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Hyperspaces of polyhedra are Hilbert cubes *
by

D. W. Curtis and R. M. Schori (Baton Rouge, La.)

Abstract. Let 2* be the hyperspace of nonempty closed subsets of a metric continuum X,
and let C(X) be the space of nonempty subcontinua of X, both with the Hausdorff metric, The
main results of this paper are that if P is a nondegenerate connected polyhedron, then 2" is homeo~
morphic to the Hilbert cube Q, C(P)x Q is homeomorphic to Q, and if P contains no principal
1-cells, then C(P) is homeomorphicto Q. Proofs of these theorems are based on theorems of Schori
and West (Hyperspaces of graphs are Hilbert cubes, Pacific J. Math, 53 (1974), pp. 239-251).

§ 1. Introduction. Let 2% be the hyperspace of nonempty closed subsets of
a metric continuum X, and let C(X) be the space of nonempty subcontinua of X,
both with the Hausdorff metric. In [4], we announced the following results.

TreoreM 1.1. 2¥~ Q, the Hilbert cube, if md only if X is a norndegenerate Peano
space (locally connected metric continuum).

Treorem 1.2. C(X)x Q~Q if and only if X is a Peano space, and C(X)=Q
if and only if X is a nondegenerate Peario space containing no free arcs.

In this paper, we introduce some techniques and apply them to prove the above
theorems for polyhedra X. In [S], we apply these techniques to prove the above:
stated general theorems.

We refer the reader to [3], [4], [7], [8], [9] and [10] for background material
and previous results on hyperspace problems. In particular, the proofs of the above
theorems are based on the recent results of Schori and West [10] that 2T~ Q for
every nondegenerate compact connected graph I', and C(I)~ Q for every compact
connected local dendron L with a dense set of branch points.

Certain relative versions of these theorems are also obtained. For 4 €2%, let
2% = {Be2¥: AcB), and for 4 C(X), let CuX) = {Be C(X): A=B}.

TeroreM 1.3. 25~ Q if X is a Pearo space and 4 # X. C{X)x O~ 0 if X is
a Peano space, and CA(X)~Q if X is a Peano space, A # X, and X\A contains no
free arcs. . .

In §§ 2, 3 and 5, we develop some of the necessary tools (an inverse sequence
approximation lemma, and techniques for obtaining near-homeomorphisms between
hyperspaces of graphs). These are applied in §§ 4, 6 and 7 to hyperspaces of poly=:
hedra, and will be applied in [5] to complete the proofs of the general results..

* Research supported in part by NSF Grant GP44349,
3‘


Artur


190

D. W. Curtis and R. M. Schori AU
. SN "
U TSI
§ 2. Structure of the proof. A map f: X; +X, between copies of a compact metric
space is a near-homeomorphism if it is the uniform limit of (onto) homeomorphisms.
‘We shall construct inverse sequences satisfying the hypotheses of the following
lemma.
A.PPROXIMATION LEMMA 2.1. Let Y be a compact metric space and let
SfL T fr
Q10—
be an inverse sequence of maps and copiés of the Hilbert cube in Y such that
@ Qa—’Y (in ZY, ,

(i) Z d(f;, 1d)< 0;

- (i) { f, o f 121} is an _equi-uniformly _continuous family for each, 1, and

(v each fiisa near-hameomorphlsm Then Y=Q.

- Thus, for instance,. we.apply the -Approximation lemma (10 be provcd below)
to the hyperspace 2% of a nondegenerate compact connected . polyhedwn X by com-.
structmg an mverse sequence

Lo

. o Donf "
where {l"i} is a sequenee of compact connected graphs 1nX convergmg to X (thus
iy Qand 27 —2%), and the maps { f;} are near-homeomorp]usms sat1sfy1ng con-:
qmons (i) and (iii) of the lemma.

Fach map f;: 2n+x_.,2r *is induced by a map 2 I"i+1——+C(F,),
ie, . . o

i

A= U {oua: aéA}"‘

The pa.mcular type of map go, used for this purpose, (a C-monotone. plecelwse—lmear
map). is discussed in § 3 and .§ 5, where it is shown that the induced maps f; are
near—homeomorphlsms

- Proof .of Lemma 2.1. If we denote invim(Q;, f;) by Q. then 1.he fact that
Y0, follows from [1], Theorem I.'As an aid to the reader we outline this proof..
Define:i! QY as follows. For (¢;) € O, the sequence (g,) in ¥ is Cauchy by
Dondition (ii) and hence convergesto a-point ge Y. Let h(g;) = p. Condition (ii) also
implies that / is continuous. With an easy proof by contradiction, Condition (iii) im-~,
plies that % is one-to-ong and Condition (1) implies that 4 is onto. Thus, h is'a homeo-
morphism’and, hence Q.= Y.

. Smce each Q;~Q and each f;i isa near—homeomolphlsm it follows by MorLon
Brown’s theoreln 121, that Qq,NQ and hence . ¥~ Q.. ‘

§ 3. Piecewise-linear induced maps on hyperspaces of graphs Let I' be a-compagct..
conriected .graph’ and for-every comipact connected subgraph S. of I' let’ .0s be the
thinithum: path- length metric. For D = diam(S, gg), let.es; C(S)x I~C(S) be.
the -éxpaiision homotopy defined by . eg(d, 1) = {xe 8% ‘o5(x, A)<1D}. Thus’

e5(4,0) = Aand eg(4, 1) = S for each'd & C(S). In the followmg Ty will: always
denote a compact connected graph.
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. DEFINITION 3,1: A map- ¢: I'y—G(['5) i§ simplicial i for each-vertex.ve I'y,
(v) is a connected subgraph (possibly degenerate) of 1‘2, and for each edgé e of F i
either .
(1) ¢@le isa linear map onto an’ edge of I'y, or e
(i) ¢ (v) = @ () = St (1), where é é={v, W}, and o (tw-l—(l ) v) = e,,, (w) (cp (v), z)
f01 every tel.

DEFINITION 3.2, A rmp @: T'y=C(I'y) is piecewise-linear if there exist tnangu~
lations of I’y and I', with respect to which ¢ is simplicial.

Remark. If ¢: I'i—C(I',) is piecewise-linear, then there exist arbit:aﬁly fine

subdivisions of I'; and I', with respect to which ¢ is simplicial.

We are. now. ready to introduce C-monotone maps. Let F,cC(r,) be the
collectlon of degenerate subcontinua, and let I't = ¢~ '(I').

- DEFNITION  3.3. A piecewise-linear map ¢: I't—C(I;)-is C- monotane if

@) @|I'f is 2 monotone map onto I, and

(11) for each x €Iy there exists a subcontinuum C, of I'y such that xeC,,
C.nTi # @, and (»)=¢(x) for each yeC,.

C-monotone jplecew1se—hnear maps I';—C(I",) may be regarded as generahz-
ations of monotone piecewise-linear maps I'y—I';. The following examples may serve

to clarify- thé above definitions.

——— e —

.

@ is not C-monotone

(P(a) = I.lz v .- -
@ is C-monotone (monotone part -of condition (i) fails)
a . a
b
b
| |
' : i i
| | | |
| | ‘ !
¥ Y ¥ ¥
|,

(=
(=)

@ = [0,2], ) =[1,2]
@ is not C-monotone
- (condition: (i) fails)

o@) = @) =TI
@ is not C-monotone
(onto part of condition (i) fails)
Fig. 1
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Every map ¢: I'y—C(I';) induces hyperspace maps f: 27— 2™ and
i C(I')—C(I";). Furthermore, if ¢(p) = g € I, then ¢ induces relative hyperspace
maps fog} 2522 and gyt CUT')—Cy(T2).

THEOREM 3.5. Let ¢: I'.—C(I',) be a C-monotone piecewise-linear map. Then
all induced maps f, G,f > pq Stabilize to near-homeomorphisms (i.e., fxidg: 2T %
x Q—2"2x Q, etc., are riear-homeomorphisms).

The proof of Theorem 3.5 that we give is relatively short but uses a good deal
of recently established and powerful apparatus. Our original proof of Theorem 3.5,
.on which our announcement in [4] was based, was more elementary but much longer
and used rather involved constructions of Q-factor decompositions.

A closed subset of the Hilbert cube has trivial shape if it is contractible in each
neighborhood of itself, and a surjection between Hilbert cubes is cell-like if each
point inverse has trivial shape. The next theorem is a powerful theorem originally
proved by T. A. Chapman with a more direct and shorter proof supplied by A. Fathi
in [6].

THEOREM (Chapman). 4 cell-like map between Hilbert cubes is a near-homeo-
morphism.

Proof of Theorem 3.5. By the previous theorem, it is sufficient to show that
each point-inverse has trivial shape, but we in fact will show that each point inverse
is contractible. For each Ke C(I';), let K! = {xeI'yi p(x)cK}. Then by con-
dition (i) of Definition 3.3, K* nI't = {xeI';: o(x) e K} = (@|I'D)~4(K) is con-
nected, and by Condition (i) each component of K* meets K* N I'f. Thus K! is
connected. Now consider 4 €2"% and let Comp4 be the set of components of 4.
Itjs clear that {K*: K. Comp A} is the set of components of 4* = {x e I';: ¢ (x) = 4}
For each Be2™ such that f(B) = 4 we have BcA! and B n K' = & for each
component K* of A'. Thus there exists an “expansion homotopy”

E: fTHA) xI—f~1(4)

such that Ey(B) = B and E(B) = A for each Bef 1(4). (Specifically, we can
set E(B) = {x€ A" ggiw(¥, B n K*(x)) <tD}, where gg( is the minimum path-
length metric in the component K*(x) of 4* containing x, and

D = sup{diamK*(x): xe 4*}.)

Recall that B must meet each component of A*. The same argument shows that the
other induced maps are also cell-like.

§ 4. Hyperspaces of polyhedra. In this section, we state the Subdivision lemma,
postponing its proof to Section 5, and use it to prove our main result for polyhedra.
By a geometric cell complex K we mean a finite collection of convex. cells intersecting
only along common faces. For i>0, the i-skeleton of K, K', is the collection of all
i-dimensional faces of K. This should not be confused with the earlier use of the
notation K*, in the proof of Theorem 3.5.

icm
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SUBDIVISION LEMMA 4.1. If K is a cell complex and >0, then there exists
a subdivision L of K and a C-monotone piecewise-linear map ¢: L*~C(K') such
that

(i) meshL<e;

(i) p(x)=P! if xe P, a cell of K; and

(i) diame(RY<e for each cell R of L.

(Here we' consider @(RM)<(C(K),d*) where d* is the induced Hausdorff
metric.)

THEOREM 42 If K is a nondegererate compact connected polyhedron, then
2"~ 0, and C(K)x O~ Q

Proof. As remarked earliér, we apply the Approximation lemma 2.1 by induc-
tively constructing a sequence {K;} of subdivisions of X (with repeated applications
of the Subdivision lemma 4.1), and a corresponding sequence {¢;: I';1—C(T)}
of C-monotone piecewise-linear maps, where I'; is the 1-skeleton of K;. We use
an arbitrary metric d on K, and the induced Hausdorff metric d* on 2%,

Suppose that subdivisions Kj,...,K; and the corresponding C-monotone
maps @y, ..., ¢;—; have been constructed, with mesh K;<277, for each j. Let
fi, s fi—y be the hyperspace maps induced by ¢y, ..., ¢;_;, respectively. For
1<m<n, define £ = fyo..0f,_y: 2™-2"™ Choose 0<8;<1/i such that for
A,Be2™ with d%(4, B)<d;, we have d*(f{(4),fiB))<1/i for each j, 1<j<i.
By 4.1, take a subdivision K;.; of K; with Tespect to & = minimum {27 ¢+1;35},
and this completes the inductive construction.

Obvmusly, this construction of the inverse sequence

J1 fz
oMol

satisfies Conditions (i) and (iv) of the Approxxmation lemma. For x € I';.q, We
have ¢,(x)cP! where P is a face of K containing x, and since meshK;<27% it
follows that d*(f;, id) <2~ % Thus, Condition (ii) is satisfied. To verify Condition (iii),
let £>0 and k=1 be given. Choose j=k such that 1/j<e. Choose p>0 such that
for x,y e K with d(x, y)<p, there exist intersecting faces P, and P, of Kj,, con-
taining x and y, respectively. Now ‘consider points x, ye I'y, izj+1, Wlth d(x N<p.
With P, and P, as above, we have f}.,({x})=P; and f,H({y}) cP;},and it follows
from the comstruction of Kj,; and ¢; that d*( fj({x}) 4 y}))<5j Thus for
A, Be 2™ with i>j+1 and d*(4, B)<p, we have d*(f(54),fi(B))<5;, and there-
fore d*( fi(4),fi(B))<1/j<e. This shows that for each k, the sequence of maps
{fi: i>k} is equi-uniformly continuous. Thus 2~ Q.

To obtain the result C(K)x Q~.Q, we consider the same sequence of 1-skel-
etons {I';} and piecewise-linear maps {p;} and form the inverse sequence

C(F1)XQ - C(FZ)XQ ‘— s

where the maps {g; } are those induced by {¢;}. Each C(I')x @~ @ (by Lemma 4.1,
{10]), and each map g, x id is a near-homeomorphism. Since meshK;—0,C(I')—C(K)

-
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-and-theréfore. C(I') x @=>C(K)x.Q. Since Conditions.{ii) and (iii) of the Approxl-
‘mation. lemma are cleatly satisfied, we conclude that: C(K)x Q= Q.+ =~ °

§ 5. Proof of the Subdivision lemma. Let K be a compact connected polyhedroﬂ

We shall view K and its subdivisions as geometric cell complexes. For 120, the

i-skéleton of K, denoted K, is the collection of all i-dimensional faces-of K. For

each face P of K, let P be an arbitrarily-chosen point in the interior of P; and con-

“sider P ds a cone over its botindary P with cone point P, We use.the cone coordmcttes
given by the map Cp: Px TP, where Cp(b, #) = (1~1)b+1P,

- Asin § 3, on-every subcontinuum S of the 1-skeleton K* ‘we use the minimum
path length metric gg. For D = diam (S, gy), let egi C(S) x I—>C(S) be the expansion
homotopy defined by es(4, 1) = {xeS: gs(x, A)<tD} Thus es(4,0) = 4 and
es(A,1) =S for each de c(S). A

LEMMA- 5.1. For every cell complex K there exists a unique map o: K——vC(KI)
such that .

(@) a(x) = {x} for echh xeKk?;

(i) «(Cp(b, 1)) = ep(a(®), 1) for each cell P with dimP>1;

(iii) a(P)c= C(PY) for each cell P.

Proof. The conditions define the:map for K2 and the extension of the map to
the rest of K is by the obvious induction on the skeleton {K'}.
" .For each n>1 we construct the n-th mdtal—tran.s*verse subdivision K(r) of X by
inductively describing the nth subdivision K “(n) of the i-skeletons of K, i0. With
K°() = K°, let K**1(x) be the cell subdivision of K'*! given by the convex cells
{Cplox [mfn, m+1/n]): PeK'+1, oceKi(n) with ocP, 0<m<n). Thus K(1) is

simply a barycentric subdivision of K and in constructing K*(n), cach element of K*is

subdivided into- 2 subintervals.

. Clearly the mesh K(n)—0 as n—»o0 where we can use an arbitrary metric on K
The 1-skeleton I' (%) of the radial-transverse subdjvision K(n) is the union of two
subcomplexes: R(#) (the radial segments) and T'(r) (the transverse segments), where
R(n) = {Cp, [m/n, m+1/n]): Pis a cell of K, v is a vertex of K(n) in P, 0<m<n}
and I'(n) = {Cp(c, m[n): Pisacellof KwithdimP>1;0 e I'(n) with o <P, 1 <m<n}
Thus R(r) covers all the vertices of K(), and also the 1-skeleton K. . v

We now restate and prove the Subdivision lemma 4.1.

SUBDIVISION LEMMA. If K is a cell complex and s>0 then there exists a sub-

division L of K and a C- monotone plecewzse-lmear map -¢: Li——)C(K Y) such that

() meshL<eg; s o

() p()=Pt if xeP, a cell of K; and ' ‘

(iii) diamg(RY<e for each cell R of L.
(Here we consider o(RY) =C(K))

Proof. Let £>0 and let ¢ be the minimum path length metric of K* and o* the
induced Hausdorff metric on' C(X?). By the uniform continuity of the map « from

~
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Lemma 5:1, and the fact that meshK(n)—0 as n—oo, pick # sufficienily large such
that if a; b belong to the same cell of K(n), then o*(ax(a), a(®)<le Let L = K(n)

and define ¢: L'—>C(K?) as follows. We have L'= I'(n) = R(n) v T(). Let
o|R(n) = a|R(nyand for 7 e T'(n), where 7= {4; b},let T be aninterior point of z and
let P be the smallest cell of X containing 7. Since ¢(a) = a(d) and ¢ (5) = &(b) are
subcontinua of P* and ¢ is the minimum path length metric, there exists.a subcon-
tinuum M of P! such that ¢(a) U ¢(B)cM and

e*(e(@), M)<o*(¢(a), (1) >c*(p (5), M).
Let ¢(v) = M and for cet and t€1, let o((l=1)c+17) = ey(p(c), 1).

In the notation of the C-monotone Definition ‘3.3, we have that (L!)*
= {x e L'|p(x) is degenerate} is precisely the subset X* of L*, thus Ol (LHY*—K*
is actually a homeomorphism. For a point x = Cp(v,f) in an edge
Cp(v, Imfn, (m+1)/n]) of R(m), 2 subcontinuum C, satisfying Condition (ii) of the
C-monotone definition is given by C, = Cyp(v, [0, 1]), and for apoint x = (1 —t)c+17
in an edge t = Cp(o, m/n) of T(n), we may take C, = {(1—s5)c+s7| 0<s<H U
U Cp(v, [0, m/n]), where v'e P* is the vertex of ¢ such that Cp(v, mfm) = cez.

It is easily seen that ¢ satisfies Conditions (i) and (ii) of the Subdivision lemma.
Regarding Condition (iii), ‘we first observe that for xet and cet we have
(0 (), 0 ())<o*(p (@), p(3)). For a cell R of L and for x, ye R, there exists
t = {¢, d) e I'(n) where c is a vertex of an edge of R containing x and d is a vertex
of an edge containing y and thus by using the triangle inequality ¢*(¢ (), ¢(3))<e.

§ 6. C(K) for polyhedra‘ K with no principal 1-cells.

Lomva 6.1 [4]. Let S = invlim(X,,f,) and T = invlim(Y,, g,), where all the
spaces are compact metric and for each n let h,: X,—Y, be a map such that
gy o hyry = hyof,. If for each n, both f, and h, are near-homeomorphzsms then the
induced map h = limh,: S—T is a near-homeomorphism.

THEOREM 6.2. If K is a nondegenerate compact connected polyhedron with no
principal 1-cells, then C(K)= Q .

Proof. We proceed essentially as before in constructing the sequence {K;} of
radial-transverse subdivision, but add-at the ith stage of the construction finite collec-
tions of stickers to I'; and to each of its predecessors I';_y, ..., I'y. These stickers
are obtained from I';,,, and do mot change the homology of the graphs I'y, ..., I';.
In this manner, we eventually add countably many stickers to each I';, and obtain
(upon forming the closures) a sequence {rs '} of compact connected local dendra
whose sets of bianch points are dense. Thus each C(I'H= Q (by Theorem 5.7, [10]).
We construct an inverse sequence

RS/
CID—CI)e..
to which the Approximation lemma applies, and thereby obtain the desired results.

Let {K;} be the sequence of radial-ttansverse subdivisions constructed in the
proof of Theorem 4.2 'We may assuime that for tach 7, K = K (n). for some
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n>1; ie., there are transverse segments in each subdivision. Let I';, = I';, and
inductively define TI'y= St(I';;-;;I;) for j>i. Note that I'yelyy,;. Let
Tyt Tiag, 1= a5 Y Tijea be the unique monotone retraction. ‘
For each i we define a C-monotone piecewise-linear map y;: I'y.;—>C(y,144),
similar to the map ¢;, as follows
@) 7:(0) = {x} if xely 15 :
(i) 7;(aP+(1—a)v) = epnr, ({0}, @), for P a cell of K; and v a vertex of
I'; ;+1 such that veintP\Iy, -
@ii) 7:(aP+Q —.a)v) = €pnr, ,5:(71(0), @), for Pa cell of K; and v a vertex of
I';., such that ve P\I'; (which situation occurs in case dimP>3);
(iv) 9,|T'is defined as in the proof of the Subdivision lemma, for the subgraph T'of
transverse segments.
Set 7; 141 = 7;; and inductively define v; ;410 Iis1,741—=C (I, 544) as follows:
@ 72,541() = {x} if xelyjuy;
() ys, 54100 = @yyo D) # x €Ty, 541\y541- Then each yy;.q, I, 15
a C-monotone piecewise-linear map.
For each i<j, let o;;: I'; ;.4—T; be the unique monotone retraction (thus
o,; collapses all (j+1)-stage stickers). Regarded as 2 map into C(I';), ¢;; is C-mono-
tone and piecewise-linear. Let s;;: C(I;;4)—=C(Ty) and g, 5011 C(Tiuy,j41)
—C(I'; j+1) be the maps induced by oy; and y; ;.4 respectively.
- 'We now consider the following commutative diagram of inverse sequences:

Sitly i+l Si41yi42
C(Fi+1,i+1) = CTsq,040) < o
i i+1 ani+2
Sty 142

Sii Sti+1
CT)«C(T; ;41) & CIyie2) + o
Fron} the construction of the {K;}, as in the proof of Theorem 4.2, it follows
that the inverse sequence {I';;, o;;} satisfies the hypothesis of the Approximation
lemma and hence, for each i, the limit space I't = invlim(I';;, o;;) is homeomorphic

<0
with the closure of kgi I'y, and'is a compact connected local dendron with a dense

v . §
set of branch points, Clearly C(I'})a&invlim (C(I'), s;)). By Lemma 6.1, the map
g1 C(IF 4 D—C(TF) induced ili ’ i

: 1) 1) in uce by the maps {g,;} stabilizes to a near<homeomorphism,
and (by Ler%lma .5.2, [10]) is therefore a near-homeomorphism. It is easily seen that
the Approximation lemma applies to the inverse sequence )

.
C(rH—C(CH)e—..
yielding C(K)~ Q.
The requirement :hat K have no principal 1-cells was used above to insure that
each local dendron I'; has a dense set of branch points, and is obviously necessary
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for the result C(K)~Q, since otherwise C(K) would at some point locally look
like C(D~I2.

§ 7. The relative hyperspaces 2% and C,(K).

TreoREM 7.1. Let K be a nondegenerate compact connected p.olyhedran withpe K.
Then 25~ Q, C,(K)x Q~Q, and CK)~Q if K has no principal 1-cell.

Proof. We may assume p is a vertex of K. The arguments are exactly the same
as for Theorems 4.2 and 6.2, with all induced hyperspace maps f and g replaced by
their. restrictions f,, and g,,. We also use the results from [10] that 2§ ~Q, and
C,(I'x Q= Q, for every nondegenerate compact connected graph I'; and that
C(I'*)= Q, for every compact connected local dendron I'* with a dense set of
branch points.
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