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DRUKARNIA UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE
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Countable dense homogeneity and n-homogeneity
by

Gerald S. Ungar (Cincinnati, Ohio)

Abstract. The main results of this paper are that for compact metric spaces n-homogeneity
and countable dense homogeneity are equivalent and countable dense homogeneity is hereditary
on dense open sets.

1. Introduction. In [2] Bennet defined the concept of countable dense hom-
ogeneity. He noted that all manifolds are countable dense homogeneous and proved
that the universal curve (or any strongly locally homogeneous locally compact
separable metric space) is countable dense homogeneous. He also showed that
a connected countable dense homogeneous first countable space is homogeneous.
However, all other questions concerning the relation of countable dense homogeneity
to other types of homogeneity were left unanswered.

In this paper we show that for compact metric spaces countable dense homogen-
eity is equivalent to strong #-homogeneity for all n, and hence, by resuls in [4] it
is equivalent to n-homogeneity for all n. We also show that the two concepts are -
almost equivalent for locally compact separable metric spaces and that countable
dense homogeneity is hereditary on dense open sets.

Before we can start, we nieed the following definitions, notations and prelimi-
nary facts. . ‘

(2.1) DerNITION. A space X is countable dense homogeneous if given any two
countable dense subsets 4 and B of X, there exists a homeomorphism % of X onto
itself such that 4(4) = B. :

(2.2) DeFiNITION. A space X is stromgly n-homogeneous if given any two
n-tuples (%,, ..., x,) and (yy, ..., y,) of distinct points of X, there exists a homeo-
morphism % of X onto itself such that k(x) = y; for i =1,2,..,n

(2.3) DEFINITION. Tf X is a locally compact separable metric space, let H(X)
(and when there-is no ambiguity H) denote the group of homeomorphisms of X onto
itself with the topology induced on H(X) by considering it as a subspace of the. group.
of homeomorphisms of the one point compactification of X onto itself v_sflth the
compact open topology. It is well-known [1] that H(X) is a separable metnc topo-
logical group with a complete metric______\ : . :
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156 G.S. Ungar

(2.4) DerniTION. Let X be a topological space. Define
F'X) = {(xg, er ) € X" %, = x; iff i =j}.
This is sometimes called the n-th configuration space of X. We will denote a point
(@1, -, @) € F,(X) by 2. It should be noted that if X is also a locally compact sep-
arable metric space then X and F,(X) have complete metrics. )

(2.5) Noramion. If X is a locally compact separable metric space, we will
frequently use the fact that H acts continuously on F'(X) by &, (xy, ..., x,)
=(A(x1), .., A(x,)). The point (k(x;), ..., k(%)) will be denoted by h(xy, ..., x,)
or by k(%) whichever is more convenient at the time. We will also denote the orbit
of £ by H(£). It should be noted that X is strongly n-homogeneous iff the above
action is transitive.

We also need the following theorem of Effros [3] and some consequences which
follow it. :

(2.6) TreoReM (Effros). Let (G, X) be a transformation group with both G and X -

complete separable metric spaces. Then the following are equivalent:
(1) For-each x e X, the map gG,—gx of G/G, onto Gx is a homeomorphism.
(2) Each orbit is of second category in itself. ‘
(3) Each orbit is a G; in X.

(V) Remark. As the author pointed out in [4] (2.6) (1) is equivalent to the
following: For each x € X'the map T, : G—Gx defined by T,(g) = gxis open onto Gix.

Piccing all of the above together we get the following: (Again see [4] for more
details). ' '

(2.8) TueorEM. If X is a strongly n-homogeneous compact metric spdce, then
Jor each % € F(X) the map Ty: H~F(X) (defined as in (2.7)) is.an open map onto
E(X).

(2.9) NotATiON. If 4 is a subset of a topological space, we will use A to denote
the closure of 4 and A° to denote the interior of 4.

Before we could prove the main theorem we need the following lemma which
may be of interest by itself.

(3.1) Lemma. Let X be a locally compact separable metric space and let 4 be
a first category subset of F*(X). Then there exists a dense countable subset B of X such
that F"(B) A = ©.

‘We will postpone the proof of this until the last section due to the fact that it
is ylong and there have already been enough preliminaries. .

(3.2) TueoreM. If X is a locally compact countable dense homogeneous separable

metric space such that no finite set separates X, then X is strongly n-homogeneous
Sor all n.

Pro?f. L',et H act on F'(X) as in (2.5). We will show that the hypothesis of the:
theorem implies that this action has only one orbit and hence, by the last sentence
of (2.5), X will be strongly z#-homogeneons. '
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The major steps of the proof are as follows:

(1) There are at most a .countable mumber of orbits.

(2) Every orbit is a second category. subset of F"(X) (and hence of itself).
(3) For each % e F"(H), HO<H®) .

@ Fo1: each £ € F'(X), 1}@_) iity_e union of orbits and hence, if £ and § e F'(X)

either H(R) = H(P) or H(®) n H(P) = @.
%) fI—(§)“ is open.
(6) Conclusion.

. In order to prove (1), let 4 be a dense countable subset of X and let
£ = (%, e, X,) € F(X). Then B = 4 U {x,, ..., x,} is also a dense countable subset
of X and hence, there exists a homeomorphism /4 of X onto itself such that 2(B) = A.
However this impliés that i(®) € F*(4) which is countable. Therefore every orbit
intersects. the countable set F"(4) and so there are only countably many orbits.

In order to prove (2), let H(%) be a first category orbit. Then by (3.1) there
exists a dense countable subset A of X such that H(X) n F"(4) is empty. This is
a contradiction to what occurred in . o

In order to prove (3), we should note that for each £ € F*(X), H®) n H (5&)0 # .
Therefore, let e H(Z) ~ H (52)°and let 2 be any point of H(X). Then there exist
homeomorphisms 4 and g € H such that 2(%) = J and g(£) = 2. However, we then
have that 2 = gh™“($) egh™*H() = gh 'H®E) = H() . (The first equality.
follows since gh™? acts like a homeomorphism of F,(X) onto itself.) Therefore, we
have that H(X) c_}}_(};)o as desired. e o

In order to prove (4), we will show if H(£) n H(P) # O, then H(X) = H(¥).
First, let £ € H(®) n H() and let W be any point of H(£). Then there exist homeo-
morphisms %, g, h; & H such that h(£) = 2, g(£) = W and {#;(§)} converges 3)_2:
Therefore {gh~*h(9)} converges to W and hence W e H($). Therefore, H(£)< H($)
and so H—(xSCH(y). . .

I claim H($) n H(2) # @ since if HP) n HEF) = O, then HP) n HE) = &
which implies that —H—(—ﬁ N ?I(_x)° = @. However this is impossible since
mo cff(}i c—ﬁ(?), Therefore, H(9) N IT(JQS # O so asinthe first paragraph of (4)
we have 1‘1‘(}?)7:}1@ and therefore H(®) = H(P). _

From the above we finish the proof of (4) by noting that if 2 e H(2) n H(P),
then —15—65 = E(E = 17@;

We obtain (5) from (4) and (3) by noting that for £ e F"(X),

HE) = U{H®) ye H®}= UHO)| 9 HE}
< U{HG) 9 H®} = HE).
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We get the conclusion (6) by noting that F,(X) is the union of all the orbits and

hence, of all the orbit closures. Therefore by (5) either F"(X) is not connected or
every orbit is dense. By (3.9) of [4] it follows that F"(X) is connected and hence,
every orbit is dense. Using (2) and (2.6) we have that every orbit is a dense G; subset
of F,(X). However, since there are at most countably many orbits we get that there
is exactly one orbit as desired.

- The next theorem gives a converse to 3.2).

(3.3) TeeoREM. If X is a strongly n-homogeneous locally compact metric Space
Jor all n, then X is countable dense homogeneous.

Proof. Let 4 and B be countable dense subsets of X, let  be a complete metric
on H, and let N(#, ¢) denote { € H| d(g, h)<e}.Letc, = a; and o, = b,. Since X'is
homogeneous, there exists a homeomorphism /, of X onto itself such that A i(eq) = d,.
Let ¢, = a, and note by (2.8), N(ky, 1)(cy, ¢,) is open in F*(X) and it contains
(d1, hy(c2)). Let d, be the first b, such that b, # d; and (dy, b)) e N(hy, D)(eyq, c3).
Therefore, there exists a homeomorphism 4, € N(#, 1) such that (¢, , ¢;) = dy,dy)
and there exists &,>0 such that s,<} and N (ha, 8)=N(hy, 1). Let d; be the
first b; such that b, # d, and b; # d,. Also note that since His a topological group,
there exists a 6, such that if g € N(hy'?, §,) then g~ 1 e N (3, &;). Hence, using (2.8)
again we have that N(k;', 5,)(dy, d,, d5) is an open subset of F3(X) and contains
(e15 €2, A7(d3)). Therefore, let ¢, be the first element of 4 such that d % ¢, and
d# cyand(eq, ¢y, c3) e N(h3 %, 8,)(dy, dy, ds). Therefore there exists g, e N(h; 1, 85)
such that gs(dy, dy, ds) = (c1, ¢, ¢3). Let hy = g3*. Then by the choice of 83,
by e N(hy, &) and hy(cy, ¢y, ¢3) = (dy, dy, d3). We then get £;>0 such that s; <3
and N(hs, 83)=N(hy, &,). ' We can continue this process inductively, however,
since it is a stgndard type-of argument, we will just note that we get a sequence of
homeomorphisms {#;} and numbers &; such that O0<e;<1/i and Nk, si+1)
©N(h, g). Since d is a complete metric, there exists: a homeomorphism
he () N(#;, &) and by construction h(4) = B.

The above proof will also work for the following:.

(3.4) TrrOREM. If X is a locally compact Separable metric space which strongly

n-homogeneous for all n.and U is a dense open subset of X, then U is countable dense
homogeneous.

) Proof. All one needs to do to modify the proof of (3.3) is note that F*+1(1)
is dense and open in F**(X), and hence each time a point of N(h,, 8,)(cy, ., Cuuy)
must be chosen, it could be found in F**1(T)).

The last theorem together with (3.2) gives a partial answer to the question

asked by B. Fitzpatrick and H. Cook whether countable dense homogeneity is
G-hereditary, . .

§3.5) THEOREM. Let X be a locally compact countable dense homogeneous sepafable
metric space such that no finite set separates X. Let U be a dense open subset of X.
Then U is countable dense homogeneous and n-homogeneous for all n.
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Proof. By (3.2) X is n-homogeneous for all # and by (3.3) U is countably dense
homogeneous and by (3.2) again U is n-homogeneous for all z. .

(3.6) CorOLLARY. Let X be a connected compact metric space other than the circle.
Then X is n-homogeneous for all n iff X is countably dense homogeneous.

Proof. This follows from (3.2) and (3.3) of this paper and (3.11) of [4].

4. Proof of (3.1). First we need the following notation
(4.1) NoTATION. (a) Define ,P;: F"*(X)—»F"(X) by
wPHE L5 s Xy s Xps X1 ees Xd = (X0 vens Xy g5 gy vy X))

(b) If beX and ScF™(X) (m>1) let C@i, b, S) = {(x1, ..., X,) € ] x; = b}
and let D(i,b,S) =, P,C(i,b,S) and let D, S) = U_D(i,b?S) and let

D(bys s by, S) = D(bl(D(bZ(D . (DG, S)))))).

Essentially, C(i, b, S) is a section of S, D(i, b, ) is the projection of this section,
D(b, S) is the union of all these projections and D(By, ..., by, S) does this process k
times, each time lowering the “dimension”.

(4.2) LemMA. Let X be a locally compact separable metric space and let 4 be
afirst category subset of F"(X) (n>1). Then B = {x € X| D(x, A)isnot first category}

is first category.

Proof. Assume that B is second category. Since 4 is first category we could

write 4 = (J 4, such that A, =@. If beB, then D(b,A)=_plD(i,b,A)

(=] n
=1 UD(@,b,4;) is second category, hence there exists #, j, such that
j=11=1

. D, b, Ajb)° # 0. Let {U,} be a countable base for F"(X) and let U, be the first

element of this base which is contained in D (%, b, ;4;)'0. LetB; = {beB| U, = Uj}.
Then {J B; = B and since B is second category, there exists N such that By is second
category. Let By(i,j) = {beBy| i, =i and j, =j}. Again | By(i,j) = By, so
there exists I, J such that By([, J) is second category. In other words, if b e By(I, J),
then 5(—1,_172;)0 > Uy which contains a basic open set of the form Vy x ..x Vy_y X
X V% ... x Vy where each of the ¥;’s are open in X. It is easily seen that this implies
that Vyx..x Vi xl—iN_U:IS X Vipq XX V,cd; which in turn implies ?hat
VXX Ve X By, D% Vyyy x..x Vyod;. This is a  contradiction since
Vix..x Vg% By, JS X Vy4q % ... XV, has non-empty interior.

4.3) LﬁMMA. Let X be a locally compact space. Let A;, i=2,...,n be first
category subsets of F(X) and let B be a second category subset of X. Then there exists
be B such that D(b, A;) is first category for each i =2,...,n

Proof. Let C; = {xe X] D(x, 4;) is not first category}. By (4.2), C; is first
category and hence C = {J C; is first category. Since B is second category,
BnC # @.XbeBn C, then D(b, 4;)is a first category subset of F(X) as desired.
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Finally, we have .

(3.1) LemMmA. Let X be a locally compact separable metric space and let A be
a first category subset of F'(X). Then there exists a dense countable subset B of X such
that F"(B)n A = @.

Proof. Let {U} be a countable basis for X. We will define B inductively. The
first n—1 points of B will be chosen by induction as follows. By (4.3) choose b, e U,
such that D(b,, 4) is a first category subset of F"~1(X). If s<i—1, assume that
by, ..., b have been chosen so that b; e U; and D(b;, 4) is a first category subset
of F""(X), D(b;, by, A)is a first category subset of F*~2(X ) for k<j and in general
if kg, ks, ..., Ky, I<j is @ decreasing sequence of natural numbers with k, <j, then
D(bj, byys e by, A) is a first category subset of F""¢*V, For k =1, ..., p, let,

Be = U {D@yps s by D) p2j1>fne >z 1} < F7HX)

Note that by the above assumptions Ej is a first category subset of F"¥(X). Hence,
by (4.3) we can chose b,,, € U, such that D(b,,,, 4) and D(b,,y, E,) are first
category for k = 1, ..., p. It is easily verified that {b,, ..., b,.,} satisfy the inductive
hypothesis.
In order to define b, we let the E/s be as above, however, note that E,_ s
a first category subset of X. Therefore, using (4.3) again choose b, e U,—E, .,
such that D(b,, 4) is a first category subset of F*~!(X) and D(b,, E,) is a first
category subset of F"~**)(Y) for k<n~1. Now we proceed as before if we assume
).5, , 1, b, havi bee(111 ieﬁned and p>n, we let E; be defined as before but only for
t=1,..,n—1 and by (4.3) we choose b,,, €U, — [
and D(b,,,E) are ﬁrsi c:itegory for i =p;,1..., I;il2 et 20 1 DOy 4D
Let B = {b;};2;. It is clear from the construction ttat B is a dense countable

subset of X. All that remains to be shown is that F'(B) n 4 = &, Therefore assume -

that (eq, ...; ¢,) € F"(B) n 4. For the sake of simplicity, we will assume that
(615 s €)= (b,“, . by,) where ky<k,<...<k,. This implies that

b€ D(byys ves by, A)<E,_, .

But b, was chosen in U, ~E,_, and hence we have a contradiction.
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A counter-example concerning
quasi-homeomorphisms of compacta

by

H. Patkowska (Warszawa)

. Abstract. Two metric compacta X and ¥ are said to be quasi-homeomorphic if for every e>0
there are two e-mappings: f mapping X onto ¥ and g mapping ¥ onto X. A locally connected
continuum X belongs to the class a if there is a §>0 such that no simple closed curve C C X with
diam C <4 is a retract of X. We prove inthe paper that there are two quasi-homeomorphic, 2-di-
mensional Iocally connected continua X and Y such that Xea and Y éa.

1. Introduction. Let X be a (metric) compactum and let Y be a topological
space. A map f: X—Y is said to be an e-mapping if diam(f~*(y))<e for every
yef(X). Xis said to be Y-Iike if for every £>0 there is an ¢-mapping of X onto Y.
Two compacta X and ¥ are said to be quasi-homeomorphic if X is Y-like and ¥
is X-like.

In a sequence of papers (cf. [3], [4], [5]) concerned with these notions we con-
sidered the following class a: .

DerNITION 1. A locally connected compactum X belong to the class o if there
is an &>0 such that no simple closed curve C<X with diamC<e is a retract of X.

In [5] we proved the following theorem: Let Y be a compact semi-lc, space
in the homological sense, i.e. such that i,(H,(4)) = O for each compact subset 4
of Y with diameter less than a given 5>0, where H,(A) is the first Cech homology
group of A with integer coefficients and i: A—Y is the inclusion map. Then each locally
connected compactum X which is Y-like belongs 1o the class a.

In the same paper we raised the question whether the property o is-a quasi-
homeomorphism invariant. In the present paper we shall prove that this is not the
case, i.e. that there exist two quasi-homeomorphic locally connected continua X
and ¥ such that Xeo and Yéa.

Given a compactum 4, H,(A4) will denote the nth Cech homology group of A
with integer coefficients. It is well known (cf. [2], p..6) that, if 4 is a retract of X
and i1 A—X is the inclusion map, then the group i,(H,(4)) is a direct summand

"of the group H(X). If Cis a simple closed curve, then it follows from the Bru-
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