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DRUKARNIA .UNIWERSYTETU JAGIELLONSKIEGO W KRAKOWIE

icm

Quadratic forms over fields with © = g/2<+x
by

Craig M. Cordes and John R. Ramsey, Jr. (Baton Rouge, La.)

Abstract, This paper determines the quadratic form structure for fields X of characteristic not
two with ¢ = |K/K?|< oo and u = g/2 where u is the u-invariant for K. Some results are shown
for elements o € K which have the property that the quadratic form (1, «) represents only two square
classes in K. These elements play a central role in fields with u# = g/2. An iterated power series ex~
tension of X is afield of the type K((xy) ... (x»)) where K((x) is the field of formal power serics
over K. If the stufe, s, of K is at least four and if u = gf2< oo, then it is shown that K is equivalent
to the 2-adic numbers or an iterated power series extension of them. If s = 1 or 2, K is equivalent
to one of three types of fields or iterated power series extensions thereof. Unfortunately it is not
known whether these three types of fields exist.

1. If X is a non-formally real field of characteristic different from two, let
O(K) = K/K?, g = |Q(K)|, s be the level (Stufe) of K, and u be the u-invariant.
The goal of this paper is to determine all possible quadratic form structures over
fields with u = g/2< +oc0. The structures over fields with u = g are completely
known — see [1], [8]. Moreover, Elman and Lam [4] have shown that if u<g,
then #<q/2. We will obtain precise characterizations for fields with u = g/2 and
524, but the cases s = 1, 2 have only been determined up to the existence of certain
special types of fields.

Some additional notation: (ay, ..., a,) denotes the diagonalized quadratic form
n
3 a;X?; for a quadratic form ¢, G(@) denotes the elements of Q(K) represented
i=1
by ¢; G(9) = {ay, ..., a,} is an abbreviation for G(¢) = {aK?, ..., a,K?} while
G(p) = {ay, ..., a,y means G(p) is the group in Q(K) generated by the independent
elements ¢,K?, ..., 4,K*; and finally a € G(p) means aK ? € G(p). Two fields X, Fare
equivalent with respect to quadratic forms if there is an isomorphism #: Q(K)-> Q(F)
such that #(—1) = —1 and ¢[G(ay, ..., &,)] = G[t(a), ..., (a,)] for all n and @, € K.
It was shown in [1] that # = 2 suffices. Also pointed out in [1] was that two fields
are equivalent if and only if the Witt rings are isomorphic. Thus equivalent fields
have the same quadratic form structures and conversely. The fields we will classify
for u = g/2 will be determined up to this equivalence.

One further concept that is required- is Kaplansky’s radical, R [5]. One formu-
lation for Ris {ae K| G(1, —d) = Q(K)}, and it is a subgroup of K containing X2,
1 — Fundamenta Mathematicae XCIX
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Properties of R were discussed in [2], and all fields with |K/R[<8 were found up to
equivalence in [3]. It was demonstrated in [2] that fields with u = |K/R] act akin
to fields with u = ¢. So we only have to be concerned with the case u = g/2 and

R=K>2

2. This section contains some general results about what elements particular
binary quadratic forms represent over arbitrary non-formally real fields. Recall

that xe G(1, ) if and only if —ye G(1, —x). If @y is the direct sum of two
forms ¢, ¥, then

Glo®Y) =b€%)(w)G[¢®(b)] = U

aeG(p),baG)

G(a, b).

The last two remarks as well as the following lemma will be used frequently in the
remainder of the paper.

LeMMA. Let a, b be non-zero elements out of any field K. Then
G(1,a)n G, b)=G(1, —ab) .
Proof. If xeG(l,a) 0 G(,b), then xeG(1,a) and xe G(,d). Thus

—a, —be G, —x) and so is ab. Hence x € G(1, —ab).

Our first theorem is concerned with fields which have an element x satisfying

the sort of minimum condition (on the number of elements represented by a binary
form) G(1, x) = <{xD.

THEOREM 1. Suppose for some pasitive integer r that 2' x (1) is not universal over

a nonreal field K. If G(1,x) = (x> for some x e K, then G(1, ax) = {ax) for all
ae G x )]

Proof. It follows easily by mductlon that G(I, x) = (x> implies
Gllkx@N@x)] = Glkx (v G, x).

So in particular

) Gl xM)dX)] = G[Z’x(l)] UG, x).

On the other hand ‘

GIxM)eml= U

aeG2rx(1)]

G(a, x) . -

So for a e G[2" x ()], we have

@ Gl x (D)@ )]

For both (1) and (2) to hold, we must have G(a, x) —{x} S G[2" x (1)] or equivalently,
G(l, ax)—{ax}=aG[2x(1)]. But G[2Z'x(1)] is a group (see [6, Satz 2]), so
aG2"x ()] = G[2"x ()]. I G(1, ax) # {ax, then there would be b, bax'e G(1, ax)—
—<ax). Hence, b- (bax) and ax e G[2"x (1)]. And this means x e G[2"x (1)]. But,

=G, x)u Gla,x)u ...

icm
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if this were the case, G[(2"x (1))®(x)] = G[2"x(1)]; and this contradicts the facts
that K is nonreal and G[2"x(1)] # Q(X). So G(1, ax) = {ax>.

COROLLARY. If K is a nonreal field, then for x e K, G(1,x) =
G, —x) ={—x). »

Proof. Since K is nonreal, it has a finite level s. By Pfister [6], s is a power of 2.
If sx(1) is not universal, the corollary follows from the theorem. If sx (1) is uni-
versal, then by Elman and Lam [4, Corollary 3.6], |G(¢)|=2dim¢ for all aniso-
tropic ¢ of dimension greater than one. Hence, G(1, x) = {x) would be 1impossible
in this- case.

Another result we can obtain from Theorem 1 and the corollary concerns the
set G(1, 1). This is turn gives another characterization of noureal fields whose Witt
rings are finite of miaximal order with respect to a fixed ¢.

PROPOSITION 1. If K is a field with u<co and u<g, then G(1,1) # {(—1).

Proof. Let us suppose G(I, 1) = {—1>. Then s = 2. By [l, Theorem 5.13],
there is an a'e K(—K?2) such that |G(1, @)|>2. Consider the group G(1,1, a, a)-
G(1,1) = {-1) implies

{x) if and only if

G(1,1,a,a0) = U (d, af) =

a,feG(1,1)

+G(l,a) v £G{A, —a);

and (=1>G(, a),{—1>G{1, —a) are subgroups of G(1,1,a, a). However, it is
an elementary fact that no group is the union of two subgroups neither of which
contains the other. So a contradiction will be reached if we can show neither
{=1>G(1, a) nor {—1)G(1, —a) contains the. other.

By the lemma, G(1, a) n G, —a)=G(1, 1) = {—1). So G(1,a) n G(1, —a)
= {1} since —1 € G(1, d) would imply —ae G(1, 1) which clearly is not the case.
This means if G(1, a)={—1>G(l, —d), then G(1, a)— {I}C —G(1, —a). Suppose
beG(,a) n —G(, —a). Then be G, a) and ae G(1, b). Thus, abe G(1, a) N
A G(,b)=G(, —ab), and —1eG(1, —ab). Hence abe G(1,1) and we must
have b = a or —a (modulo K?). But b = —a is eliminated since —1 ¢ G(1, a).
However |G(1, a)|>2, so G(l,a)—{l}¢—~G(1, —a). Combining the abov;:, we
obtain G(1,a)¢&{~1>G(l, —a) so obviously {—1>G(I, —a) cannot contain
(~=1>G(, a).

By the last corollary G(1, —a) # {—a). The same argurnent as above now shows
{—1>G(1, a) cannot contain { — 1> G(1, —a). The desired contradiction is established,
and the proof is complete.

As an immediate corollary to the proposition, we get another characterization
of fields with s = 2 and u = g<oo. See also [{, Theorem 5.13] and [8].

COROLLARY. Let K be a field with s = 2 and u<oo. Then u = q if and only if
G(1,1) =<{=1.

One type of field where G(1, x) = {x) occurs is K ((x)), the field of formal power
series over the field K. Just as in the case u = g, these fields will figure prominently
in the answer for u = g/2. '
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3. In this section, we will assume throughout K is a nonformally real field with

u = gf2<+oo and s>4. By the corollary to Theorem 1 in [2] and by Prop-

osition 2 [2], R = K2

Let ¢ be a u-dimensional anisotropic form over X. Write o 2f; ®...®8.D 0,
where this is Elman and Lam’s f-decomposition of ¢ [4]. That is, 8; = (x;, ;)
with 8;@®8,2(1, -1, 1, —1) and ¢, has dimension 0 or 1 or p,@¢, is anisotropic.
Since # = g/2 and s>4, we must have dim¢@, = 0 or 2¢, anisotropic here. From
the proofs of Theorems 2.4 and 2.8 in [4], x,¢y,K?, +{x;, y} SG(x;, y) for
1<igrand G(By), ...,G(B)), G(y), — G (o) are pairwise disjoint. If ¢, = (155 2),s
this implies g>4r+2k = 2(Q2r+k) = 2u = q. Thus |G(f,)| = 4 for all i and
|G(@o)l = &. It now follows that the z, must be in different square classes for if not,
90=(2, z, ...). By Pfister’s proof of Satz 18(d) [7], |G(L, 1) =s. This combined with
Kneser’s Theorem (see 2.1 of [4]) and s>4 would yield |G(p,)| >k-+2. In exactly
the same fashion, we see |G(z;,z)| =2 for all 1<i<j<k or equivalently
[G(L, z;z))| = 2. At any rate Q(K) = = {X1, V15 -e» Xps Vys Zy s Z} - Finally we
note that 2f; being isotropic gives (x;, ¥y —(x;, y)) and (x;, x)= —(y;, »,) for
I<igr,

PROPOSITION 2. If (X1, Py, ooy Xps Vps 215 oons Zx) 18 the B-decomposition of the
above ¢ and if s=4, then G(x;,;, 7)< +{x;, y;, z;} for 1<i<r, 1<j<k.

Proof. sz4 implies |G(1,1)|24. Let ¢ = $,®...0F,. Now —z,€ G(¢p)
80 —z; = a+bwhereae G), be G(py). I bez,K*fori # 1, then —a e G(zy, z))
and ¢ would be isotropic. Thus bez,K? and it follows that G() u {+z;}
SG[Y®(z,)]. We would like to show G(Y) U {£z,} = GY®(z))].

Recall the above aeG()). We may suppose a = x;, and then obtain
—%; € G(zy,z,) from —z; = a+b. Consider G(x;, y;,z;). Clearly this must be
a subset of G(xy,y;) U {2z} U {z,, ..., z.}. Suppose z, € G(xy,¥;, z;). As above
—z, = a;-+b; where a, € G(Y), by € z,K*. Moreover, a; € G(x,,y;) for otherwise
ay € G(x;, ¥, # 1; and ¢ would represent z, —z, = 0 non-trivially. Also as above,
—a; € G(z,, 25). 80 (24, 24, 25, 2,) & — (%, X1, 44, @;). But 20, being anisotropic
ahd 2f; being isotropic now show a, ¢ —x,K2, y,K% However, if. a, € x,K2,
then -z, €G(x(,2,) and —z, € G(xy,z) give —1eG(,x.2) N G(1, %,2,);
and this intersection is contained in G(1, —z;z,) by the lemma. Therefore
|G(1, —z;z,)|>2 but this contradicts [G(I, z,z,)| = 2 and the corollary to The-
orem 1. The only other possibility is for a; € —y,K2.

- Now if some other z;, say z;, is also in G(x,, y,, z;), then a, € —y;K? where
—Z3 = g3 +b,. But then —z, € G(—y, 2,), —z3€ G(—y,, z5) give

—1eC@(l, —y ) n G, —y,2:)=G(1, ~2323) .
This yields the same contradiction as above. So

G(xlsyl: Zl)—c-{ixl: iJ’u izls ZZ}

icm
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if z, € G(xy, ¥y, 7). In this case, (x;,y;, 2 (z&;,u v) where uv € x,y,2,z,K?
and u,ve{+x,, +y;, +z,, 2} The poss1b1htles for uv are

H{L, %171, %121, 171, %125, y122: ERAR
Clearly uv # —1; and wv # 1 for if so, x,y; €z, z,K? and then 2 = |G(1, z, z,)}
= |G(1, x,;¥;)] = |G(xy, y1)| = 4. Contradiction. The other possibilities also all
lead to contradictions of the types x; = +y, and z; = *x; or *y;, i=1,2.
Thus. z, ¢ G(x;, ¥1, z;) cannot occur and G(xy, ¥1, zy) = {x1, V1, 2}

Now consider G(x,, y,, z;). Clearly (x;,¥,, z;) can only represent elements
from G(x,, y,) v {£z:} U {23, ..., Z}. Suppose z, € G(x;, ¥, z;). There is an i such
that —z, € G(x;, y;, Z,). In fact i = 2 or else ¢ will be isotropic. By the above then,
G(Xy, Y2, Z3) = +{X5, ¥4, 2,}. Moreover, z, e G(x;,¥,5,2;) if and only if

—2; € G(Xz, Yo, —72) = G(—Xy, —Y2, —22) = —G(X3,¥2,25) .

So z, € G(X4, ¥2,2,). This cannot happen so we must have G(x;,¥,, z,)
S +{%Xs,¥2, 71}

Hence G(x;, ¥;, z1) S £{x;, ¥i, 2} for 1<i<r. Actually in the above, it is easy
to show G(x;, ¥;,21) = {£x;, +¥,, 2.}, but this will not be needed. Of course
the same argument applies to any z; so the proof is complete.

THEOREM 2. Let K be a field with u = g/2<+ o0 and sz4. Then s =4 and
|G(, D] = 4.

Proof. Suppose instead that [G(1, 1)|>8, and consider ¢ again. We can scale ¢
so as to put it in the form ¢ = (1,91, X2, Y25 v Xps Ves 215 e %) Clearly .

G, x) G, yy, %, pi) = £{l,y1, x5, 3} for

Now y; ¢ G(1, x;) for if so, (1,1, %, Y02y, ¥1, ¥ %1 and [G(1, 1)[=8
yields |G(1, ¥y, %;, y)|>10. Similarly y,¢ G(1, x;)); and ¢ anisotropic gives
—¥1, =¥ € G(1, x;). Thus G(1,x)S{—1, x;. Since (x;, )= —(x;, y;), the same
technique leads to G(l, —x)<<{-1,x. By the corollary to Theorem 1,
1G(1, x)|>2 if and only if [G(I, —x)|>2. So if G(I,x;) = (-1, x; so. does
G(l, —x;) and by the lemma —1e G(1, 1). This contradicts s>4. Hence G(1, x;)
=G, G, —x) = (—xd, 2<i<r. Similarly G(Ly) =D, G, =y
={—y, 2<iLn i

We also have G(1,z)SG(l,y.,zys+{l,y:,z} by Proposition 2 for
1<j<k. Now +y, ¢ G(1,z) since +y,z; ¢ +{1,y(, z}. So G(1,z)s({~1,2p,
1< j<k. Furthermore, ‘ ’

G(Ia _Zj)EG(I:y:L’ - j) = G(_lv —Y1 —-Z)E i{liylazj} .

Again G(1, —z)S{—F z)», and it follows as before that G, z;) = {zp
G(l, —z) = {—zp, 1Kj<k.

Since ae G(1, 1) if and only if —1e G(1, —a), we may conclude G(l Do
O £ {x0, Yo i Xey Voo Zys v By = @, Thus G(1, 1)={~1,y,), and this contra-
dicts |G(1, I)|>8 Hence s<4 (and so s = 4) and |G(1, 1)] = 4.

2<igr.
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Having reached the concluséon that s<4, we would like to characterize all such
fields with s = 4. It will turn out that they are all equivalent to power series field
extensions of the 2-adic numbers. .

Again let @ = (X1, Y1y s Xps Yps 21 o5 %) be a u-dimensional form with
its fB-decomposition. By the proof of the last theorem, |G(l, +x;z;)| =2 for
1<i<r, 1<j<k. Notice that only Proposition 2 and not the assumption |G(1, 1)|>8
was needed to prove |G(l, +z)] = 2 in that theorem. From 28, isotropic, we
obtain x;, —y; € G(x;, x,). But there are two other square classes in G(x4, x;)
too — denote them aK?, bKZ. Since |G(l, +x1z)| =2, a,b¢ £G(zy, ..., 7).
‘Also a,b¢{—x;,y;} since s =4. So a,beG(x;, Y, > %, ) and we may
assume @ = X,. Then G(xy,x;) = {x;, —»;,%,,b} and since G(I,1)
= {1, —x;1¥1, X1 X5, bx,} is a group, bx, € —x,y,K2. Moreover, x,x, € G(1,1)
implies {(~1, x;%,><SG(l, —x,x,). So by Theorem 1’s corollary, |G(1, x; x,)| >4.
Also

G(l, x1%,) = X1 G(xy, X3) EX1 G(X1, Y15 X2, P2) = {1, %1 p1, %1%, 2,95} ¢

However, —x;y:, —X;¥5 ¢ G(1, x;%,) since ¢ is anisotropic. If —1 e G(I, x;%,)
then —1eG(, xyx,) N G, —x;%,)=G(1, 1) — contradiction to s = 4. Thus
G(1, ;%)= {1, %, 71, X1 %, ¥ Y2}, and in particular, x,x, € y,y,K? from which
follows (x4, X,)=(¥ , ¥2)- Finally, we may conclude (xy, ¥y, X3, ¥2) 2 (X1, X5, X1, X3)
g(xlxxlsxl’xl)' )

Now consider (x3,5s). As above X3, —¥s, 45, by € G(x3, x3). Suppose
ay € G(xy, Y1, X3, ¥2). If a; € G(xy,y;), then as before

(o1, P15 X3, V3) (g, X, X, %)

Hence (%1, ¥1, X2, V2, X3, Y3) (X1, X1, X1, Xy, X3, ;) With
G(x2,¥2) GG (xq, X1, X1s xp) = —G(xy, X1, X1, Xy)

and ¢ would be isotropic. So a, ¢ G(xy,yy) and similarly a, ¢ G(x,, y,). In fact,
then, a, ¢ G(x1, ¥y, X3, ¥2). Therefore ay, by € G(x4, ¥4, ...» %> ¥); WE CAN assume
a; = x4 and as above (Xs, 3, X4, Y4)2(x3, X3, X3, X3). We can continue this process
t0 oblain Q= (Xq, X1, X1s X1 vir Xes Xp» Xy» Xyp» Z1» vy Z) Where t = r[2.

Notice that from the last paragraph, it follows that |G(1, 1, 1, 1)] = 8. From
Elman and Lam [4, Lemma 3.2, |G(L, 1, 1)|>6. So we may assume G(1,1,1,1)
={-1,a,b5, G1,1)=<a,by, and G(1,1,1)=2{a,b) v {~a, —b}. We then
have G(l,a)=G(,1,1)e{~1,a,by. The corollary to Theorem 1 and
—1eG(l, —a) yield |G(1, )| =4. From (1, 1,1, 1)~(1, 1, a, 4) being anisotropic,
“we get G(1,a) n —G(,a) = @. So G(1, a) =<a, by or<a, —bd, However, if it
were {a, b), then G(1,a) n —G(1, 1) = G and (1, 1, 1, &) would be anisotropic —
contradiction to —aeG(l,1, 1), Consequently G(1, a) = {a, —b), and similarly
G(1,8) = {~a,b). From these and G(1,ab)=G(1,1,1), we also get G(I, ab)
={—a, —b). - ' : !

icm
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{(—1,a)cCG{, —a)=G(1,1,1,1). But G{, —a) #<{~1,a,by for if
so, beG(1, —a)n G(1, NG, a). Thus G, —d) =<{~-1,4), and in the
same fashion G(I, —b) ={~1,b). Finally {(—1,abdc=G(l, —ab)=G(1,1,q)
cG(1,1,1,1) and ab ¢ G(1, —b) implies b ¢ G(1, —ab) which gives G(I, —ab)
= {—1, ab). In particular, notice, this gives G(1, 1,1) =<a, b) u {—a, —b, —ab}.

We have now shown |G(I,x)] =4 and G(1,x)=G,1,1,1) for all
xeG(1,1,1,1)—(—K?). Next we show every anisotropic @ = (¥;, Vs, V3, Vs)
with y; € G(1, 1, 1, 1) represents G(1, 1, 1, 1). From the above calculations and the
fact that G(p) = U.G(e, B, «eG(y1,¥2), Be G(y3,¥s), it follows that G(e)
=G(1, 1,1, 1). If three y; are in the same square class, then [G(1, 1, 1)} = 7 implies
|G(9)| =8 and hence G(p) = G(I, 1,1, 1). If two y; are in the same square class,
then @=~(y,¥,¥3,¥4). We may assume G(¥,%) N G(ys,y,) = or else .o has
three like entries. But then [G(@)|=|G(y, | +IG(¥s, vl =8 and so G(p)
= G(1,1, 1, 1). Finally, if ¢ contains no like entries, we may assume G(yy, ¥3) 0O
N G(y3,y4) = @ and the reasoning is the same. An immediate consequence of this
result and —1eG(1,1,1,1) is that any five-dimensional form with coefficients
out of G(1,1,1,1) is isotropic.

The 2-adic numbers Q, have Q(Q,) =<{—1,2, —3). Moreover, G(I,1)
=2, =3, GU,-2)=<(-1,2, G1,3)=<-1,-3), G1,2)=2,3),
G(, -3 ={(=2,-3, G1,6)=<~-1,6), and G(l, —6) =<-2,3). Thus
o: 0(0.)—~Q(K) defined by o(—1) = —1, ¢(2) = a, c(—3) = b and extended
homomorphically satisfies aG(x, B) = G (o (), o(B)) for all «, fe Q(Q,).

Let us return to ¢ and scale it so we may assume

qD = (I, 1: 1’ 13 xz: xls x2’ xZ: wevy xt, xt’ xt’ xt: zl; asey Zk) .
Consider x € G(x;, X;, X;, X)), 2<i<t. Then (x;, X;, x;, x)=(x, x, ¥, ¥) and ¢ an-
isotropic implies - G(1, ) n ~G(1,1,1) = G(1,x) n —G(x; x, x) = &.  Hence
G, X)nG1,1,1,D) = {1}, G(1, %) n G(x, x,x,x) = {x};

and G(,x)<sG(1,1,1,1,x,x,x,x) =G(1,1,1,1) u G(x, x, x, x) then- gives
G(1,x) = {x).

We now want to prove there are no z; in ¢. From previous work, |
t
G(I: 1,1, 1., Xis Xips Xy xt) = G(I: 1,1, 1) U xtG(la I; 1, 1) .
: i=2

The z; then must liein the g/8—¢ = k/4 cosets of G(1, 1, 1, 1) left over. Since no 5 can
come from one such coset (or ¢ would be isotropic), 4 must come from each coset.
If (z(, 25, 23, 24) is one such set, then it represents 8 elements from Q(K) while
earlier it was seen (2, 2, , Z3, Z4) represents only 4. This contradiction shows k& = 0.

It g(K) = 2"+% and if Q,((p)) denotes the field of formal power series over @,
it is now clear that any isomorphic extension of o: Q(Q,)—K to

Q122 (( D) () - (N
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sausfies the hypothesis of Proposition 2.2 of [1]. Hence ¢ is an equivalence map and
Theorem 3 follows.

THEOREM 3. Let K be a field with u = qf2, s>4, and g = 2", Then K is equiv-
alent with respect to quadratic forms to 0 ((x))((x2)) ... ((x,)) where Q, is the
2-adic numbers and Q,((x,)) denotes the field of formal power series over Q,.

4. The cases for § = 1,2 are complicated by some unanswered ‘questions con-
cerning the radical R of a field. From the discussion preceding Theorem 4 in [2] and
by the same techniques used for Proposition 5.15 in [1], it is'easily seen that there
are only three possible fields (up to equivalence) with u = ¢/2 and R # K2, These
fields all have |R/K 2| = 2 and correspond to s = 2 with —1 € R, s = 2 with —1 ¢ R,
and 5 = 1. Let us call these fields respectively types 1, 2, and 3. Although each type
is unique, the problem is that their existence is not -determined for any ¢ 8. In fact
there is only one known example of a field with radical R K, K? (see [2]). It turns
out that all fields with u = g/2>8 and s = 1, 2 have quadratic form structures which
are identical to what the structures would be for iterated formal power series exten-
sions of fields of types 1, 2, 3 above or (4) or Theorem 6.11 [1]. Theorem 6.11 classifies
all nonreal fields with ¢ = 8, and in fact (4) is-a power series extension of a field
with u =2, ¢ = 4.

The basic idea in this section is the same as in the last one — namely to write
down a particular form of an anisotropic u-dimensional ¢ and read off what the
value sets for all binary forms must be. Instead of using a f-decomposition for s = 2,
we try to write a ¢ in the form (xy, X, ..., X,; x,). For ¥ = 1, an element a is found
80 @ = (X1, @xy, ..., X, ax,). Since the work is similar to Section 3, the proofs will
just be sketched.

First assume K has s = 2 and that there is some anisotropic u-dimensional
form with like entries in some diagonalization. Let

¢ = (I’ l’xl’x2: ey Xpy Xpy 25 ""Zk)

bé such a form with » maximal. We want to show 2r = u. Clearly G(1, 1), G(x;, x;),
2<i<r, {z}k.,, and {~z}k,, are pairwise disjoint sets. Thus |G(1, )| = 4. Let
G(1,1) = (~1, a). Using an argument with G(I, 1) similar to the discussion just
preceding Theorem 3, we find (zy, ..., Z)= (V115 Vais > Y11o Y1) Where 3y, yoj,
I1<j<l, belong to the same coset of G(1,1). Thus (v, y.)=~b(1,a) or
b1, —d). But then it follows G(I,a) = G(1,1) or G(1, =) = G(1,1), and
@ = (1, 1,%y, X3, ey Xpp X, by, By, ey by, BY) is anisotropic: Hence 2r = u. More-
over,forp = (1, 1, x3,%5, ..., X,, ), G(1, £x)SG(1, 1, x;, x)) s0 |G(1, £x)| =2
or 4. The quadratic form structure is determined by how many of these are 2.

THEOREM 4. Let K be a field with u = g/2<+ o and s = 2 and suppose K con-
tains an anisotropic .u-dimensional form with like entries in some diagonalization.
Then K is equivalent to a field of type 2, a field withw. = 2, g = 4, or an iterated power
series extension of one of these. .

icm
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Proof. Let ¢ = (1,1,%;,%,, .., ,x) be as above and recall G(1,1)
=<{~—1, a). Suppose |G(1, x;)| =2 for 2<i<r. Then by Theorem 1, G(l, x)
= (x) for all x¢{—1, a). Also then G(I, @) = G(1, —d) ={—1, a). Thus K is
a field with u = 2, ¢ = 4 or power series extension thereof.

Now suppose |G(1, x,)| = 4. From —1¢G(1, x,) and

G(ls xl)EG(I: I’ X2 x2)

comes G(1; x,) =<a, x,> or {—a, x,». By changing —a to a if necessary, we can
assume G(I, x,) = {a, x,>. From G(1,a)=G(1, 1, x,). we get G(1,a) = (-1, a)-
Using these, the lemma, Theorem 1 and its corollary, we obtain G(1, —x,)
=<a, —x,», G, ax,) = {a, x;), and G, —ax,) = {a, —x,>.

If any other |G(1, x;)| = 4, then G(1, x)) = {a, x;> and the value sets for
(1, +ax;) and (1, —x;) are as above too. We rewrite

¢ = (I, 1: xz,xz, "-:xk’xksyuyl: ---,J’z,J’t)
so [G(1, x)| = 4, 2<i<k and |G(1, )| =2, I<j<I Then
G, —a)=<~1,a-{1, x5 e, X} .

If I = 0, then K is equivalent to a field of type 2. If [ # 0, K is equivalent to a power
series extension of a field F of type 2 with a € R(F) and ¢(F) = 4k. This completes

the proof.

THEOREM 5. Let K be a field with u = q[2<'+ o0 and s = 2 and suppose K contains
no anisotropic u-dimensional form with like entries in any diagonalization. Then K is
equivalent to a field of type 1 or an iterated power series extension of such a field.

Proof. Let ¢ = (1, x5, ..., x,) be anisotropic. Note Q(K) = +{1, x,, ..., x,}.
Also G(1,x,) 0 +{x3, .., x,} = shows |G(1,x,)|<4. This holds for all
G(,x). If |G(1,x)| =2, 2<i<u, then |G(I, —x)] =2 and so |G(1, 1) = 2.
"By the corollary to Proposition 1, # = g. This contradiction means |G(1, x)| = 4
for some i.

Write ¢ = (1, X5, ..., X, Y1, ..., ¥) where [G(1, x| = 4 and [G(1, y)| = 2.
It is easy to see G(1, +x;) =<{—1,x;>, 2<i<k. It also follows that G(1,1)
= +{1, x5, ..., x;}. If ] = 0, then K is equivalent to a field of type 1. If / 5% 0, K is
equivalent to a power series extension of such a field.

Fields with s = 1 are done in a similar manner by showing there exists an x such
that |G(1,x)] = 4 and ¢ = (1, x, x5, XX;, ..., X,, XX,).

THEOREM 6. Let K be a field with u = g/2< + 00 and s = 1. Then K is equivalent
to a field of type 3, a field with u = 2, q = 4, or an iterated power series extension of
one of these. .

The role of power series extensions was central for fields with both u = ¢ and
u = gf2. This concept along with the radical proved to be the keys in classifying all
such fields. It would appear that elements x satisfying |G(1, x)| = 2 or g deserve
more study.
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Undefinable ordinals and the rank hierarchy
by

John Lake (London)

Ab_stract. This paper shows that certain definability properties concerning the ordinals @ and g
are equivalent to the property of {Ra, &) being a proper elementary substructure of (RS, &).

1. Introduction. This note was motivated by [5]. Section 2 starts by answering
a question from [5] and then it gives a number of conditions involving undefinable
ordinals, each of which is equivalent to Rx<Rp (where Ro<Rf means {Ra, &>
is a proper elementary substructure of {(Rf, &)).

Most of our notation is standard but Df(x, y) is the set of those clements
of x which are definable in {x, &) using a first order ¢ formula with parameters
from y n x. Also, Df(x) = Df(x, ) and X is the cardinality of x.

It is well known that V = L implies the existence of certain definable well
orderings and we shall make use of this fact in the following form (see Theorem 4.11
of [4], for instance).

TaEOREM 1. Suppose that V = L holds and that Bzw. Then there is an & for-
mzla @ with two free variables such that {(x, y)l @™ (x, y)} is a well ordering of
RA+1.

2. Results. The following notions were introduced in [5]. An ordinal « (e x)
is said to be inconceivable in x if « ¢ DIi(x, o), strongly inconceivable in x -if
B=a—p ¢ Di(x, o) and weakly inconceivable in x if it is inconceivable, but not
strongly inconceivable in x. Then Theorem 2.4 (i) of [5] gives

RB E ZF - (o is strongly inconceivable in Rf—Ra<Rp),

and Rucker asks if this result can be proved without assuming Rk ZF, More
precisely, he asks “If x is a model of Z and there is an o € x such that « is strongly
inconceivable in x, then is x a model of ZF?”

Theorem 2 shows that the answer to Rucker’s question is no, in general, as there
is an a which is strongly inconceivable in Rw; and Rw, is not a model of ZF, How-
ever, Theorem 3 shows that if V =L holds, then we get a positive answer to Rucker’s
question when x = Rf and f is a singular ordinal. .

THEOREM 2. If B is a regular ordinal > w, then there is an o.<p such that o is
strongly inconceivable in Rf.
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