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Abstract. There are a number of clagsical results con;:erping the existence of Borel isomorphisms
of specified class between the space of irrational numbers and other separable (metric) absolute

Borel sets. In this paper we consider analogous results for nonseparable (metric) absolute Borel sets.
In'particular, after proving a technical decomposition lemima for certain complete spaces, we charac-

‘terize those complete spaces which are (0, 1) homeomorphs of. B(k), and prove that, roughly, every

(metric) absolute Borel set of multiplicative class a-+1 which is of weight & and not oLW <£ is,
after the deletion of a “small” subset, a (0, a-+1) image of Bk).

1. Preliminaries. All spaces considered are metrizable. The main facts about
absolute Borel sets can be found in [5], [6], and. [7]. We summarize some of the basic
facts here for convenience. ' ’

Let P denote.one of the phrases “Borel” “Borel of addmvc class 1<oe<co1 ,
or “Borel of multiplicative class 1 Sa<w,;”. X issaid to be absolutely P if- X is P in
every metric space in which it is embedded. This is equivalent to the statement that X
is P in some complete space. X is completely metrizable if and only if X is absolytely
of multiplicative class 1, i.e., if and only if X is an absolute Gj-set,

A bijection fdrom X to Y'is called a generalized homeomorphism of class {a, ﬁ)
if whenever ¥ is open in ¥, f~1(V) is of additive class « in X and whenever U is
open in X, f(U) is of additive class fin .. 'Y; Such a map will be called an (cx B map
for short. In partlcular, a_(0;/) map is continuous, - = "*..

A space X is said to be of a-local we;ght<k (abbrevmted uLW<k), where k is
an infinite cardinal, if X is the union of countably many subsets of local weight <k.
Stone has shown [6, 7] that among absolute Borel sets, Welght and ¢LW.<k are
preserved: by genemllzed homeomorphlsms s

For k an infinite cardinal, B(k) denotes the product of countably many discrete
spaces -of cardinal /. In particular, B(so) is the space of irrational numbers. In the
classwal Lheory of separable Borel sets [5] as well as in the. nonseparable case, 16,7];
the sp'lces B(k) play a promlnent role. In partlcular, Stone [7] has shown that an
absolute Borel set- of weight k'is either dLW<k. or else contams a copy ‘of B(k)

2., The main lemma, A space X of weight k'is called wezgrht-homogeneaus if evety
nonempty .open sét has weight k. In [1], .Comfort and Hager showed that if X is
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a weight-homogeneous nonseparable metric space of weight &, then X must contain
a closed discrete set of cardinal k. This result is used in the proof of the following
decomposition lemma.

LemmMa 1. Suppose (X, d) is a weight-homogeneous metric space of weight k> 8,.
Then there exists a Sequence of families of well-ordered sets of cardinal k, denoted
Ay, Ay(ay) (for each aje A1), ooy Ayri(ay, ..., @) (for each n-tuple (ay, ...,a,
with a; € A; and a;e Afay, ..., a;-;) for i=2),.., and, for each such n-tuple
(ay, ..., a,), there exist subsets F(ay,...,a,) and D{ay, ..., a,) of X such thai:

DX =U{D(@): ayedy},

2) D(ay,..,a,) = Flay; .., a)— U {Flag, .
a<a,} (where 4;(ap) = 4,),

3) for n>1, D(ay,..,a,—1) = U{D(ay, ., a,-1,0): acdfay,.., a1},

4) for each n, the sets D(ay, ..., a,) are nonemply pairwise disjoint F -sets and
the family {D(ay, ..., ,): @, € A(@y, ey Gyaq)s oy G5 € A5(ay), ay € A} i o-discrete,

5) for each n, F(ay, ..., a,) is a closed set of diameter <l/n, and, for each
ayeday, s tyy), U{Fay, o, a,_1,0): acdfa,..,a,-4),a<a} is closed
in X, ) '

6) if a, €Ay, a,e d,(ay), ..., a,€ A(ag, ..., a,—1),

F(a)=2D(a,)2F(a,,a)2D(a, a;)2...,

:dn—lsa): ae'Au(aJ:"-:an—i)i

vy then

7) each D(ay, ..., a,) has weight k and is weight-homogeneous.

Proof. Let B = {B(x,n): a<k,n=1,2..} be a o-discrete open base of
cardinality k for X, where, for each n, {B(x, n): a<k} is discrete. We assume each
B(a, n) # &. Well-order B by “last differences”, i.e., (¢, n)<(B, m) if either n<m
or else n = m and o <f. All'sets of n-tuples occurring in the proof are to be ordered
in this way.

Since X is weight-homogeneous, X" contains a closed discrete set P of cardi-
nality k. For each x € X, pick a set B(x,, n,) € B which contains x, has diameter <1
and' such that clB(o,,n,) N (P~{x}) =@. Let F(x,,n) = clB(a,,n) and
D(ay, my) = F(oy, m)~U {Fley, m): ye X, (,, n,)< (0%, n,)}. Cleatly,

X=U{D@,n) xeX}. ‘

The family 4; = {(o,, n,): D(,, n,) % &} has cardinality k since, on the one
hand, |B| = k, and, on the other, the family {D(x, ,): x € X} covers X and each
of its members meets P in at most one point. R

The sets D(a,) and F(a;) (for a, € 4,) have the required properties. Indeed,
(D, 2, @3) and (6) are immediate. If a;,a} €4, then F(a,) = clB(a;) and
F(a}) = clB(ay) for some B(ay), B(a{) e B. It is easy to check that if @, # af,
then. B(a,) # B(a}). From this, and the fact that B is o-discrete, it follows that
{F(ay): a, € 4;} and {D(a,): a, € 4,} are o-discrete families, and then, from the
definition of the ordering, that U {F(4): a<a,} is closed in X for each a; € A,.
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The other items in (4) and (5) are now immediate. Finally, if I7 i i
. y, if U is open in X and
Un D(a,)) # @, then ?

Un b(al) = Un clB(ay) A x-U {F@: a%al})
- 2UnB@a) n(X-U {F(a);. a<a,}) # @,

since X— U {F(a): a<a,} is open. Therefore U D(a,) has weight & and b(al) is
weight-homogeneous. : '

Assume now that n>1 and that we have defined for 7 = 1,.., h, the families
of well ordered sets and the sets F(ay, ..., a;) and D(ay, ..., ) as required. Since
D(ay, ..., a,) is weight-homogeneous of weight k, it contains a (relatively) closed
discrete set P(ay, ..., a,) of cardinality k. For each xe D(a,, ..., 4,), pick an dpen
set U, in X which contains x and such that : o v

U, 0 D@y, ... a) 0 (Play, ..., a)—{x}) = ©. -

For each i=1,..,n, let 4, = {Fay, ... a;~1,0): a<a;,a eday, ..., ;- )}
fxnd let Fbe the closed set 4, U ..."U 4,,. Using (5) and (6), we check that D(ay, ..., a,)
Is disjoint from F. Pick an open set O, in X which contains x and misses F. Now
choose a set B(ay, ..., a,, (4, 7)) from B which contains' x and such: that
clB(ay, .., a4y, (2, ,))EU, A O;, - and whose diameter is <1/(n+1). Let
Flay, ..., a,, (0, n,)) = cl [B(@1s wwer 8y {0y 1)) N D@y, vy @] -

Since D(ay, ..., ) SF(ay, ..., a,), and because F(dy, ..., a,, (@, 1)) 0; (and
gllerefore misses F), it follows from (2) that F(a,, ..., a,, (a;, n))S D(ay, ..., a,).

hen - .

F(ﬂl, ";5 au’ (ax’ nx))EUx n 'D(al’ eery an)’
so ' : :

F(ag, e,y @ 1) O (Pags o, )~ {x)) = O
Define '
D (g, v uy Cgs 1)) = Flag, oo, @y, (o)) —
~UA{F (315 wvrs @y (5 1y)): (0, 1) < (o, 1), ¥ € D(ay s oy @)} -
Clearly D(ay, ..., a) = U {D(ay, ..., a,, @, n,)): xeD(ai‘, s @)y Let
Ans1(ags s @) = {(0s 1)1 X€ D(ay, s @), D(@y, ey Gy (O 1)) # D).

As in the case 1 = 1, [Ayii(ay, .., a)] = k.

It is easy to verify that (1), (2), (3) and (6) hold for these sets. As before, we claim
that if (4, .., @uyy) and (af, ..., ay;) from 4,.,(ay, .., a,) are distinct, then
Bay, ..., ay41) # B(ay, ..., @y.q). For suppose a;<d} and a;'= a} for each i<j.
Then, since ¢lB(a}, ..., @h4;) SO, for some x € D(a}, ..., d}), we get ‘that

clB(a, ooy Gpsn) 0 U {F(ay, iy aj-y, 0)} a<al} = B
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so that, by (6),

g = CIB(a,u (E] al’l+1) n F(d{, v a}——ls aj) = ClB(d;, o2 ar,H«l) N -F(al 3 ey an+1)-

But F(al: ey an+1)—CECI~B(a1’ seey an+1): so if B(‘Zla ey Ay 1) = B(alla ey a;l-f-l): ﬂlen
@ =F(ay, .., a4+1) =Dy, ..., ay41), & contradiction. From this and the fact
that B is o-discrete, it follows that {D(ay; v, Gy 1) s €Ay, oty @), iy ed}
and {F(a;, ..., t,,0): a<d,i € Ayyy(ay, ..., a,)} are o-discrete, and, from the
definition of the ordering, that the union of the latter family is closed. The other
items in (4) and (5) now follow immediately.

", Finally, to verify (7), suppose U is open in X and U D(dy, v, dyyy) # @,
Letting O denote the open set X—U {F(ay,..,a,,a): a<a,.}, we get
G#Un D@, oy @yey) = U 0 cl[Blay, oy @yay) 0 D(ag; vy @)l 0 O, so
Un On B(ay, ., @41) 0 D(ay, ..., @;) # @; since this is a nonempty open set in
D(ay, ..., @) it has weight & by (7) of the induction hypothesis; hence D(ay, ..., 4, )
is weight-homogeneous of weight k.

3. Images of B(k). The following theorem characterizes the complete metric
spaces which are (0, 1) images of B(k). '
THEOREM 2. Suppose X is a complete metric space of infinite weight k. Then
there exists a (0, 1)-map from B(k) onto X if and only if X is weight-homogeneous.
Proof. If k = #,, then every nonempty open set in X must be dense-in-itself
and therefore uncountable. It then follows from a classical theorem [5] that X is
a (0, 1) homeomorph of B(x).
It k> 1y, decompose X according to Lemma 1, making the index sets disjoint.
Let ¥ = {(@15 0 @uy )i 8y €Ay, o, B8 Ay, ooy Gyms)s «}. Since each index
set has cardinality k, Y, with the “first difference” metric, is homeomorphic to B(k).
-] o
a4y, .)€ Y, (y D(ay, ..,a)2 () F(ay, .., a,) contains
1 =2

n=

For each y = (ay, ...,

n

a single point f (). It follows from (1), (3), and (4) of Lemma 1 that fis a bijection
from Y to X. '

Hy=(a,.,a,.)and y = (a}, ..., a, ...) are at distance <lI/n<l in ¥,
then f(3) and f(y'} are both in D(ay, v, @,..q) which has diameter <1/(n—1).
Hence f is (uniformly) continuous.

Let ‘

Sy =4y, S ={(a1,a): a, € 4x(a)}, ...

s Sy = {(ay, oy 4): By € Ay, ooy Gy, ooy @y ed;}

and let ¥(ay, ..., a,) be the (basic) open set in ¥ consisting of all points with initial
coordinates (ay, ..., @,). Then, if O is open in ¥,

L O0=U{@): aieSi} v v U@y, . a): .., a)e S s
where S;<S;. Clearly, f (V(ay, ..., 4)) = D(ay, ..., a,), so
T
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FO =U{D@): a;eSi}u...u U {D(ay,..,a): (@, ., a)es}u..
But since each family of sets {D(g, ..., a,): (ay, ...,a) €8} is a g-discrete family
of F-sets, it follows, that £(0) is an F,-set in X;.s0 fis a (0, 1)-map. '

On the other hand, if X is a complete metric space (or even any absolute Borel
set) of weight k, and if f: B(k)—X is a (0, ®)-map, then X must be weight homo-
geneous. Indeed, if 0 is a nonempty open set in X, then the open set £~4(0) must
have weight k. But the absolute Borel sets O and S7X0) are generalized homeo-
morphic and therefore have the same weight. :

We remark that Stone [6] showed that if X is a complete metric space of weight k,
then there is a (0, 1)-map from a closed subset 4 of B(k) onto. X. The additional
assumption of weight-homogeneity allows us to take 4 = B(k).

COROLLARY 3. Suppose X is a complete metric space of infinite weight k. Then
there exists a (0, 1)-map from B(k) onto X if and only if no nonempty open set in X is
cLW<k.

Proof. If no nonempty open set in X is cLW<k, then X is weight-homo-
geneous. On the other hand, if X is weight-homogeneous and O is a nonempty open
set, then O, by Theorem 2, is generalized homeomorphic to B(k) and therefore is
not oLW <k. : o

Hausdorff showed [3] that every separable absolute Borel set of multiplicative
class a-+1>2 in which every point is a condensation point is a (0, «) homeomorph
of B(s). Since a separable set is LW <, if and only if it is countable, Corollary 3
generalizes Hausdorff’s result, for complete spaces, to the nonse parable case. A further
step toward a full generalization of Hausdorff’s result is in Theorem 6. Corollary 3 also
generalizes the classical result that every uncountable complete separable metric
space is, after the deletion of a countable set, a (0, 1) homeomorph of B(x,).

The following corollaries all generalize classical results which can be found in [5].

COROLLARY 4. Let X be a metric space of infinite weight k. Then there is a ©, 1)
map f from a subset A of B(k) onto X.

Proof. Let S be the metric space: consisting of k copies of [0, 1] identified
at O, with the “shortest path” metric, and let P be the product of countably many
copies of §. Then P is a completely metrizable, weight-homogeneous space of weight k,
and therefore there is a (0, 1)-map g: B(k)—P. Since P.is universal for metric spaces
of weight k [4], we may assume XcP, and put 4 = g~1(X) and f= g|4.

COROLLARY 5. If X and Y are complete, weight-homogeneous metric spaces of

weight k, then there is a (1, 1)-map h: X— Y. .
Proof. Let & = fo g™, where g and f are (0, 1)-maps from B(k) to X and ¥
respectively.

. The following theorem moves in the direction of a full generalization of Haus-
dorff’s result. It also generalizes to the nonseparable case and to higher Borel classes
the classical result that if X is an uncountable complete separable metric space, then
there exists a countable set C<X and a (0,1)-map of B(¥,) onto X—C.
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TurOREM 6. Let X beé. an absolute Borel set, of multiplicative class a+1>2
which has weight k, and is not cLW <k. Then there is a set CccX of additive class o
and LW <k and a (0, a+1)-map of B(k) onto X—C. )

Proof. By a theorem of Hansell [2], there exists a (0, o)-map g: A—X where 4 is
a closed subset of B(k). Since X is not ¢L'W <k, neither is A. Let B be the largest
open subset of 4 which is JLW <k (B, for example, can be described as the .set of all
points of A which are not in a homeomorph of B(k) in 4 [7]). Then A—Bisa com-
pletely metrizable space of weight & in which no nonempty (relatively) open set is
oLW<k. Hence, by Corollary 3, there is a (0, 1)-map h: B(k)~A—B. Then
f=(g{(4—B)° hyis a (0, a+1)-map of B(k) onto X—C, where C = g(B). Since
B is open in 4 and is cLW<k, C is of additive class « in X and has ¢JLW<k.
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