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Partitions of pairs of reals
by

Alan D, Taylor (Schenectady, N. Y.)

.

Abstract. We prove that there is essentially only one simple counterexample to the partition
. 8 No 2 - . 8 No,2 . .
relation 2" °~>(2" )No. The partition relation 2 °—+(2"°)§, is also considered, and some indepen-
dence results concerning it are derived from some known independence results in set theory.

1. Introduction. Despite the title of this paper, we will primarily work with the
set 2 of all functions from the set w = {0,1,2,...} into the two element set
2 = {0, 1}, rather than work with the real line R itself. The set “2 can be endowed
with a topology and a measure in a natural way be regarding it as a countable prod-

“uct of the two element set 2 where 2 is equipped with both the discrete topology

and the probability measure that assigns both {0} and {1} measure one-half. By
considering the binary expansion of a real number, it will be clear that all our results
stated in terms of ®2 carry over to the real line R. We will also identify [“2]* with
{(x,y)e®2x “2: x<y} where < denotes the usual lexicographic ordering. This
not only equips [“2]* with a topology and a measure, but gives meaning to assertions
such as “d x B<[X]*”. For all relevant topological notions (e.g. analytic set, re-
stricted property of Bairc) we refer the reader to [4] or [S].

Our starting point is the following observation of Sierpifiski. If we let < be the
usua) ordering of R and @ be a well ordering of R of type2™ and define f: [RP—2
by declaring that f({x, »}) = 0 iff the two orderings agree on {x, y}, then there is
no uncountable set X SR that is homogeneous for f (i.e. such that f is constant
on [X]3), Thus, using the arrow notation of Brdés-Rado [2], this example shows
that 2%4-(x,)2. Since this counterexample makes heavy use of the axiom of choice,
it is natural to ask if it can be replaced by a constructive counterexample. Silver
observed that by combining a special case of a theorem of Mycielski [7] with a special
case of a theorem of Galvin (unpulished) one obtains the following.

Temorem 1.1 (Galvin, Mycielski, Silver). Suppose f: [°2]*~2 and f “{Eh
has the property of Baire for all i<2. Then there exists a perfect set Pc®2 that is
homogeneous for f.

This theorem was first brought to our attention by Baumgartner, who rediscov-
ered it independently of the work of Galvin, Mycielski and Silver. It has since bt?en
rediscovered by Burgess [1] and probably by others as well, Actually, the Galvin—
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Mycielski-Silver theorem is somewhat stronger than what we have stated in The-
orem 1.1 in that it shows that there is essentially. only one simple counterexample
showing 2%°4+>(2%%)3. However our concern here is with partitions of pairs, not triples.

Two immediate corollaries of Theorem 1.1 should be noted. First of -all, if
f: [#2]7—2 is analytic (i.e. f~H({0}) is an analytic set) then there is a perfect set
homogeneous for f. Secondly, in the Lévy-Solovay model [9] for ZF 4~ AC, (where
all sets are measurable and have the property of Baire) every partition f: [#2]2-2
is constant on all pairs from some perfect set P<®2. Although the proof of The-
orem 1.1 requires no more choice than is known to be available in the Lévy—Solovay
model, this last assertion can also be verified by using some fairly simple absoluteness
techniques. These results suggest that there is no “simple” counterexample showing
that 2802592, _ '

On the other hand, there is a simple constructive counterexample showing that
g¥o,%0)2 | In fact, if one defines 8: [*2]*~o by 6({x,}) = min ({new:x(m
#3(m)}) (i.c. the discrepency of x and y) then there is no homogeneous set for § of
cardinality three. The purpose of this paper is to show that 1his is essentially the
only simple counterexample showing that 2%°--(2%)%,.

In Section 2 we consider “property of Baire partitions” of [*2]* and prove both
Theorem 1.1 and a similar result concerning the partition relation 2%°—(2%). In
Section 3 we consider “restricted property of Baire partitions”, and obtain here
a result that is then combined in Section 4 with another theorem of Mycielskiyielding
results analogous to those of Section 2 but for “measurable partitions” instead of
“property of Baire partitions”. In Section 5, we consider the possibility of extending
these results to partitions of [*2]* into, say, %, pieces where 2%o >, . It turns out that,
for example, the results of Section 2 generalize in this case iff the real line is not the
union of %, nowhere dense sets. Hence, the validity of these extensions is independent
of ZFC+2%>y,. Section 6 contains a conjecture related to these resulis.

The results in this paper are from Chapter 3 of the author’s doctoral disser-
tation [10] written under the supervision of Professor James E. Baumgartner, to
whom we are grateful.

2." A property of Baire version of 2“°—+(2“°)§0. Our goal invhis section is to show
that if f: [*2)%—w and f7*({i}) has the property of Baire for all e w then there
is a perfect set P< 2 such that either fis constant on [P]* or else f induces the same
equivalerice relation on [P]* as does the discrepency partition 6: [*2]2->@. The proof
of this will require a series of lermas. The first lemma is the well known sequential
lemma, (or fusion lemma) of Sacks, and an easy proof can be found in [3]. The next
two lemmas are the special cases of Mycielski’s theorem and Galvin’s theorem needed
to prove Theorem 1.1. For completeness, we include Baumgartner’s proofs of these
two lemmas. We will let Seq denote the set of all finite sequences of zeros and ones
and if 5§ = {Xg, w.y Xpry then 76 = {Xg, ey Xpmys &)

Lemma 2.1 (Sacks). Suppose that for each se Seq P, is a perfect ser and that
this “tree” {P,: se€8eq} of perfect sets satisfies the following:
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() The diameter of Py tends to O with increasing length of s. ‘
(B) Pyrg O Pory = 0 and P, &Py for e {0,1} and se Seq.
Then the fusion P=_ ) [\ Pry, of the tree {P,: seSeq} is a perfect set.

Je®2 neo
Lemma 2.2 (Mycielski [7]). Suppose A <[°2)? and A is meager. Then there is a per-
fect set P=2 such that [P)* n A = 0.

Proof. Let 4 =1U N, where each A, is nowhere dense and N,SN;,, for
@ w

all i€ w. Then it is easy to construct a tree {P,: s €Seq} of perfect sets satisfying
(i)~ (ii):
(i) For each seSeq, p, is a Buire interval [p,) = {fe “2: f2p}.

(i) If length(s) = length(¥) = i and s lexicographically precedes ¢ (i.e.
s(6({s, 1)) = 0) then (P,xP) NN, = 0.

(iif) Conditions (a) and (b) of Lemma 2.1, :

If we let P be the fusion of the tree, then P is perfect by Lemma 2.1 and
[PPnd=0. '

LeMMA 2.3 (Galvin). Let P < ®2 be perfect and let A< [“2]* be such that A is open
in the relarive topology of [P1*. Then there is a perfect set Q<P such that either
[0Pc4 or [P nd =0,

Proof. Assume that there is no perfect set Q=P such that [Q]* n 4 = 0.
We will produce a tree {P,: s Seq} of perfect sets satisfying (i)-(iiii.

(i) 'PO = P.

(i) If s lexicographically precedes r and s is incomparable with ¢ (i.e. 3x e
domain(s) n domain(7) (s(x) # z(x))) then Pyx P, S 4.

(iii) Conditions (a) and (b) of Lemma 2.1.

Given P, we must produce Py~ and Pe~y. By hypothesis, there exists
{x, ¥} e [P,]> " 4. Since A is open relative to [P}?, there are sequences u and v'in
Seq such that xe[u], ye[v], [4] » [v] = 0, length (), length (v) >length(s), and
[P A ([u] % [v]) = 4. Tt is easy to see that this works and that the desired set Q can
be realized as the fusion of this tree. -

Notice that Theorem 1.1 is an immediate consequence of Lemmas 2.2 and 2.3-
To see this, let B = f~1({0}) and choose 4% [°2]* such that A4 is open and 4AB is
meager. By Lemma 2.2 there is a perfect set PS®2 such that [P]?> n (44B) = 0,
and. by Lemma 2.3 there is a perfect set Q<P such that [OP<s4 or [0 n 4 = 0.
But then either [Q]*<B or [Q)* n B = 0 and Theorem 1.1 is proved.

LEMMA 2.4, Suppose P<®2 is perfect and f: [P1*~»o is such that for each i€ o,
X)) is open in the relative topology of [P)*. Then there exists a perfect set Q<P
such that either (1) or (2) holds. '

I {?% v} (', y'} e [Q1 then f({x, y}) = f({x', D
@ If{x, »}, (', '} € [QI then f({x, ¥}) = £ ({x', ¥ D iFF8({x, 1) = 6((x', Y-
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Proof. Assume that for every perfect set Q=P there exists {x, ¥}, {x, »'} € [Q]?
such that f({x,y)) #f{x, ¥} We wil simultaneously construct a tree
{P,: s Seq} of perfect sets and a tree {(;, 5): € Seq} of pairs of natural numbers
satisfying the following: ‘

() It lengtfl(s)<lengt11(t) or length(s) = length() and s lexicographically
precedes ¢ then n,<n, and 6,<J;.

(i) If x € Pyo and y € P~y then f({x, y}) = n, and 6({x,}) = 6,.

(ili) {P;: s€ Seq} satisfies (a) and (b) of Lemma 2.1.

We let P, = P and proceed inductively. Thus, assume that Py, Pirg, Piny, 1,
and &, have been defined for all ¢ such that either length(#) <length(s) or length ()
= length(s) and ¢ lexicographically precedes 5. We will produce Pyng, Peng, 1 and &,
Let &' = max({5,: §, already defined}). Choose x € P, and let Py = Py [x}6'+1].
Letn' = max({n,: n, already defined}). Choose n,such that n,>n, and f {x' ' = n,
for some {x',y'} e [P]°. This is possible since otherwise we would have

(PP U {f{ih: i<n’}

and then repeated applications of Lemma 2.3 would yield a perfect set Q<P such
that f is constant on [Q]? in contradiction to our assumption. Choose

(x5} e [P 0 f7H({nd)
and choose sequences u and v such that

xeful, yell, [Mo]l=0

and
[PY A [l x W)= f~'({nd) -

Let Py = P. [u] and let Piny = P{n (1] and set &, = d({u, v}). Notice that
8,>08" since x e [u], yelv] and ye [x}5+1]. Thus we have Pyng, Pyny, 1, and §;
completing the construction. '

Let Q be the fusion of the tree {P,: s & Seq}. Notice that if {x,y} e [Q)* then
there is some s = s(x, y) € Seq such that x € Py and y € Peny, s0 3({x,}) = 6,
and f ({x, ¥}) = n,. Thus if {x, y}, {x', »'} € [Q]* then n, = f({x, y}) =f{x, ¥}
iff s(x, N=s8= S(x’s yl) iff 5({.’)(2, y}) = 6s = 5({3‘7’5 y’})'

TreoREM 2.5. If f: [*212~w and £~ ({i}) has the property of Bdire for all ie w
then there is a perfect set Q< “2 such that either (1) or (2) holds.

O I {x, 9}, %, ¥} elQF then f({x,y}) = f({x' ¥}

@ If{x,»}, {x’ ¥} € [QF thenf ({x, y}) = F({', ) UfF 6 ({, ¥}) = 5 ({x', ¥'D)-

Proof. Choose open sets {4,: new} such that 4,4 *({n}) is meager for
allne w.Let 4 = | {4,417 *({n}): n € o}. Then 4 is meager so Lernma 2,2 guaran-
tees the existence of a perfect set P<®2 such that [P]* n 4 = 0. Thus £ { [P]? is
such that for each ne w, (f } [P1)~*({n}) is open in the relative topology of [P]*

Choose Q<P as guaranteed to exist by Lemma 2.4. Then clearly Q'is the desired
perfect set. . . ‘
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3, The restricted property of Baire. Notice that although Lemma 2.4 deals with
2 more restrictive class of partitions of [*2]? than does Theorem 2.5, it nevertheless
has a stronger conclusion. Namely, one can not only find a perfect set of the desired
kind, but can, in fact, find one contained in any preassigned perfect set. In general,
this stronger conclusion does not hold for “property of Baire partitions”.

Our goal in this section is to extend Lemma 2.4 to the case where £~ *({i}) has
the restricted property of Baire (i.e. £ *({i}) N T has the property of Baire relative
to the subspace T for every T'<[°2]%). This result will allow us to extend the proof
of Theorem 2.5 s0 as to consider “measurable partitions” rather than “property
of Baire partitions”.

‘We begin with two technical lemmas necessary for the proof of Theorem 3.3.

Tevma 3.1, Let P92 be perfect. Then there is a perfect set P'<P and a homeo-
morphism i “2~+P' such that if S({x,yD=mn ¥ elx tnt+lland y' e[y b n+1]

then §({p (), WD) = S (D, W ().

Proof. We construct a tree {P,: s & Seq} of perfect sets and a tree {n,: s € Seq}

of natural numbers simultaneously by induction, starting with Py = P. Suppose
, = P n[r] has been constructed, We construct #g, Pgng, and Pey: Choose
{x,y} e [PJ* and let n, = 6({x,}). Let
P =Pin[xtn+1] and Py =Py n[ytn+1].
Notice that this trec of perfect sets satisfies conditions (a) and (b) of Lemma 2.1,
Let P’ be the fusion of the tree {P,: 5 & Seq}, and define'yy: “2—P’ by letting Y (x) be
the unique clement in () {Py,: 7 € w}. To see that this works, suppose S({x, ) =n
and x'e[x }n+1] and y e[y bn+1l. Then Y(x), Y(x)€Pyspsy and v,
V() E Py Let s =x bn=y } n. Then
S((W ), YOI = ny = ((V N, YO

since 8({x, }) = n, for any x & Pyg and y & Py~ . Thus P’ and  are as desired.

LemMA 3.2. Let 2 ®2—P" be as in Lemma 3.1, and let Q' be an arbitrary perfect
subset of “2. Then there exists a perfect set Q"' < O’ such that if {x,}, {x', ¥’} € [Q1
then 3({x, y}) = 8({', ¥’ iff

HORIOHERIICIRTCSDE

Proof. Define g: [QT—w by g({%, 7)) = 8({¥(9,¥()}). Notice that
Lemma 3.1 guarantees that g='({i}) is open for every i€ w. Hence Lemma 2.4
applics to yield a perfect set Q" & Q' such that either g is constant on [Q"]? or else
g({x, ) = g (', »')) i 8({x,»)) = 8({x', y)) for all {x,3}, (', y}elQT
The first case can clearly not occur and the second case is exactly what was desired.

Temorem 3.3. Suppose P2 is perfect and f: [*21~a is such that D
has the restricted property of Baire for all i ¢ co. Then there is a perfect set QP such
that cither (1) or (2) holds.

W) If {x, 3}, (%', »'} € [QF then £ ({x,y}) = F({x>¥D- ,

@) I ¢, 9}, {x', '} € [Q12 then f ({x, y)) = £ ({', y D i 6({x yp=o{x\ '}
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Proof. Choose P'<P and :®2—P’ as in Lemma 3.1. Define y': [“2]* [P
by ¥'({x,7}) = {¥ (), ¥(»)}, and notice that ¥’ is also a homcomorphism. Now
consider the partition f': [*2]*—w where f* is the composition of f and ', Then
7D = (Fo ) HED = @) of M, so (f)7H({F}) has the property
of Baire for all i & w (since £ ~*({i}) has the property of Baire with respect to the sub-
space P’). By Theorem 2.5 there exists a perfect set Q'=®2 such that either (i) or (if)
holds.

@) Xt {x, 7}, ¥,y el@T then f'({x,y}) = f'({x", ¥}

(i) If {x, %, {x,p" e [Q'F then £ ({x, ¥}) = f/({x", y DT ({x, y}) = 6({, ' D).

Choose Q"< Q' as guaranteed to exist in Lemma 3.2. Finally, let Q = (@),
Then Q<P and Q is .a perfect set in P and hence a perfect set in “2.

If £ is constant on [Q']? (i.e. condition (i) holds) then clearly fis constant on [Q]*
and we are done. On the other hand, suppose /' and Q" satisfy (ii). Let { (), y ()},
{v ), ()} e[QP. Then ‘

, 7@, ) = (e, vo1)) .
HEf o ' ({ox, y}) = Fo ' ((x', yDIEF ({x, y}) = f'({x", yDIF 5({, y}) = 6({w', '}
iff o ({y (), ¥ (M}) = 8({Y ("), ¥(¥"}), where the last equivalence follows from the

fact that {x,y}, {*,»'} € [Q"]% Hence Q satisfies Condition (2) of the theorem
and the proof is complere.

4. A measurable version of 2% (2% . The first step in extending (the proot
of) Theorem 2.5 to the case where f* [*2]*—w is a “measurable partition” (i.e. £~ Y({i})
is measurable for all i € w) is to obtain the suitable analogue of Lemma 2.2. Fortu-
nately, Mycielski has provided us with this also.

Lemma 4.1, (Mycielski [6]). Suppose A<[“2]* and A has measure zero. Then
there is a perfect set P=“2 such that [P> n A = 0.

The next step is to obtain an extension of Lemma 2.4 that considers partitions
J1 [°2PP—o where f™({i}) is, say, a G; subset of [°2]* for every ie w. However,
Theorem 3.3 will certainly suffice for this since every Borel set has the restricted
property of Baire. Thus, we obtain the following,

THEOREM 4.2. If 1 ["2P—~@ and f~({i}) is measurable for every ie w, then
there is a perfect set Q<=2 such that either (1) or (2) holds. ‘
W If {x. 5} {x', ¥y e [QF then f({x,}) = F({x, »'}). '
@ I {x, 9} {5,y e [OF thenf ({x, ¥}) = f({x', D iff § ([, y}) = S({x", »D),
Proof. Choose Borel sets {4,: n & w} such that 4,4 f~*({n}) is ‘of measure zero

for each new. Let 4 = U {4,4f*({n}): new}. Then 4 is of measure zero so
Lemma 4.1 guarantees the existence of a perfect set P<“2 such that [P]? A 4 = 0.
Thus f } [P]? is such that for each ie o (f } [P1H~*({i}) is Borel, and hence has the
restricted property of Baire. Let Q be a perfect subset of P as guaranteed to exist
in Theorem 3.3. Then clearly @ is the desired set. s
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5. Some versions of 2™°—(2%)F for 8, <x<2". A natural question at this point
is whether or not Theorems 2.5 and 4.2 can be generalized to hold for partitions
of [®2]? into % pieces where %<2 (Of course this is interesting only in the absence
of the continuum hypothesis.) To facilitate this discussion, we will let B(x) and M(x)
denote the following assertions:

B()(M()): It f2 [*2]*~w and f~*({i}) has the property of Baire (is measur-
able) for all 7 & w, then there is a perfect set Q=2 such that either (1) or (2) holds:

()1 {x, ¥} ¥y} e [QF then f({x, y)) = F({x,»D.

@) It {x, 3 (¥, '} € [QF then f({x, »}) = F({x', y D ({x, y}) = (', y}).

Our goal in this section is to show that B(%) liolds iff the real line is not the union
of » meager sets and M (s) holds iff the real line is not the uaion of % sets of measure
zero. We will consider B(x) and M(x) simultancously, since this is most expedient
and should cause no confusion. The proof requires two lemmas.

Limma 5.1, (i) “2 is the union of x meager sets (x sets of measure zero) iff [*2]? is
the union of % meager sets (» sets of measure zero).

(ii) If “2 is not the union of » meager sets (% sets of measure zero) then the tmion
of x meager sets (% sels of measure zero) Is either meager (of measure zero) or does
not posses the property of Baire (is not measurable).

(iil) Suppose “2 is not the union of x meager sets (x sets of measure zero). Let
Ac[®2] be such that A has the property of Baire (is measurable) and can be written
as the union of % meager sets (Sets of measure zero). Then A is meager (of measure
zero).

. The facts listed in Lemma 5.1 are generally well known and easy to verify,
Detailed proofs can be found in [10].

Lemma 5.2. Suppose f: [“2]>=2 and for every perfect set PS“2 there' exists
L, v}, (o, ¥} e [P1? such that f({x,y}) # f({x,¥'}). Then for every perfect set
Pc® there exists {x,y}, {%,»'}e [P such that f{{x,y}) #S{x",y}) but
6({x,»}) = 6({x", »'}).

Proof. Suppose fi [“2]*~2 and Pg®2 is a perfect set such that whenever
{x, 9}, {x, y'} € [PP? and §({x, y}) = 5({", »'}) then £ ({x, y}) = f ({x', »'}). Then
4 = f~4({0}) is open in the relative topology of [P]?, so we can appeal to Lemma 2.3
and get a perfect set Q&P which is homogeneous Tor f. This completes the proof.

Tarorem 5.3, For any cardinal %, we have the following:

() B holds iff “2 is not the union of » meager sets.

(i) M () holds iff Y2 is not the union of % sets of measure zero.

Proof. We will prove both (i) and (if) simultancously. Supose first that “2 is
the union of % meager scls (sets of measure zero). Then by Lemma 5.1 (i),
[“2]2 = | {M,: a<x} where cach M, is meager (of measure zero). Let [°2]* = So U 5
be Sierpifiski’s counterexample showing that 2¥°4(s,)3. Let f: [“2]*~x be any ful}o'
tion which induces the partition [%2]* = | {M, n S;: a<x and i<2}. We cllalr'n
that £ is a counterexample 1o B(%) (M (). Notice first that for all i<x, f~ (i) is


Artur


58 A.D. Taylor

contained in some M; so it is meager (of mcasure zero) and hence has the property
of Baire (is measurable). If P<“2 is any perfect set then it is clear that fis not con-
stant on [P]? since we clearly cannot have [P]*<S,. Suppose that, on the other hand,
Pc®2 is a perfect set such that

f({xa y}) = f({x” yl}) iff 5({36', y}) = 5({35’5 y’})

whenever {x,}, {x', »'} € [P]*. Then, by Lemma 5.2, there exists {x, 03 ¥,y e[PP
such that {x,y}eS, and {x’,'} € S, but §({x, ¥} = ({x', y'}). Thus f({x,»})
# F({x', »'}) but §({x, y}) = §({x", ¥'}), and this is a contradiction.

Conversely, suppose that ©2 is not the union of % meager sets (sels of measure
zero). Let f: [“2]?—x. For each «<x let 4, be a Borel set such that 4,4/ *({u})
is meager (of measure zero). Let 4 = {a<<u: 4, is not meager (not of measure zero)},
Notice that 4 = 0 since

(21" = U (44 S {eh)) v U 4,
a<x a<x

“and Lemma 5.1 (i) shows that [*2]% is not the union of % meager sets (sets of measure
zero). But it is also easy to see that A is at most countable since 4, N 4, is meager

icm

(of measure zero) if a # B. Let B = |J {4,: « € 4}. Then B is a Borel set so [“2]*—B

has the property of Baire (is measurable). But
212 =B U {4 A a}): aed} U U {1 ({a}): ad.d}

and so it is a union of % meager sets (sets of measure zero). Thus, by Lemma
5.1(iif), [“2]*— B is meager (of measure zero), so Lemma 2.2 (Lemma 4.1) goarantees
the existence of a perfect set P=®2 such that [P]*<B, The result now follows
immediately from Theorem 3.3.
COROLLARY 5.4. The following assertions are all consistent with ZFC+ 2% = Nyt
(@ B(sy) and M(%,),

(i) T1B(8y) and M(x,),

(i) B(xy) and TTM(xy),

(iv) T1B(8y) and TM(%y).

Proof. These follow immediately from the known independence results concern-
ing the equivalent assertions given in Theorem 5.3. In particular, if M is a countable
transitive model of ZFC+V = L then the appropriate models to consider are certain
generic extensions M[G] of M where M[G] is (respectively);

(i) a Martin’s axiom extension of M where 2% = x,,

(ii) the result of adding &, random reals to M,

(iii) the result of adding &, Cohen reals to M,

(iv) the result.of adding &, Sacks reals to M.

6. Conjecture. In closing, we mention one problem that is very closely connected
with the problems considered in this paper (especially Section 5), but which does
not seem to be very amenable to the same techniques that handled the others.

We state this precisely as a conjecture.
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CONJECTURE, If £ is an equivalence relation on [“"2]2 and E is an analytic subset
of [°21* % [“21? and I has fewer than 2% equivalence classes, then there exists a perfect
set P<®2 such that cither (1) or (2) holds.

W) IF 9% 5} € (PP then {x, ), y').

@ IF .9} 3} € IPP then {x, Y} E{x', '} iff 6(fx, ¥ = 8((''}).

Of course this is consistent with ZFC (or ZFC+2%> ;). Moreover, if “analytic”
is replaced by “coanalytic” then the resulting proposition follows from Theorem 3.3
and the theorem of Silver [8] that asserts that any coanalytic equivalence relation
on ©2 with fower than 2% equivalence classes has at most countably many equivalence
classes.
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