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Concerning the shape groups of compact metric spaces
by

M. Moszynska (Warszawa)

Abstract. The paper concerns with the shape groups of the product and of the one-point union
of two metric compact spaces. Also some relationships between the shape groups of a space (X, xo)
and its shape retract, and between the shape groups of a space (A, x,) and a space shape deformable
to (4, x,) are established. All the results are analogues of classical theorems of homotopy theory.

The purpose of this paper is to establish some statements concerning the shape
groups of metric compacta (see [1], [8], [9]). These statements are analogues of the
well known theorems of homotopy theory. '

The paper is devided into two parts. The first one, “Shape groups of the product”
(§§ 1, 2), concerns with the multiplicativity of the functor of nth shape groups
(Corollary 2.2). The second one, “One-point union, shape retracts and shape defor-
mability” (§§ 3-7), concerns with the shape groups of the one-point union (The-
orem 5.1) and with the relationships between the shape groups of (X, x,) and (4, xp)
in two cases: for (4, o) being a shape retract of (X, x,) (Theorem 6.1), and for
(X, x,) shape deformable into (4, x,) (Theorem 7.1).

Each part js based upon some statements of category theory (§ 1. and §§ 3, 4).
All these statements are given here in details, though some of them may be found
in the literature, in the form more or less adequate to our purpose.

For any category o, the category pro-#" is understood here as the quotient
category 4 *|, with £* being the category of inverse sequences in % and with =
being the similarity relation (see e.g. [6]) (*); (thus this is a subcategory of a pro-
category in the usual sense). Morphisms of pro-#" are denoted by [f1, [g], ...
Morphisms of the shape category by f,g, ...

The author would like to express her gratitude to Mr. J. Dydak for his valuable
remarks.

Shape groups of the product .
1. Products in pro-categories. Product in an arbitrary category A will be under-
stood as usualy, i.e. an object Z is a product of X and Y whenever there exist two
morphisms (product morphisms) b
%: Z-»X and A:Z-Y
® In [6] the symbol K* was used for pro-XK.
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satisfying the following condition:
() For every pair of morphisms in A, f: S—X and g: S—7, there is a unique
morphism h: S—Z such that the diagram

X<~—Z—Y
A 4\ . .
}\ n /a/' is commutative.
5

Then Z is determined uniquely up to isomorphism and denoted by X'x Y.
It is easy to see that » and 1 are also determined uniquely up to isomorphism.
Condition (i) implies
(i) For any pair of morphisms, p: X'—X and ¢q: Y'=Y, there is a unique
morphism 7: X'x ¥'»>Xx Y such that the diagram

X < X

XxY<+—X'%xY

4o

q
Y <— Y

is commutative.

Then r is determined uniquely up to isomorphism and denoted by pxgq.

Let us prove the following

1.1. ProposiTION. Let X = (X,, p%) and ¥ = (¥,, 43) be two objects of pro-2A .
IfZ,=X,x Y, and 1% = pi xq; for & 20, then Z = (Z,, r¥) is a product of X
and Y in pro-A, i.e. Z = Xx Y. Moreover, )

@) If %y Z,—X, and A Z,~ Y, are product morphisms for every. o, then

% =(1,2%): Z»X and 4 = (1,2,): Z—Y are special morphisms (%) in A*, which
represent product morphisms [«] and [4] in pro-A'.

(b) Let f: S—X and g: S—Y be two special morphisms in X%, f= (1,12 and
g = (1, g). Let h, be the unique morphisms in A, for which the diagram

XG -exa_- Zl! _2::) Yﬂ
A
AN el
Then h = (1, h): S—Z is a special morphism which represents the unique mor-
phism [R] in pro-A such that the diagram
[x] [a1
X=<~—Z—Y

A
o [myt
S

commutes.

is commutative.
{

(%) For the notion of special morphisnx (called also an ordinary morphism), see [3] X and [7].’

N AN
(ARG B
.

L
A
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Proof. Let »,: Z,—~X, and A,: Z,—~ Y, be product morphisms. Then, by (ii),
x and A defined as

k =1, %),

are special morphisms in ™, i.e.

=0,

]

6)) Holy = proey and  Ar% = g¥l. for o'a.

Take an object S = (S,, 5%) and two special morphisms of X*, f= (1,£): S—X
and g = (1, 9): S—Y. Since Z, = X,x Y,, there is a unique k,: S,~Z, such
that

@ Aoy = Jo
Since (2) and (1) imply

#albaSe) = oS = Pi fur = P Hehe = %(rihe)

and Ak, =g,

and

A’a(ha's’:') = ng:‘ = q:lgz’ = qz”la’ha’ = 'q'a(r:'ha’) >
one gets
® heSy = rih,,

whence h is a special morphism in J*. The condition (2) implies

@ xh=f and Ahxg.

Let us prove the uniqueness of [k]. Take an &' = (¢, h): S—Z and suppose that

@ xK=f and ikKxg.

Then, for each « there is an o' >o, &(«) such that

Q) n S = f5%  and  Ahishe = 0.555
ie. for f, = £ and §, = g,5¥ there are two morphisms
hs%: Sp—Z, and RSy So—Z,

such that :
xa(haxf ) =fa and A’u(ha‘\{) = fq
and (by (5))

%az(’ ';S(Eéa)) = f [ and A‘a(h;s‘{(u)) = ga .
Thus h,s; = h;.s';'(,), i.e. &' = h. Hence [A] is a unique morphism in pro-A such that
[x][4] = [f] and [A][A] = [g].

This completes the proof of (b).

For any pair of morphisms f; S—X and g: S—Y there exist an object S’
isomorphism i#: S—+8’ and special morphisms f': $'=>X and g': §'—Y such that
f=f'iand’g = g'i. Thus, to prove (a),it-suffices to show that for every object

2 — Fundamenta Mathematicae XCIX
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= (S,,5%) and every pair of special morphisms, f=(1,/): $—X and
g =(1,g,): S—Y, there is a unique (up to =) h: S—Z satisfying (4). Since for

every « there is a unique %, S,—Z, such that
wohy, = f, and AR = gq,

the existence and uniqueness of [4] follows immediately by (b). Thus the proof is
complete. B

Consider now a covariant functor =: .[ —-)3 The functor 7 is said to be
multiplicative whenever :

(i) w(XxY)=zmX)xn(Y) for every pair of objects X, ¥ in A
and

(iv)  if % and 4 are product morphisms for X'x ¥ then 7:(%) and m(%) are product
morphisms for n(X)x n(¥).

As known, any covariant functor m: A —& generates a covariant functor
pro-m: pro-# ~pro-& (*):

(X, p) of pro-a#°
pro-n(X) = (n (X)), n(#%)) »

if a morphism [ f]in pro-A£ is represented by f = (¢, f,): X~ ¥, then pro-n [ f]
s represented by (@, n( ) pro-m(X)-pro-n(X).

Let us prove

for any object X =

[y

1.2. PROPOSITION. If a functor m: XA -»E is multtplzcatzve then the Jfunctor

pro-m: pro-A —pro-Z is also multiplicative. ¥
Proof. Consider. a multiplicative functor =: #'—»2L. Take two objects
= (X,,p%) and Y= (Y., ¢¥) in pro-o, and let
Hyt XX Y,~X, and A X X Y—»Y
be product morphisms in 2. Then, by Prop051t10n 1.1, the product of X and Yin
pro-# is of the form ) .
XxY

= (X Vo %),
and the product morphisms are represented by
. , k= (,%) and  A=(, la)
Let r¥ = p% qu By (iii), for every « '
(1) - TE(XIZX Ya = n(Xa) X;IZ(YH)
and o . .
@ - . w0t and n(d,) are product morphisms in-& .

(%) In the séquel’ we shall usé the sare symbol 7 for. pro-m. -
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Thus, by 1.1,

3 pro-n(Xx ¥) = pro-n(X) x pro-n(Y)
and, by 1.1(a),

(4 pro-n[x] and pro-z[A] are product morphisms in pro-Z.

Hence, by (iv), pro-z is multiplicative. B

Assume now 4 to be a category w1th inverse hmlts and products. Let us prove
the following )

1.3. PROPOSITION. The functor lim: pro- -2 is multiplicative.
Proof. Let X = limX and ¥ = lim¥ and let p: X—»X and ¢: Y-»Y be pro-
jections. Take product morphisms

[€]: Xx¥-X, [A: XxY¥Y-Y in pro-t
and )

w: XxY->X, A XxY->Y

Let r= px q: Xx Y—XxY; then, by (ii), the d1ag1am

in A .

Xé—XxY—->Y

o) g & e

X XY —y

is commutative up to =.

In order to prove X'x ¥ to be the inverse limit of Xx ¥, it suffices to show that for
every morphism h: S—XxY in H#™* there is a unique A: S—»Xx Y in A such
that rhh.

Take h: S—>Xx ¥ and let
@ f= kh: S—»X and g =ik S=Y.

Since X = limX and ¥ = lim¥, there is a unique pair of morphlsms f S—X,
g: S—Y, such that

&) pf=f and gg=g:
. In turn, there is a unique A: S—Xx Y satisfying
@ wh=f and Jh=g.
By (1), (4) and (3), one gets
©) k(rh)=(p)h = pf = f  and A =(g)h =q9 =g .

Conditions (2) and (5) imply rhsh; which proves lim(Xx Y)to be a product of X
and Y.
By (1), it follows that

% =limk and A =limA;

thus limx and lim4 are product morphlsms for Xx Y. ThlS completes the proof ]
2%
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2. Shape groups of the product. As known, the functor of nth homotopy group,
n,: #—%, is multiplicative (see [2}, Th. 2.1, p. 144). Thus Proposition 1.2 implies

2.1. COROLLARY. The functor of n-th homotopy pro-groups, m,: pro-#—pro-%
is multiplicative. B )

In turn, Proposition 1.3 implies

2.2. CorOLLARY. The functor of n-th shape group #,: &—% is multiplicative. W

Corollary 2.2 was obtained by T. J. Sanders in [9] (Theorem 4.1). However,
Sanders was mnot interested in the, multiplicativity of homotopy pro-groups
(Corollary 2.1), which is needed here in § 5.

One-point union, shape retracts and shape deformability

3. Monomorphisms, epimorphisms, kernels and cokernels in pro-%. We shall use
the following notation. For any morphism f: X—Y of an arbitrary category X,
kernel and cokernel of f will be denoted by

‘ Kerf = (Ker f, ker f), Coker f = (Coker f, cokerf),
Ker f and Coker f being objects of &, and ker f, coker f being morphisms,

ker f: Kerf—X, cokerf: Y—Cokerf.
Then
Inf=(Imf,imf), where Imjf = Kercokerf

and
im f = kercoker f: Im f—Y, whence Im f = Kercoker f-.

Notice that
3.1. In arbitrary category with kernels and cokernels, if the sequence
x3rsz
is exact, then g(imf) = 0.
Proof. By the assumption lm f = Kerg, thus g(imf) = g(kerg) = 0. &
It is easy to prove
32. Let o be a category with kernels and cokernels. Then for every morphism
fi X—~Y in A there is a unique morphism f°: X—Im f such that f = (im ) £°,
i.e. the diagram
J
X—7Y
N Tim s is commutative. W
'y
Im f

This diagram will be referred to as the natural diagram for f.
Let us recall that a category S is said to be balanced if the class of isomorphisms
coincides with the class of bimorphisms (see [10]).

icm
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3.3. If o is balanced and f° is an epimorphism, then

(a) f is a monomorphism <> f° is an isomorphism = Imf~X,

(b) f is an epimorphism <> im f is an isomorphism = Imf=Y,

(c) ker f is an isomorphism < Im f = 0 (%).

Proof. Let i = im f. Since f = if® and i is a monomorphism, hence fis a mono-
morphism if and only if f° is 2 monomorphism. Since £° is simultaneously an epi-
morphism and 5 is balanced, we get (a).

Similarly we prove (b).

Let Im f = 0. Then f° = 0 and thus f = if® = 0. Then ker fis an isomorphism.
Conversely, if ker fis an isomorphism, then f = 0, whence if® = 0. Since i is 2 mono-
morphism, it follows that f© = 0. But f® was assumed to be an epimorphism, thus
Im f = 0, which proves (c). W )

We are interested in the category pro-%. Comsider a special morphism
=015 X=X, p05)-(¥,,q%) = ¥ of g*. We have

3.4, Ker[f] = (Kerf,, p%] Ker f,) and ker[ 1= [j], j = (1, ker f).

Proof. Notice that
m PiRerf)cKerf,;

indeed, f,.(x) = 0 implies f,p=(x) = g% f,(x) =0, i.e. p¥(x)eKerf,. By (1), we
can define maps n%: Ker f,,—»Ker f, by the formula
@ n = p| Kerf, .
Thus N = (Kerf,,n%) is an object of pro-#. Since the diagram
"
Ker f, 2— Ker £,
kel'f«l lkerfu'

X, — X,
o~

obviously commutes,

a
j=(,kerf) is 2 morphism of #*, j: N-X. It is easy to check that Ker[f]
=, ). m
Let us recall that in the category of groups, %, for any homomorphism f: X—Y
with f(X) being a normal subgroup of ¥,
Imf=f(X), imf: f(X)~»Y is the inclusion, Cokerf= Y|f(X) and
coker f: Y-»Y|f(X) is the natural projection.
Consider a commutative diagram in %,
r
X—>Y
v l la
XI 7 Y’

(¥) The condition (¢) holds without the assumption on JG to be balanced.
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The homomorphism ¢ induces a homomorphism §: Coker f—Coker f’ such that
the diagram

coker f’
Y — Coker f

a 7
Y’ —— Coker f”

coker f*

is commutative.

Consider a special morphism f = (1,£): X = (X,, 75)=(Y,, q2) = Y in ¥*.
The morphism f will be called normal if £,(X,) is a normal subgroup of ¥, for all a.
In particular, if all ¥, are abelian then f is obviously normal. ‘

Let us prove ‘

3.5. If f: X— Y is normal, then Coker[ f] = (Coke1fu,
where p = (1, coker f).

“y and coker[ f1 = [p],

Proof. Let M = (Coker f,, 4%). Take p = (1, p,), where p,: Y,—»Cokerf, is
the natural projection. Let us show
M Coker[f] = (M, [p]) .

By 3.1 and 3.2, I [7], [p] is an epimorphism and [p][f] = 0. Take Z = (Z,, %)
and g = (, g): Y—Z satisfying the condition C

@ [g1[f1=10.
By (2), for every o there is an a* = ()= (x) such that
(3) . ' gaq;‘(a)f;z*(Xz‘) =0.

Notice that

@ Des(01) = P(y2) = 9193‘(;)0’1) = gaqlf(nz)(yz) for

Indeed, by (3),

Pa1) = Par(32) = pu(p1—22) = 0 = y1—¥; €fu(X04)
= 08 = Guli@(s) = GuGi(s—=72) € duiier fur(X) = 0.

V1,26 Yo

The condition (4) enables us to define a homomorphism g,: Coker f,xy~Z, by
the formula

®) ‘ 90yl 5 9450 -
The diagram

~n(a’)
In(z)
Coker fyy < Coker fy.n
o , oy is commutative;

Zy — Zy

"
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indeed, by (5), since g,qhs) = 1% g, for o' Z0, we get

GL8T Y] = b IS (D) = G dln dnier () = Gudiiy ()

= 9 a8 aE0) = ri (9 ahd () = 15 gyl
Thus, setting g’ = (17, g.), we obtain a morphism g’: M- Z. The condition (5) implies
O] g'p=yg.
Thus (1) is satisfied. B

Statements 3.4 and 3.5 imply

3.6. If f=(1,£): XY is normal, then Im[f] =
im[f] = [v), where v = (1,imf,). @

Take now a normal morphism f= (1,f): X—¥, and consider the collection
of homomorphisims (£ : X,~Imf),.y defined by the formula

£20) 5 £
It is easy to show that (1,f®) represents a morphism of pro-#. Let f© = (1, 9.
Notice that _

37. f=(imf) f° and [ f°] is an epimorphism in pro-¥4.

Proof. The equality f= (im f)f° follows directly by f, = (im f.) f2. Bach
of £2 is obviously an epimorphism in &, whence [ f °] is an epimorphism in pro-¢
(see [71 1, 3.1). &

As known, the category pro-# is balanced (see [3]1I, Th. 8). Thus the state-
ments 3.3 and 3.7 imply

(XD, 62| (X)) and

for every xe X, .

3.8. For any normal morphism f: X—Y in 4*

@) [f] is. @ monomorphism <= [ f°1 is an isomorphism = Im[f1=X,
(b) [f]is an epimorphism < im|[ f1is an isomorphism = Im[ f1= ¥,
() ker[f1 is an isomorphism <> Im[f] = 0. B :

By [71 1, 1.5, 1.6 and 2.1, it follows that

3.9. In the category pro-%, [ f1 is a monomorphism <> Ker[f]=0. B
Notice that .

3.10. For any f= (1,£): (X, 7%) = X~¥ = (Y, 42) in 9*

Ker[f1=0 < AV pi@®erfe) =00).
= (Ker f,, p¥|Ker f,.). We have

Proof. By 3.4, Ker[f]
Ker[f]1=0 < [lgupn] = [0] <= /\ \/ PiKerfy =0

> AV FERerf,) = 0. ®

@ o'z

(*) See also [3] II, Theorem 6.
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Consider the subcategory pro-%y,, of pro-¢ with all the morphisms being nor-
mal. Let us prove

3.11. For every exact diagram

A g B = CEQ A’ g B’ in pro-%yer »

if [i] is an epimorphism then Ker[i']l=C.

Proof. Since [i] is ah epimorphism, 3.8(b) implies
(1) . im[i] is an isomorphism.
By the exactness, ker[(] = im[i], whence, by (1) and 3.8(c) it follows
@ Im[{]=0.
By the exactness, Ker[0] = 0, thus, by 3.9, [] is a monomorphism. Hence, by 3.8(a),
Im[d]~C. Since Ker[i’] = Im[8], we get Ker[i']~C. &

4. Some special pairs of morphisms in pro-%. We are interested in the properties
of such a pair of morphisms [ 1, [¢] in pro-%, for which [ f1[g] is an isomorphism.
Notice that

4.1. In arbitrary category XA, if fg is an isomorphism then f is an epimorphism
and g is a monomorphism. W

Let &, be the category of Abelian groups. For any two morphisms ¢: X—Z
and y: ¥Y—Z in %y, let us define

P@Y: XxY-Z
by the formula
' @@V, 7) =, X+ (7)

Since Z is Abelian, @y is a homomorphism. Obviously
4.2. For every {: Z~Z'

{{o@Y) = {p0ly. W

In turn, by 1.1, for any two special morphisms ¢ = (1, ¢): X—Z and
v =(1,¥): Y>Z in %%, we can define

o@Y: XX Y2Z

for every (x,»)eXx Y.

by the formula
e@Y 5 (1, 0.BY,) .
It is easily seen that

(pe'AYxy) = (r@Y=e'OY);
this enables us to define [¢]®[Y] € Morpro-4,, by the formula
lsloW] 5 lr@v].
By 4.2 follows easily

icm
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4.3. For any morphism [{]: Z—Z' in pro-¥

El(eloWD = Ellel®Kly]. W

As known, for a pair of homomorphisms f: X—»Y and g: Y—X in ¥, if
fg = ly, then X~Ker fxImg. We are going to establish a similar assertion for
pro-% 4.

4.4. PROPOSITION. Take two special morphisms
=L Kb =X > Y=(Y,q7) ad g=(1,6) X, @)=Y X
in 94, If the composition [ f1[g] is an isomorphism in pro-%,, then
X~Ker[ f]xImlg],

moreover ker[ f1®im[g]: Ker[f]xIm[gl—+X is an isomorphism.

Proof. By the assumption, there is a special morphism e = (1, ¢,): Y- ¥in @%,,
such that [ £][g] = [e] and [e] is an isomorphism in pro-% ;. Let d = (5, d,): Y- 4
represents the inverse of [e]. Then, for every « there is a ¢()>8(c)) such that

(6] e.d, g5 = a2 .

Since [ f1[g] = [e], for every o there is a ()= ¢ (%) such that
) [0 = e, i .

Let

(3) byx) = gudqul(pu()a )fiw(z)(x) and
Notice that .
@ a,(x) € Ker f;;
indeed, by (3), (2) and (1),
Saba =ﬂgzd¢q§¥§)’)ﬁw(u) =ﬁ,g¢§'ﬁ(“)dw(,)ﬁ,“¢)
= eagi’(a)dw(z)ﬁw(a) = euqugi(#z()l )ﬂsw(a)

. (¢ Syl — A0 0] .
e qg © qtp!ga;)f;h[l(u) = QGME)}%W(:) = szaW(z),

a,(x) = pPOx)—b(x) for xeX, S -

thus
fea (x0) = fupF P —£,b4x) = 0,
which proves (4). Obviously

(3) b,(x)eImg, .
Take o’ > and consider two diagrams:
" P
e e
Xiyw < Loy Koy < Kyt
ba Bar L3 Ay’

Img, «—- Img,

" Xer f, «— Ker f,»
P llma,,

o
Py |Ker f“'


Artur


26 : . M. Moszyfiska

‘We have
PEBAR) = PG A a3 Fopien®) = 9ulle 4305 Foge®)
= g,d, %(a) qg:i’((:))ﬁs.p(u')(x) (ga uéIa(a))ﬁs-//(u))Pw%:))(x) = baPaﬂ:))(x) 3
ie.
(6) the first diagram commutes.
Thus
P e («\)

ie.

= P PO (%)= b() = PO P~ b3 () = apbEE) 5
(7) the second diagram commutes.

By (4)-(7), setting
® k= (Y, h), hy(x) = (‘lm(x)a bac(x)) for

we get a morphism k: X—Ker[f1xIm[g] in &k
ir Ker[ f1xIm[g]—X defined by

© i = ker f@img .
It suffices to show that [k} is an inverse of [i] in pro-%,,. We have
ik = (8¢, ih)

(%) = (ker £,@img,) (4,09, b(x)) = (ker £ a(x) +([mg,)b,(x)
= aX)+b ) = pI(x)  for

xXe Xa,{,(u) N

Consider the morphism

%X € Xyt »
thus
(10) ih=ly .

Let us take ki = (8, h,isu) 2nd prove

(1 1) higlxer[f]xlm[!ﬂ .

There is an o' > (q) satisfying the following two conditions

(12) ' Ssw 95w Irw = e&(a)qg'(a)

and )

(13) A5 Tiey = q.

Take (x;, x,) € Kerf,, xImg, and show that

14 halsyw) (Pfsc:p(a)(xl) s Pg:p(u)(xz)) = (P;’(x s P:,(xz)) .
We have

(15) Byisy (P;:p(u)(x s P;:y(a)(xz)) = hapg:[/(u)(x 1 %)
) = (aal’:;p(u)(M +x,), bup::[r(a)(xl +%5)) .
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Since f,/(x;) = 0 and there is a y, € ¥, such that x, = g,.(y,), applying (12) and (13)
we obtain
(16) bapaw(ac)(x1 +X5) = guly ‘Za(a) ffm(«)Pa.p(a)(M +x5) .

= gzzqué(a()a) %w(a)fa (%1 +X2) = ga z%(a)fu'(xz)
=G uqd(z)fa’ga'(yz) = gzduﬁs(a)gﬁ(a)%(a)(yz)

= guduea(a)qgl(u)(yl) = gzé':'(yz) = Pfga'(yz) = P‘:(xz)-
Thus
an aaP;:h(a)(M +%5) = Pl (g +3x5) bapg:p(u)(% +x;)
= pl (%1 +x3) _PZ'(xz) = pi(xy) -

The conditions (15)-(17) imply (14), which results in (1I).

By (10) and (11), [A] is an inverse of [i], whence [] is an isomorphism. B

5. Shape groups of the one-point union. Consider two metric compacta (X, xo)
and (Y, o) and their one-point union (XVv Y, (xo,¥,)). The space X'v ¥ may

be considered as a subspace of X'x ¥ (see [2], p. 145). We are going to prove the
following theorem concerning the shape groups

5.1. THEOREM. i
;Zn(XV Y’ (x0= J’o))z;‘n(X: xO)x;cn(Y: yo)x;%n'l‘l(XX I’: XV Y: (xO:yO))
for n>=2.

Let us start by proving the corresponding statement for homotopy pro-groups.
Take two inverse sequences of compacta,

(X: xo) = ((Xa’ xu)ap:,) and (Ya J’o) = ((Yaa ya)a q:')

and let
XvY =XV Y, 0% Xev Ye).
5.2. THEOREM.
. (XY, (%0, Y0)) 2K, %6) X T,(¥, Y0) X Ty 1 (XX ¥, XV X, (%o, ¥o))

for nz2.

Proof of Theorem 5.2. Take Z = Xx ¥ = (Z,, 7% ), Zo = (2,) = (%, ¥s), and
U=XvY=(U,|U,). Let i: X—Z, j: Y—Z, k: U~Z, i": X-»Uand j': Y=U
be the inclusions. Evidently

m kil =i

Let %,: Z,~X, and A Z,—~ Y, be product morphisms for every «. Then, by 1.1,
x=(1,%) Z»Xand 4 = (1, 4): Z-Y are product morphisms.

Take n22. Let &, = m(K), 4, = m,(A), i, = m,(i) and so on. Since the functor
pro-=, is multiplicative (see 2.1), [x,] and [4,] are product morphisms in pro-%.
Consider the morphism

and kj'=17].

In: nn(za ZO)—-)TC,‘(U, 20)
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defined by the formula
@ 1, = 0K, @jnh, .
It is easy to check that (see [2] p. 145)

@) 1,5, @Ju by = Lpyz,z0) -
By (1)-(3) and 4.3, we get
(4) . k,l l,, = lnn(z,zo) .

Thus, by 4.1, k, is an epimorphism and Z, is a monomorphism in ¢*. By 4.4 and (4),
we infer that

® (U, zo) wKer [k,] xIm[£,] .

Since n>>2, all the groups 7,(Z,, z,) and 7,(U,, z,) are abelian, and thus k, and I, are
normal, Since I, is a monomorphism, 3.8.(a) implies

(6) Il'l'l [ln] z7':71(Z’ ZO) ’
whence, by 2.1,
(7) Im [ln] %ﬂ”(X, xO) X nn(y’ yo) .

Consider the exact sequence of homotopy pro-groups for (Z, U, z,), (see [7] 11, 1.2),

Kns+t Sn+1 Onat
Dyir: Tpir(U, 20) = Tpii(Z, 20) —> Ty (Z, U, 20) —> (U, o)
k
- (2, z5) ...

Notice that §,,+‘1 is normal, because n,,,(Z,, U,, z,) are abelian. Since [k,.,] is
an epimorphism, 3.11 implies
8) Ker[k,|~n,(Z, U, z,) .
By (5), (7) and (8) we get the desired formula
T XV Y, 20) R, (X, Xo) X 0, (¥, o) X iy (X ¥, XV ¥, 25)  for 7nz2. W

Proof of Theorem 5.1. Take two pointed metric ompacta (X, x,) and (¥, y,)
and let (X: xo) = ll.IE(X, xo) and (Yn Jf'o) = lm(Y’ J’o)’ where (X’ xo): (Y’ yO) are
ARN-sequences. One can easily prove

) (XV Y, (%o, yo)) = liﬂ(XV Y, (xo, J’o)) .
Take n=2. By 5.2
(2), "n(XV Y, (xo, yo))znn(X, x0) X, (¥, yo) X 75n+1(X>'< Y,XvY,(x, yo)) .

Passing to inverse limits and applying (1) and 1.3, we obtain the required formula
for shape groups. o
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6. Shape groups of a shape retract. We are going now to establish the following
theorem concerning shape groups.

6.1. THEOREM. Let (X, A, x,) be a pointed pair of metric continua. If (4, xg)
is a shape retract of (X, x,), then
(a) 7‘:’:n(-X-’ xo)m%n(A: xo) X ;tn(X: Aa xD) fOY
and

nz2

(b)  the homomorphism i,: 74, %) 7, (X, %) induced by the inclusion map
i: A=X is a monomorphism in % for n>1.

Let us start by proving the similar statement for homotopy pro-groups.

6.2. THEOREM. Let (X, 4, x,) be an inverse sequence of pointed pairs of metric
continua. If (A, x,) is a retract of (X, x,), then

(® (X, xp) (A, x) x (X, A, x,) for n=2

and . ]

(b)  the morphism [;',,]: (A, x0)>m,(X, x,) is @ monomorphism in pro-4 for n>1.
Proof of 6.2. Let r = (g,r,): (X, x5)—=(4, x,) be a retraction, i.e.

0] C riRly, -

By 3.8 of [6], we may assume that g(e)>a for every o. Both r and i can be replaced
by special maps, r' and i’ as follows: let '

X, x0) = (X, %), 05), (A, x0) = (4o, %), BZ) and  pli, =i, b5

for o' >a;
let

(X" x(')) = ((Xe(a)9 xo(a))5 P'}E:?),
r=(1,r): (X', x0)~{4, x,),

(A, x0) = ((Aa(z)’ xa(a))’ P :E:),) ’
i'= (l s iq(u)): (A,’ xll))_)(X’» x(;)
and
e= (1 > ij:(Z)): (‘4’: x:))"’(A’ xo) .
Since e is homotopic to 14, hence
(2) e is a homotopy equivalence. .
By (1) we get ‘
3 ri‘eze.

Take n3>1 and let [#], [r;] and [e,] be the induced morphisms of nth homotopy
pro-groups. Obviously, by (2) and (3), [e,] is an isomorphism in pro-% and
“) (1[5 = [ea];
thus, by 4.1,

(5) [r] is an epimorphism in pro-%
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and
© [ilisa monomorphism in pro-&.

= et n>2. By (4) and 4.4 it follows that
(7 ker[r]@im[i]: Ker [ x Im[i}] -7, (X', xg) is an isomorphism.
Consider the natural diagram for [},

i,
nn(Aly xs) - nn(X" x:))
FANY imliz)
.
Imi[7;]

By (6) and 3.8(a) it follows that [#/]° is an isomorphism.
Consider now the exact sequence of homotopy pro-groups for (X', 4, xg)
(see [7] 1, 1.2). ‘

Lo T g R
@n: nn(A,a x’O) nn(X’, x()) nn(XI’ AI’ xé)) T, —l(A'a xf)) .

Notice that all the morphisms i,, &, and 8, are normal. Indeed, for i, and 0, the
corresponding objects belong to pro-%,; for ¢, we have

"éz(nn(Xaa xa)) = Ker anzs

thus &,(,(X,, x,)) is & normal subgroup of 7,(X,, A, %) (even for n = 2, i.c. for
the non-abelian case). Thus for these morphisms all the results of § 3 may be applied.
Let .

® £, = &kerr,: Ker[rl-on,X', 4, x4) .

Let us prove [ f,] to be an isomorphism in pro-&. Since pro-¢ is balanced it suffices
to show that [f,] is a bimotphism in pro-¢. We have i

f;x = (lafu)3 f;t = éq(a)kerr;m: Kerr;n_’nn(xg(gc)a Aq(n)s xa{z)) .

First, let us prove

® AV ) (Kerf,) = 0.

By (1), we have

(10 /u\z'\a/“ r aig(a)ﬁz,(a) apy
Tﬁke an o;.NBy (10) tﬁere is’an a’>gtm) satisfying
(107 _ ol er B = Fota -
By the assumption, g(a')=«'. Then

1" - mo(a’ (o
10") T oy Lot P o = FeGay -

Concerning the shape groups of compact metric spaces 3]

Let [¢] € Ker fr; then fo[o] = & unlp] = 0, whence [p] € Ker &,y Thus, by the
.exactness of .homotopy sequence for (X, Aowrrys Xo@n)» We gt [@] eTmiyyy,,
i.e. there exists [¢] € 7,(dgery» Xoeny) Such that : o
an lir?’] = [91.

Since [¢] € Ker f,. <Kerr.,, we have

’ (12) : [ra’q)] =0.

By (10”), (11) and (12) we get

(@) 17 L sola’) 1 'y . ’ ’
50 '] = [ i@ Pe@ 01 = @b lon @] = oS0l
= [Pow’e®] = 0;
thus .
(a’) — ') ’ . ~ola’) . » .
[pi(a) o] = [nga))lg(a')(/’} = [Zg(m)ngz))(P 1= [la(a)](o) =0,
ie. [p]e Ker(p)),, which proves (9): By 3.9 and 3.10, the condition (9) implies
(13) [f,] is a monomorphism in pro-%.
Now, let us prove
(14) [ f,] is an epimorphism in pro-.

Indeed, by the exactness of 9,, together with 3.9, since (by (6)) [i;—,] is 2 mono-
morphism, it follows that ) .

Ker[i,-1]= 0 =Im[3,];
thus, by 3.8(c), we get

(15)  ker[d,]: Ker[d,]-m, (X', 4', x) is an isomorphism.
By (15) together with the exactness of Z,,
(16) iml[&]: Im[¢,]-m, (X', 4', xp) is an isdmorphism,.

thus, by 3.8(b), [£] is ap epimorphism. By 3.1, we havé

{amn _ [&1Gm[i,]) = [0].
By (I7), 4.3 and (8), we get
18) . {f,) = [Elker[r]@[E)im 4] = [&](ker [r]@im[E]) ,

thus, by-(7), [£,] is an epimorphism, i.e. (14) is satisfied.By (13) and (14), [£] is
an isomorphism. - )

- The condition (7) implies . ' - :
@ - m®s)~Kerlg] xImf]
Since both [i,]%: m,(d’, xg)-Im[i}] and [£]: Ker[r]-n,(X", 4, x0) were. proved
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to be isomorphisms, we obtain
X', X R (X', A', %6) X (', Xo) »
whence obviously
(20) ﬂn(X’ xO) NT[”(A > xO) X 7tn(X: A’ xO) .
By (6) and (20) the proof of 6.2 is complete. M
Proof of Theorem 6.1. Let (X, 4, x,) be an inverse sequence of pointed
pairs of connected ANR’s associated with (X, 4, xo). Let i be the shape map gener-

ated by the inclusion i: (4, x)— (X, x,). Since (4, x,) is a shape retract of (X, xo),
the sequence (4, x,) is a retract of (X, xo) (see [4], [5D. Thus, by Theorem 6.2,

X, X)) R (A, x0) x (X, 4, Xo) for n>2

and [i,]: 7,4, xp)—m,(X, x5) is a monomorphism in pro-¢ for n3> 1. Thus, passing
to inverse limits and applying 1.3, one gets

&) 71X, X0) ATl A, X)X (X, A, %) for  n>2,
and, by 2.3 of [6],
() dn Tuld, Xo)= (X, Xo) is a monomorphism in ¥ for nx1. W
Theorem 6.1 is an analogue of Proposition 5.1 [2], p. 150.
. 6.3. COROLLARY. If (4, x;) is a shape retract of (X, o). then the shape group
7,(X, 4, o) is abelian. W

7. Shape groups and shape deformability. Consider a pointéd compact connected

pair (X,4,x,) and let i be the shape map generated by the inclusion

i: (4, x0)=(X, x0)- .

A shape map f: (X, Xo)—(4, xo) is said to be a shape deformation provided
If= laso- '

If a shape deformation f: (X, xo)—(4, %) does exist, then (X, x,) is said to be
shape deformable into (4, x,).

We are going to prove the following theorem concerning shape groups:

7.1 TaeoreM. If (X, xo) is shape deformable into (4, x,), then

(a) ;I,,(A, xo)w;‘n(X: xo)x;cn-i-l(X:AaxO) far n>2
and i
(b)  the homomorphism i,: T(A, Xo)-7,(X, Xo) is an epimorphism for n>1.
Let us start by proving the corresponding statement for pro-groups.
Consider an inverse sequence (X, 4, x,) of pointed pairs of metric continua and
let i (4, xo)-(X, x,) be the inclusion.
A map f: (X, xp)—(4, x,) is said to bea deformation provided ifa1y ... The
sequence (X, X,) is said to be deformable into (4, X,) whenever there exists a defor-
mation f: (X, xo)—(4, x). : ’
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7.2. TREOREM. If (X, x,) is deformable into (A, x,) then
(a) 7E,,(A H x()) z7‘711(-Xa xO) X Tt I(X, A s xo) for
and

by [5]: m(d4, xp)=m,(X, x,) is an epimorphism in pro-% for n>1.

nz2
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Proof of 7.2. By the assumption, there is a map f = (@, f): (X, x)—(4, x;)

such that @(e)>o for every o (see [6] 3.8), and
6)) iflig ey -

Let (X! xO.) = (Xarp:') and' let (X’: xé) = (an(a):pgg;))' Take

I = (L1 (X', xp)~+(4, xo)
and the homotopy equivalence .

e =(1,p{®): (X', x0)= (X, xo).
The condition (1) implies

V)] if' ~e.
and thus
3 [LI[f) = [e] for mn>1.

By (3) and 4.1 we get

4 [f,]is a monomorphism in pro- for nx1
and

(5) [i,] is an epimorphism in pro-# for nz1.
Take n=2. By 4.4, the condition (3) implies

O] (4, xp) Ker [i,]xIm[ £,].
The statement 3.8(a) together with (4) imply
(7.) Im [fn] Nﬂ”(X, xO) M

Let us consider the exact sequence of homotopy pro-groups for (X, 4, x;),

. [in41] [3n+1l
@"+1_ 7Tn+1(A,xo) —> 71'-n+1()(s xo) 7'E,,+1(X,A,x0)

{on+11

[in]
- nn(A ’ xO) - nn(X’ xO) -

By (5), [i,+] is an epimorphism; thus, by 3.11, we get
@® Ker[i,] %, 1(X, 4, %o) -
By (6), (7) and (8) it follows that
(A, X)) R ,(X, x0) X 7,4 1(X, 4, %) . for
This, together with (5), completes the proof of 7.2. W

3 — Fundamenta Mathematicae XCIX
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Proof of Theorem 7.1. Let (X, x) be shape deformable into (4, xo), i.e. there
is a shape map f: (X, x)—(4, x,) such that

€8] ' 1= Lexso) -
Then; there is an ANR-sequence (X, 4, xo) and a representative f: (X, xo)— (4, xo)
of f, such that
2Ly
i.e. the system (X, x,) is deformable into (4, Xo). Hence, by Theorem 7.2,

(A, X)X, X0) X T4 1(X, 4, %) for nx2.

Passing to inverse limits and applying 1.3, we obtain the condition (a) for shape
groups. The condition (b) follows directly by (1) and 4.1, o
Theorem 7.1 is an analogue of Proposition 5.2, p. 151 [2].
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On the Lusternik-Schnirelmann category
in the theory of shape

by

Karol Borsuk (Warszawa)

Abstract. A modification of the notion of the Lusternik—Schnirelmann category gives a mon-
otonuous shape invariant % (X) defined for all compacta X. Some properties of % (X) are established.
In particular it is shown that if X is a continuum, then x(X)<Fd(X)+1, where Fd(X). denotes
the fundamental dimension of X.

1. Coefficients »x(X) and 3,(X). By the Lusternik-Schnirelmann (absolute)
category of a compactum X one understands (compare [1], [5] and [7]) the
number »(X) defined as follows:

If there exist natural numbers 7 such that X = X; u X, v ... U X, where X;
are (for i = 1,2, ..., #) compacta contractible in X, then »(X) denotes the smallest
of such numbers #.

If such natural numbers n do not exist, then %(X) = co.

Observe that

(1.1)

If compactum X homotopically dominates compactum Y, then »(X)>=(Y).
In fact, assume that there exist two maps

fi X-Y and g: YoX

such that fg is homotopic to the identity map. iy: ¥Y—Y. If x(X)<n, then there
exist compacta X;, X;, ..., X, such that X =X; U X, u.. U X, and that for
i=1,2,..,n there is a homotopy

o X% <0, DX
satisfying the conditions )

ofx,0) =x and ofx,1)=a,

where- a; is a fixed point of X.

Setting ¥; = g~*(Xy) for i =1,2,..,n, one gets compacta ¥y, ..., Y, .such
that ¥ = Y, U ... U ¥,. It remains to show that ¥; is contractible in Y.
3%
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