the Cartesian product of a space Y and a simple closed curve, then the space Y is
Sflat (Y is embeddable in E?).

Proof. The space §2 x " is a compact 3-dimensional manifold without boundary,
and thus it is not embeddable in E3. By Claytor’s Theorem it suffices to prove that
-the spaces K;x S* are not embeddable in E3fori=1,2,3,4. To show this we shal]

prove several lemmas.
k
Lewwa 2.1 Let S, =S" for P=1,2,.,0 USi0Sees =<0,1) for

N n
1<k<n—1 and let h be a homeomorphic embedding of \J S;x S* in E®. Then the set
o~

i

n
Z =h(U 8;xSY) dissects E*> into precisely n+1 components. Moreover, if
=1

. n=1
Z' = h(U §;xS") dissects E* -into the components Ay, ..., 4, and h(S,x S") dis-
i=1

sects E® into the components By, B; and Z\Z'cA,, then the set Z dissects E* into
the components Ay, ..., Ay,—y, 4, By, A, 0 By,
Proof. We proceed by induction on n.
If n = 1, then for an arbitrary embedding & the set 1(S, x S'), being homeo-
morphic to the torus, dissects the space E? into precisely two components,
n
We shall show that the set Z = A (U S;x S*) dissects E* into n+1 components.

i=1
n=1

From the inductive assumption it follows that the set Z’ = h(|J §;x S*) dissects E*
1=

1
into # componenis A, , ..., 4,, such that AN\A; = S'x S'. The set Z\Z' is equal
' ltcu:\ . q .

to A(Jx S*) where J is an open arc, and so it is connected and it is contained in
E3\Z’; hence it is contained in one of the components A, ..., 4,, say in 4,. We
have ’

E3NZ = EN(Z' U h(S,x 8) = (B\Z") n (E*Nh(S, % 5").

The set 4(S, x 8') dissects E? into two components, B, and B,. Notice that for
every i =1, ..., n—1 the component 4, is contained in E3\/:(S, x SY), hence, being
a connected set, it has to be contained either in B, or in B,. Hence ‘

 ENZ=4,0..Ud U4, A BYU A, ABy).
The set T = ANA, is a torus and

2
TUh(IxS) = iUlSl xSt

Hence the set T U A(Jx$") dissects E® into three components one of which
is E\4,. It is to observe that the sets B, N 4, and B, N 4, are non-empty, and so
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they have to be connected. Thus 4y, ..., A, 4, " By, 4, " B, are the components
of the set E3\Z, which proves the lemma.

LemMA 2.2. Let I', J', K be ares with end-points a and b and with pairwise disjoint
interiors. Let I be the embedding of the set (I' UJ' O K)x S" in E3. We denote;

Ty = h((I' wJ)%x8"),
Ty = h((l" v KYx8Y),
Ty = h((/" v K)x5"),

I=h(l'x 81,
T= b % SY,
K= h(K'x 8Y).

For every i=1,2,3 the set T, dissects E® Into the bounded component A, and the
unbounded component By, Then I By and Ke By iff JeA,.

Proof. First we shall show that I<B; and KeB, implies Jo 4,.

The set Ty w T, is cqual to Ty U K, and KeB,. By Lemma 2.1 T, UT,
dissects E? into three components, 4,, By N A,, and B; N B,. By the same reason-
ing T3 u Ty dissects E> into three components, A4s, By N A, and By N B;.

Assume L B;. Then the set T, U T, equal to the set T, U J, dissects E* into
components the A,, Bs N A3, and B, N B,.

Since the sets Ty U Ty, T3 U Ty, To U Ty are equal to each other, they have
the same components of complements to £°. Notice B, N B, = By n By = B, N B;.
By Ay # A4, and 4 % By N By, A; = B, n A5 From A # A, and 43 # B, N By,
A3 = By N Ay But now A, = B, N A, = A,. This is not possible, because it yields
a false result T) = T4, Hence J#B,. But J is connected, Jo E®\T,, and hence
JoA,.

Now we shall show that the condition J= 4, is sufficient for IcB; and K< B,.

The set Ty v T is equal to the sets T, v J and Je4,. By Lemma 2.1 the set
T, u T, dissects E? into three components, B,, A, N By, and 4, n 4. Ty 4,
implies 4;<A,, and hence the components of E>\(T, u Ty) are of the form B,
A, nBy, 4. KcT, u T, implies Kn 4, = @, and since Kn Ty = &, we have
KcB,.

By an analogous reasoning we prove < B,.

LemMMma 2.3. The Cartesian product of Kuratowski’s graph Ky and the circle Stis

not embeddable in E°,

Proof. Assume that : Ky x §*-+E? is a homeomorphic embedding. Denote
by S, S5, Sy the simple closed curves being the subsets of the graph K.
A o~ o~
Sy =bdudevwcpupb,

df o~ —_ —
Sy = abubpupcuca,
O o~ e~
Sy =abvbdudeu ca.
Bvery sot T} Z h(S;xS8Y, i=1,2,3, dissects E* into two components, Ifi
and B,, B, being the unbounded component. Let » be a fixed point on the circle S,
5
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af ar
We can put p' = h(p,r) € As; then ¢' = h(g, ) €4y as well, because the arc
o = lz(p?]x {r}) is contained in E*\Tj. ‘

Lemma 2.1 shows that the set T3 u T dissects E* into the components B,
Asn By, and A;n A, = 4, and T5 U T, dissects E? into the components B,
A3 By, Ayn Ay = A, T30 Ty, and T3 U T, are equal, and thus their comp-
lements in E? are equal as well. So Ty v T dissects E? into components B, As, Ay,

b

Fig. 5
o : 2 2
But ¢’ € 45, and thus the open arc f = A((ag U {g} U gd)x {r}) is contained in
A, U A,. The arc f is connected, and thus fcd, or fc=d,. Denote
o Q .
J = h((ep v {p} uphyxSY),
I= lz((E?z U {a} U ab)x S,
Q o
K = h{(bd v {d} U dc)x 8").

' e A, implies Jo A5, Lemma 2.2 yields /< B, and K= B,. Thus we have the point

a dr
@' = h(a, r) belongs to B, and the point d = h(d, r) belongs to By, which implies
o' ¢A4;, hence fEA, and d' ¢ 4,, and thus B4,

LEMMA 2.4. The Cartesian product of Kuratowski’s graph K, and the circle S*
is not embeddable in E°.

Proof. Assume that 4: K, x S'—E? is a homecomorphic embedding. Denote:
e R
K = h{acx 8,
ar 2 2
L = h((ag v {q} v g))x S},

af A A
M = h((ab L {b} U be)x S1),

' longs to Ay, and thus iz, The arc y = h(ghx {}), contained in E>\(T; v Ts),
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’

dr ,-9~ 2 {
N s h((ap o {p} v p)xS'),
T
P h(({ay v {e)xSh) .
df ar
Ty w2 Ko MUP, Ty =LuNuwlpP,
ar if
Ty = KwlLwbpP, Ts e NuMwP,

dt dr
Tyw LOMWUP, To=NuWuKuPl,

M
Fig. 6

Every set T} dissects J* into two components, 4, and By, B, being the unb?unded
component. We may assume that if r is a fixed point on the circle %, then

df ar
¢ =h(g, ) eA,. Tn this case p' = h(p,r)e 4, as well, because
o = /z(];(;x {r})(:Ea\Tl .

With the help of Lemma 2.1 and Lemma 2.2 we can show, as in Lemma 2.3,

that the set T, U Th, equal to the set Ty U T, dissects the space E? into the com-
. L]

ponents A,, A5, B,. The arc ff = /1(;’7”‘ {r}) is contained in E*\T}. The point P’ be-
o .

is connected, and thus it is contained in one of the components A, 4, By. But

¢'¢B; and from Lemma 2.2 %' xﬁh(b,r)eﬂz (because L= Aj), hence b' ¢ 4;,
and thus y B, and y&4,, which gives y<4s. L

The connected set N is contained in E3\(Ty U T2), and thus N is contained in
one of the sets A,, 45, By. But p’ € 4y, hence p’ ¢ B, and p'e N, and thus N & B;.
Assume Ncd,. Then from Lemma 2.1 the set T,uTauly =TV T,uTs
dissects the space E? into the components A, N Aq, 42 N Bay A3, By, equal to the
components A, N Ag, A, N Bg, As, By. But T,cA,, and thus 4,4, and
Ay 0 Ay = Ay; TecA,, and thus dge=d, and 4, 0 Ag = 4g. \;Ve.have Ay # 4s
(because T, # T'), and thus the set Ty U Tp U T, dissects E” 1into the com-
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ponents A, A, g, By. The arc f would have to be contained in one of these com-
ponents. But f&£ By, and thus f is contained in one of the sets 44, 46, A3. The com-
ponent A, lies in 4,, 5" ¢ A, and b’ ¢ T, and hence D’ ¢ A, and f£A,. The set N is
contained in A4, and thus N n 4, # @, whence p’ ¢ A, and P£A4,. We have
NcA,cd,, and, from Lemma 2.2 M<Bg; thus b ¢ Ag and Bt dg. Thus when
Nc A,, the arc f is not contained in any of the components A4, Ag, 45, By. Hence
N A,, that is Nc 4.

Now, by the same reasoning as in the previous case, we can prove that the set
TywTyuT, =T, uT;uTs dissects E? into the components A,, A5, 4;, B,.
The arc y lies in 45, and thus ye 4, or ycAs. But No A, and, from Lemma 2.2,
LcBs and McB,; hence ¢’ ¢ As and b’ ¢ 4y, which implies y#£A, and y#4s.
This contradiction proves the lemma.

LEMMA 2.5, The Cartesian product of Kuratovwski’s curve Ky and of the circle St is
not embeddable in E®.

Proof. Assume that h: Ky x St—E3 is the homeomorphic embedding. Denote
7 = h({be} % S*). The uniform continuity of 1 implies

AV /\/z(Z xSHcK(s, €) ,

e>0 iy izip

where K (t, €) denote the ball with the centre = and the radius e. Let r be the fixed -

point on the circle $* and let p’ denote s(p, r). The distance (r, p') of the point p’

de
from the curve t is greater than zero. Also o(t, %;)>0, where & = A(Z, xSM.
Let g, be such that g(t, p'y>e,>0 and ¢ (z, Z'1)> ¢, >0: then there exists an i, such
that h(Z;x SY)<K(, &) for all izi,. Denote

o

— 2 .
K = 1((fiobig—1 Y {big=1} U big-1 i) x S*),

I= h((fiociu Y {Cic} v ciodio) xsi) ?

o o
J=h((firei © {en} Y e d,) xS,
P = h(({ fio} © {di}) x5%),
T,=TUJUP, T,=IUKUP, Ty=JUKUP.

The torus T dissects E? into components 4, and B; one of them, say 4, is contained
in K(r, o) (because the toruses T; are contained in K(z, 8y)) i = 1, 2, 3. The point

Dbjpey @ U h(bj,—1,7) can be connected with the set &', < E>\K(r, gp) =By by an are
fo—1

contained in A( Z,xS?), and thus disjoint with Ty, Hence K< B;.
=1
The set

ZEh((U Zubapx{})
i=lp+1

icm
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is connected and disjoint with the sets T, and T5. The point p’ does not belong to

K(z, &), and therefore Z< B, and Z< B,. The point e £ h(e,,, r) can be connected
with the set Z<B, by an arc /z((e/i(,;:o U a,/uz,:) x {r}) disjoint with T, and thus
JeB,. The point ¢, i—f h(ey,, ) can be connected with the set-Z= By by an arc
h((cju\am uE,Tb,-O)x {r}) disjoint with Ty; therefore Ic Bj.

But from Lemma 2.2 it follows that the inclusions K< B, J&B,, I<B; are
mutually exclusive. This contradiction proves the lemma.

LEMMA 2.6. The Cartesian product of Kuratowski’s curve K, and of the circle S* is
not embeddable in E°.

Proof Assume that : K, x S'—E® is a homeomorphic embedding. Denote

= h ({@} x S1). The uniform continuity of & jmplies A \/ AA(R;x SY=K(z,é).

28>0 g iZip
Let r be a fixed point on the circle S*; by p’ we denote the point A(p, r). The
distance between the point p and the curve 7 is greater than zero. g(t, 2,)>0,
df
where &, = (R, x SY). Let & be such that ¢(z,p")>e,>0 and g(r, Z;)>5>0:
then there exists an i, such that for i>i, h(R;x SH<K(z, &,). We denote:

o o
df — —
K= h((binalo b {aio} Y alucio) xsi) ]
o o
a —

L = h((bygei O €} U e,-uc,a) xSy,
a2
M= h{((brydiy 0 !

Q

= h(b,D 0% ST,

P S (b} 0 fed)x 5%,
T, i_f NUMUP,

{di} ud cm)xS),

daf

T, =KUNUP,
af

T, =KUMUP, T5 NuLuP

af
Ty =KULuUP, T6=MuLuP.

The torus Ty K(z, &), for i =1,..., 6, dissects E* into the iwo components 4,
and B; and one of them, say A4;, is contained in K(z, &). The connected set

R= lz((=§)+ll€i UGB % (1))

is disjoint with the toruses T;. The point p’ does not belong to K(z, &) and thus
BoR, fori=1,..,6.
The set M is contamed in By because it can be connected with the set R by

—
an arc h(d;;a;,41 % {r}) disjoint with T;. The set K is contained in B, because it
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can be connected with the set Z < E™NK(z, 65)c B, by an arc contained in
fo—1
h (1o R;x 8Y), and thus disjoint with T}. Therefore we have from Lemma 2.2 the
i=1
set N A,. From Lemma 2.1 we know that the set Ty U T,=T, Ty =T,0T,
dissects E3 into three components 4; 0 A,, By 0 4y, B, equal to Ay, By N 4,,
B, n B, respectively and to Ay, B, N By, Az 0 By, respectively. These are obviously
the components Ay, A4, Bs.
—— —

Consider the arc o = /i ((a;,€5, © €1, i) % {r}). The arc a is digjoint with T U Ty;
therefore o is contained in the closure of ome the components Ay, Ay, B, But
aj, l h(ay,, ) ¢ A, (because KcB,) and dy, il h(dy. 1) ¢ Ay (because McB)),
and thus acB,. But an L = {h(ey, N}. Therefore LeB,. We can easily notice
that Ko Bg and M= B;. But in this case Lemma 2.2 yields Le 4,. This contradic-
tion proves the lemma.

According to Lemmas 2.3, 2.4, 2.5, 2.6 the sets K;x S* are not embeddable
inE*fori=1,2,3,4 Thespace X'x §" is embeddable in E?, and hence the space X
cannot contain any of the Kuratowski curves K;. From Claytor’s Theorem it follows
that X=§2, but X # 8%, and hence X<=E*

top top top

3. The case of an arc being a one-dimensional factor.

TrroreM 3.1, Let ¥ be a locally connected continuum embeddable in E®. If ¥ is
homeomorphic to the Cartesian product X x40, 1> and Cech cohomology groups with
initeger coefficients H'( Y) and H2(Y) are trivial, then X is a flat space.

Proof. From ¥ = §?x<0,1) we obtain H*(S?x<0, 1)) m Z # 0 where Z

top

stands for the group of integers. Hence Y fails to satisfy the assumptions of our
theorem. If none of the Kuratowski curves were a subset of X, we would obtain by
the Claytor theorem X<S2. Since X # S2, we see that X< E
top top top
Now let us consider the case where for a certain &, i = 1,2, 3,4, we have
K,cX and X %<0, 1> E® When % denotes this embedding, the following inclusion
top

holds:
(X {0}) U (K;x<0, D) v (Xx {(IY)=kE?.

It is sufficient to show that this is false.

Let 4 be a compact subset of E”, The connection between the reduced singular
homology groups of E"™\4 and the Cech cohomology groups of A is established:
by the Duality theorem ([3] 6, 2, Th. 16), namely HE™A) is isomorphic to
}"In‘q" 1( A) )

Adopting the assumption of Theorem 3.1 we shall prove several lemmas.

TemMa 3.1. If S = St ScX and h is a homeomorphic embedding of X x 0, 1>

op
into E°, then the set T = h((Xx{0}) u (§x<0, 1)) L (X% {1})) dissects E® into
two' components and the .closure of both of them contains h(8x<0, 13).
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Proof. Let us define the following sets:

af
Zy = h(Sx {3]),

Z, (< (0)) U (S%<0, 3%))
Zy w B {1 U (X<, 1)),

o o

Zo

xx{0}

o ———

Zi

Fig. 7

It is easjly noticed that 7' = Z, U Z, and Z, = Z; n Z,. The Cech cohomology
groups HX(Z,), H¥(Z,), H*(Z,), H'(Z,) are trivial, as X is homeomorphic to defor-
mation retracts /(X x {0}) of the set Z, and A(Xx{1}) of Z, therefore
HY(X) ~ HNX %0, 1Y)~ H(Y)~0 and F2(X)~HY(X %0, D)~ H*(¥)~0

The Duality theorem yields Ho(E3\Z)~0, Ho(EN\Z)~0, H;(E*\Z,)~0
and H,(E3\Z,)~0. ,

Since the sets E3\Z, and E3Z, are open in £*, we may write the Mayer—
Vietoris exact sequence:

e B (ENZ) @ I (ENZ) - H (EXNZy) U (E3NZy)~ .
B ((B\Z) n (ENZ))~Bo(EXNZ)@Ho(ENZ,) .

This sequence takes the form

0@0—+F (BXNZy)—H(EX\T)~0@0 .

Hence we infer that H,(E°\Z,) is isomorphic to B (E3\T). But, since
B,(EXNZ,)~Z, we have Hy(EXNT)~Z and Hy(E\T)~Z®Z. This means that
E3\T consists of exactly two components, 4 and B. This proves the first part of our
lemma,
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Let xeh(Sx(0,1)) and let U be a neighbourhood of x in E3. Then
U n h(Sx (0, 1)) is a neighbourhood of X in £ (Sx (0, 1)). There exists such an open
neighbourhood DU n h(S% (0, 1)) of X that A7*(D) is an open disc in $'x (0, 1).
The set (Sx (0, D)N2"Y(D) may be deformation retracted to the set (Sx{1})u
U (Ka} %<0, 1) u (8 x {0}) where a € S. It follows that (X'x {0}) U ({a} x<0, D) u
v X x(l)) is a deformation retract of A7 (T)\A~ 1(D) f\D Since the apprio-

priate pairs of sets are open, we may write the Mdycr-V1cLorls exact: sequence:
e B ((E3NA(QEX 10D © (X0 {1)) L (B*Ni({a} x40, 1>>)) -
= Ho((B>NA((X % {0}) v (Xx {1)) n (BNA({a} %<0, 1)) -
= Hol BN (03) U (X (1))@ Ho(E*A({a} x <0, 1))
This sequence takes the following form:
0~ (E3\{h(a, 0), h(a, 1)})->
- Ho( B3N (X % {0}) U ({a} 0, 1) u (X% {1])))»0&0.
From the above we see that
Ho(E*NA((X % {0) L ({@} x<0, D) U (Xx {IN))~0  and = H,(EXN(T\D))~0
and so E3\(T\.D) is connected. .
Let us take p € 4, g € B, and join them by an arc gpc E*N(T\.D). Since p, ¢ be-

long to different components of E3\T, we notice that gp¢ E>\T. We sece that

pg o D % @. This implies that 2~ D # @ and B D #@,80 An U+ @ and
B U#@. But as we have taken U arbitrarily, we have x € 4 'md x e B. This
completes the proof of thé lemma.

LemMA 3.2, Let Si—-S1 Jor i=1,2,..,n, USlnSk%l-—(O l) Jor
1<k<gn— 1 and let b be a homeomoz_phm embedding of tl:e set
&x{ohH v (.E)lSix<0, Dyu ={1)
into E3. Then the set

Z = h{(Xx {0} U (ig 8;%€0, 1y) u (X% {1})
dissects E* into exactly n+1 components. Moreover, if
Z' = h((Xx {0} u ("gS,x<O, DY u.(Xx {1})
dissects b3 into the components 4y, ..., 4, and h{((X x {0}) U (S, <0, 1) U (X% {1}))

dissects E* into the components By and B, and Z\Z'< A, , then the set Z dissects E*®
into the components Ai, ..., 4,, 4, " By, A, " B,.
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Proof. We proceed by induction as in the proof of Lemma 2.1.

Lemma 3.3. Let I', J', K' be ares in X with end-points u and b and with disjoint
interiors. Let h be an embeddmg of the set (Xx {0} u (I wJ' U EKYx0,1>) U
U (X'x{1}) inte E® Denote:

Xo = h(Xx{0}),
Xy =hXx{1}),
Ty =X, WX Uh(I'0T)%0, 1)),
Ty =X, 0 X, UA(UI' v K%, 1)),
Ty =X, 0 X, Uh((J'UKY%0, D).
I=h(l'x@, 1),
J=h(J'x(0, 1)),
K=h(k'x(0,1)).
For every i = 1,2, 3, the set T, dissects E® into the bounded component A; and the
unbounded component B,. Then I<By and K< B, if and only if Jo 4,.
Proof. We proceed as in the proof of Lemma 2.2.
LEMMA 3.4, The. sets K, (Xx {0h) U (K;%x<0, 1>) U (X' {1}) where K< X,
i=1,2,3,4 are not embeddable in E°.

Proof. The proofs of these facts are similar to the proofs of Lemmas 2.3, 2.4,
2.5, 2.6.

From Lemma 3.4 it follows that the set X cannot contain any of the Kuratowski
curves K;, i =1,2,3,4 because that would imply K,=X%<0, 1> and this set is
embeddable in E3 Therefore from the Claytor theorem it follows that Xc<S2 .

top
But X aé S$2, and hence X c E?, This proves the theorem.

Remark The assumptlons H‘(Y) = 0 and H"(Y) = 0 are necessary, as is
shown in the following examples: -

Let us consider ¥ = 8§?x<0, 1). Yis a locally connected continuum embeddable
in E® and H1($?%<0, 13) = 0 but A3(S2x(0, 1) # 0 and S*¢E>

top
Let T be a torus lacking an open disc. Then Tx<0, 13 is a locally connected
continuum embeddable in E® and HXT'x<0, 1)) =0, but H(T'x{0,1)) # 0
and T#E?

top

Theorem 3.1 yields the following
CoROLLARY. Every proper topological factors of an AR embeddable in E° is

Slat.
Remark. If Y satisfies assumptions of Theorem 3.1, then ¥ is AR, because
X is a flat locally connected continuum and X does not dissect a plane.
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