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Harmonic analysis on the group of
rigid motions of the Euclidean plane*

o

by
RICHARD L. RUBIN (Miami, Florida)

Abstract. Aspects of Fourier analysis on M(2) relevant to the study of L? mul-
tiplier operators are developed. Relations between multiplier operators on M(2) and
S0(3) or 8T(2) are studied. Applications are given to transplantation results for Bessel
funetions. -

Tntroduction. The idea of considering the real line to be a limit of
circles With increasingly large radii has long been used to relate Fourier
analysis on the line, R, to Foufier analysis on the forus, T. In the study
of multiplier operators, this idea leads to the following classical theorem:
Let m be a continnous function on R. Suppose that for each A > 0, there
exists an operator M, acting continuously on L*(T), given by

L
f=—00

M, f(z) = ! m(%‘) a, 6™,
where a,, is the nth Fourier coefficient of f. Assume that the operator norms
| M| are uniformly bounded. Then m defines a bounded multiplier oper-
ator M on LP(R)([31, p. 264).

We wish to generalize this result by replacing the torus, which may
be identified with S0(2), with the non-abelian group S0(3), or with its
universal eovering group SU(2), which is naturally identifiable with the
unit sphere in two-dimensional complex space. By a limiting process
analagous to the classical passage from the circle to the line, the group
80(3) can be shown to tend to a non-compact non-abelian group: the
group of rigid motions of the Euclidean plane, denoted by M (2).

In this paper, we shall show how Fourier analysis on M(2) is closely

* The author wishes to thank Professor Guido Weiss and Professor Ronald
Coifman for their many helpful discussions concerning. this work.
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Yelated to Fourier analysis on the plane, B? and to properties of the Hankel
transform on (0, co). We then establish an analogue of the classical mul-
tiplier theorem presented above, relating multipliers on SO(3) (or SU(2))
to those on M (2).

As an application of this work, we prove a transplantation resgult
for Bessel functions.

The multiplier theorem we study in this paper may be compared
to a theorem of Bonami and Clere, {6}, in which they relate zonal mul-
tipliers on the unit ball of R%*, X, , to radial multipliers on R". By replacing
R?® with M (2) and X, with SO(3), we obtain a correspondence between
multipliers on 80(3) and M (2) which does not require either the radial
or zonal restrictions. .

§ 1. Fourier analysis on 5]1’(2). Detailed discussions of the Lie group
structure of M(2) and of the associated representation theory may be
found in Vilenkin [4] or Bingen [1].- A rigid motion of the plane, C, is
a map (z,¢): C—~>C of the form (z, )(2) = ¢®z+2 where zc(,peT.
‘We shall consider ¢ as a real number defined modulo 27. M (2) is the
set of these motions, together with the operation of composition of motions,
which may be written (z,¢) (¥, ) = (6®y-+2, p-+y). Algebraically,
M (2) is the semi-direct product of R* with S0 (2). .

‘We shall make the natural identification of SO(2) with the one-di-
mensional torus, 7. One may topologize M (2) so as to make it homeomor-
phic to B? x T. In fact, M (2) may be considered to be a three-dimensional
connected non-abelian non-compact Lie group. The (normalized) Haar
measure on M (2) is given by

[t =2 [ [ sto,mastp.

M(z) - R2

Consider the representation, 4, of M(2) acting on functions on R?
given by [A(g)h](2) = h(g~"2) = k(¢ ®(2—=)), where z e R g = (z, )
€ M (2). We shall use A to.introduce the Fourier transform of a function
on M(2). Let zeC,y = Reé’ € 0 and y-z = Re(yz). We write (formally)
the Fourier inversion formula using polar coordinates as

1 N i 1 For M - . i6
— —1iz2-y — 16\ ,—iz- Re
1@ =5 R! flyye=vay 2an i F(R6") e GoRaR,

where ‘

Rr2

Fw) = [ rwyeedw.
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lm Harmonic analysis on the group of rigid motions 127

This polar form motivates us to introduce the following vector spaces
of functions on C:

" Hp ={h: h{2) = fg(ﬁ)e"“‘R‘de, geL’(T)}.

1 F ' . :
Defining (s, ha) = 5— [ 9:(6)9:(6)d6, we convert Hp into a Hilbert
space; moreover, the map p: Hy—>I*T) defined by Ph=g where
he) = [ g(6)6="" a is an isometry of Hp, onto I*(T).

I6 i?ea.sy to check that Hy is invariant under the action of A. First,
observe that for b € Hpand (z, ¢) € M (2),

f

f g(6) e—i(e—i@(g_x).;z,iﬂ) ae

r i . 6.
= [ g0 —g)e = }do0.

kN

[A(z, )1(k)

The invariance of Hy follows from the fact that
‘. i6
(L% (2, )61 (6) = ¢ g(6—9)

i IE: M(2)-»Aut{T?(T)) which is a unitary representation of
‘Jll;f(l?]rlfslzl in;mpll)'oved in (Vz]enkm ([4]( t]:)LL.t IR is irreducible fo;' R # 0.‘ ]!;[‘i)re; ‘
over, since PAP~! = I%, the restriction of 4 o Hp, and IF are equiv: ve;l*
representations. Clearly, Hy is also invariant under the adjoint of 4,

— PY(LF)*P. _ ‘
We are now in & position to define the Fourier ‘tra.nsform of a function
feI*(M(2). Consider the integral operator ¥, defined on Hy, by

e = o [ [ S0 04 @ ol @ dps

B —=

T

= o e [ o, A (@, 9 PRI gt 8.
-

—% R —T

Since I*(z, p) is a unitary operator on T*(T),

|} [t 17 (2, PRI g, < W s Pl

RZ —T

Consequently, ¥, maps Hyinto itself.

@
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Let T;(R) denote the operator defined on I*(T) by

1o0r . :
[,E))(60) = 5= [ [ flo, 0 [F (@, pgl(0)dpd.

R —7

The argument just presented show: :

len s that T;(R) maps L*(T) into itself
Moreover, it is clear that PF; = T;(R)P. We shall call T((R) the Fo'zm'e;"
transform of f evaluated at R > 0. !

It is not hard to express T(R) in 6 ‘ i
) e
cintel wih B T fast o " ),‘ s of the Fourier transform asgo-

@ o) =5 [ @, 1o
y @) = o o flz, p)e dz for yeR,pe[—m,n),
then -

[T(R)g)g) = [ F(RE), 6)g(p+6)do.

ffhe; n(n}aéi;n;ll:; Fourier transform of f evaluated at R is the (infinite) matrix
zespect t i {6 j

o Iflx ) Sp o the basis {6’} of L*(T); the j, & entry of this
O TR 8 = [ [ fe®, ) '

27y P f(Re”, p)e* Ve aA0dy, j,k=0,t1,...

- -7

This matricial Fourier transf i :
oy matrictal - orm can also be expressed in terms of the

o~
&
I
‘l—‘
1
A,

§rsle=intag o =0,4+1,...

In fact,

b

TyR, j, k) = (—i)— NER
3,8 = (=i [ [ [ 5000, )T Ryrar] e ay .

™ 0
The expression with in the is T
1 e brackets is known as the & —j-th H.
Jorm of f(ré*?, p) regarded as a function of r. ! et trans

If convolution of two integra ; ;
ble functions on M(2) i ;
Frglu) = R (2) is defined by
) M{}) f(v)g(uv=")dv, then Ty,,(R) = THR)T,(R). )

& Th T . V
e Fourier transform can be defined for functions which are not

neeessarily in 7' i
u Lsz(Rg)y;n L* (M(2)). For example, if f € I? (M (2)), then f(z, ¢) belongs
or .. ¢ € [—m, w). Consequently, f(m,zp) is almost every-

®

* ©
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where defined and, making use of Plancherel’s theorem, we obtain anatural
extension of formula (1) to funetions in I*(M(2)-

Txploiting the fact that the Fourier transform on I7* (M (2)) is defined
in terms of the Fourier or Hankel transforms on I¥RY) or I*((0, =),
R4R), it is easy to use the I? theories of these transforms to establish
the corresponding I? theory of the Fourier transform on M (2). Adopting
$he notation tr 4 to denote the trace of a matrix, 11141l] to denote the Hil-
bert—Schmidt norm of 4 (AR = 3 lay), and J (g, , y) for the matrix
whose j, k entry is i"“’“'J,-_,,(r)e"'[(""“)‘;’”“” , we summarize the basic facts of
this theory in the following theorem.

TerorEM A. () If f 4 oy measurable function on M(2), then

2
1
Wl =5 | WTADIErdr
0

in the sense that the equality must hold if the expressions on either side are
findte, while if either expression is infinite, 80 s the other.
(ii) Ifst’(M(z)), then

. 17 -
fre®, y) = Ef 1 [Ty(s)d (@, 57, p)]sds (equality in I7).
0

(iti) If A(8) is @ countably infinite matria for each s> 0 with j, & oniry
A5,y ), and if | WLA(o)IPsds < oo, then the function
| \

B

; 1
f(re, ) = o [ wIAC)T (9, 57 9)1sds
TCO

is in LM (2)) and Ty(s) = Afs)- ‘
We call the formula given in (ii) of Theorem A the Fourier ewpansion

of I .

Given 2 countably infinite matriz-valued function M (R) on the po-
sitive real numbers, we define the left multiplier operator M on LP (M (2))
induced by M (R) to be the operator which maps feI?(M @) n I (2))
to the function

Hf (e, p) = 51; [ e U@ LRI (g, 7B, PR

" We say that a multiplier operator, M, is bounded on g (M(Z)) it
i is & bounded map of L“’(ll’!(2))r~uLz (M(2)) into P M(2)).
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Using Theorem A it is not difficult to characterize bounded multiplier
. operators on I*(M(2)). In fact, a straightforward argument proves the
following corollary:

COROLLARY A. 4 multiplier M(R) defines a bounded multiplier oper-
ator on LZ(M (2)) if and only if the norm of the matriz M (R) considered ds
an operator on V(C) is essentially bounded on (0, co).

One of our goals in this paper is to study how the L? boundedness
of multiplier operators on M (2) may be derived from the L? boundedness
of related operators on SO (3) or SU(2). In order to accompligsh this goal
we need fo know some basic facts about L7 M(2)).

‘ We begin by describing a class of functions whose role in Fourier
analysis on M (2) is analogous to the role of the trigonometric polynomials
on T.

Seti

R, =L [Py

1} S
=010 | 2simi2)p] ]K(s’)s’

therg K(r) = 42J,(r). A standard argument using the observation that
[ E(r)rdr = 1 and the properties of the Fejér kernel shows that

}im[[k", #f —fllp, a1y = 0.
4 o
Moreover,

@ Tkgsf-kf; (55 %)

LAY %]’ .
= l(l‘~ F) (1“ T)(l““ T)Tf(R’.77 k) i[5,k <l; 0<B<s,
0 otherwise.

Tt is useful to restate these observations in the following manner.

PROPERTY A. If1<p < oo, the set of all functions in (M (2)) n
nL? (M (2)) whose matricial Fourier transforms, Ty(R), consist of finite
matrices supported on a finite interval of (0, oo} is demse in I*(M(2).
_ 'The importance of the functions . +f+ % for Fourier analysis on M (2)
is based on the following property.

. PROIPERTY B. Let fe I?|M(2)),1 < p < co. Then the Fourier expan-
sion of k+fx k&, equals K, +f K, almost everywhere in M (2).

Proof. Using standard estimates for J, and the Fejér kernel it is
easy t.cb check tha.t KeI(M(2),1<g¢< . Tt follows that FLxf is
) (‘;ontmuous function which vanishes at infinity and therefore that *f
*ky e LM (2)), 1 < ¢ < oo. Moreover, K xf*kl is infinitely differentia.%le

icm°®
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on ¢—{0}x (0, 2%) since X, is. Applying these observations, we see that
KLxf+k. (ré", v) is absolutely integrable and locally of bounded variation
as a function of r. Thus, we may use the classical inversion theorem. for
the Hankel transform, [5], p. 456, to conclude that

00 oo
Hafaklre®, p) = [ [ [ Bark(Re*, p)(— )" (B RAR] T (ir)tdt
[ o
for any integer m and almost every (ré®, p) € M(2).
Similarly, since K, +f*k.i(ré”, y) is infinitely differentiable in both
@ and p, we may apply Fourier inversion to ¥, =+ k. considered as 2 function
of ¢ and y on (0, 2x) X (0, 2=). After a small amount of manipulation we
obtain the equality :

h 17 _
KsfsEL(rd?, p) = o f Z 15”‘1”c-lg‘f‘kf3 (s 0y mA0) T (Br) 6~ 6 1dE
0

i<t -
Imi<i

E]

1 o0
- f [T,y (1) g, o, )i

for almost every (ré”,y) e M(2). o
Properties A and B show that a function fe L?(M(2)),1 < p < o,
is determined by its Fourier transform. .

.§ 2. 80(3) and 8U(2). The group of rotations of three-dimensional
Euclidean space, SO(3), and its universal covering group, 8U(2), have
been widely studied. In particular, Coifman and Weiss have studied singu-
lar integrals and multiplier operators on these groups (cf. [2]).

In the remainder of this paper we shall be concerned with establishing
relations bebween multiplier operators on SO(3) or SU(2) and M(2).
'We shall use the notation and results of Coifman and Weiss as they appear
in [2]. Thus, we shall describe points in SU(2) by their Euler angles,
(@, 6, ), where 0 < @< 27, —27 <9 < 2w, 0 < § <= Haar measure on

1 .
SU(2) will be normalized as —lg—;sinadqydﬂdw. (@, 0, ) will denote
T

the 7, % matrix entry of the irreducible unitary representations of SU(2)
described in [2]. (Here, 2n is a non-negative integer; j —n, k—n are inte-
wers; and |j|, |kl <n.) The Fourier expansion of functions in I’ (8T (2))
will be written in terms of these matrix entries by letting T"(p, 6, )
denote the matrix with j, % entry (e, 8, p), so that we obtain

©

flg, 6,9) = 3 @n+1)te[f(n) (@, 6, ¥)]

2n=0
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‘where
. 2n w 2T .
Ffoy = [ [ [ flg, 0, 9T (9, 6, v)7)sinbdpdbdy.
—2n 0 0

Tourier analysis on S0(3) is easily related to analysis on SU(2) if
we describe points in 8O(3) by their Buler angles, (¢, 0, ¥), ‘where 0 < ¢
<27, 0< < m, 0< p<2r Then Haar measure on 80(3) is given by

1 ) . :
g—;sin 6dpd6dy. Moreover, the functions (g, 0, ) with » a mnon-
s

negative integer and v restricted to 0 <y < 2w may be interpreted as
the maitrix entries of a complete system of irreducible unitary representa-
tions of 8O(3). The formulae for the Fourier transform and the Fourier
expansion of a function, f, in I*{80(3)) is identical to that given above
for fe I*(SU(2)), except that in this context, n ranges over non-negative
integers, and 0 <y < 2=. )

s Since we are interested in relating Fourier analysis on SO(3) and
8T (2) to Fourier analysis on M (2), the following lemma which establishes
a correspondence between the matrix entries f;, which appear in the
Fourier transform on 80(3) or ST (2), and Bessel functions, which appear
in the Fourier transform on M (2), is important.

Lewwa A. (0, 6,0) =i7%J;_, (6(n2—j2)'”) +-0(8) provided |jl, k|
< L,n #0, and n0 < N. The bound corresponding to 0(6) depends on
L and N. \

Proof. We ‘begin by studying the integral representation:

N _1’(n+k)!(n~k)'! 12
50,0, = o ()

T

6 .. 6 N 8 6\~ oy
x_{(cosz +isin-¢ ) (wsm—é—e —cos;) exp ((k—j)ip)dp,

o .. 6 ’
cf. [2], p: 33. Setting L+2 = c08 - +'isin3 ¢, which implies = 0(6),

and wusing the fact that if 0<[l1+a2f<1,(1 +ay = G(n_j)z(1+
+(n—35)0(z?), we see that

6 6 _\~7 : 6 _,
((',015—2—~ +isin~2~ e""-") = exp [(n-.—j) (i ?6"“”—[— 0(6“”))] L+ (m—gy0(6Y).

for ¢ = /2 where 1 is an integer and 0 < § < . Similarly,

(iéin-?)—e*"’+ cos2- ﬂH: exp[(n-[— i) (iie"" FO(6%)] | {1+ (n—35)0(6%)
3 5] Ni5 e+ 3)0(6%).

icm
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‘We conclude that

)l(n—K)1\"
(0, 6,0) = (2m)™* (%)

= p ' .
X f exp (i?[(n—l—j)e"”—(j——n(e““"}) exp (i(k—j))e {1+ 0(n)0(6")dp.

The relationship between this expression and the Bessel functions
may be seen by studying the generating function for Bessel functions,

exp (w';—z(r-—r“l)) = E 7 (2).

m=—00

Substituting & = —a ((s —)(s + 1)), r = —i(s+1)"*(s —1) " exp (ip), into
this formula gives the relation:

) . o ' mh

Assume that [j|, |k < n. Combining the above formulae and using the
hypothesis #6 < N, we obtain the representation:

2) 5(0,86,0) )
LR (n—R)T | - j\é=

In order to simplify this expression, first assume that j+k<0,j—%
< 0,131, ¥l < n. Let L be the number given in the statement of the lemma.
Then (n+k)(n—Fk)!

(n+j)Hn—i)!

(B n—F)! (nti\FE T @ a—1\ 1
i) —)! (n—j) —n(”m)(l‘m); =1+0(?)

a=1

< 1, and if n > 3L:

where O (%) depends on L. The hypotheses of the lemﬁa imply that 8(n2—
—4j?) < N, which implies that

#3T,5(8(n2 —3)") = 0(6)(n2—j2)'".

Thus, :

1T, (6(n2— )0 (%) =0(0).
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Combining these estimates, we see that in this case,
(2) = & ;. (6(n? — ")+ 0(6).

“ (F—k)f2
It n< 3L, (”—Jr—’) — 0(1). Thus
n—j
(n+k>!(n—k)!)”2 TR (_ﬁi)“"‘”ﬁ_
(<n+j)!(n—j)! Tl 00 =P =5
_,,;j-—ij_k(g(%ﬁ__jz)): 0(9)_

‘We conclude that if j+5<0,j—%<0,lj], |kl < n, then

= i""‘Jjuk(ﬂ(nz—— ) +0(6).
The facts that £, ,(0,0,0) = (—1y~%(0,06,0), [2], p. 109,
and J_jp = (—

—1Y*J; unply that (3) holds for ]—I-—k>0 E—j<0,

Ijl < m, |k] < n. Similarly, -the formula #3(0, 6, 0) = (0, 0, 0), [2], p-

109, implies that (0, 0, 0) =if“’“Jj_,,(e(nﬂ—kﬂ)l’z)+0(6) when |j],

|k} <n and eithery+k< 0,j—k>0,0rj+k>0, k—j>0.Furthermore,

T, o6 — %) =7, (00— ) = 0(6) & 1jl, k<L and Gn< N,

where O(0) depends on L and N. This can be verified by noting that
(i) Ji_x(x) = 0(1) which implies

Ii_x0(n2 —E2)2) —J;_, (0(n2—j2)"2) = O((6(n

and

(3) 15(0, 6, 0)

—j)— nz_kz)llz),
(i) [jt, [kl <, |jl, %] < Limply that (n?—2)"* — (n?—j2)* = O(1).
Using these estimates, we see that (3) holds whenever [j|, [k| < L,

17l k] <n and j # k. When j =% and [j| < L, (3) follows immediately

from (2).

The remaining cases when |j| = n or |k] = n may be verified by using
the symmetry properties of the #}; already discussed and the facts that:
(i) in these cases n < L,
o (211:) n— ] n—k g \"t¥
(ii) %.(0,6,0) = m—' (sm?) (cos—z—) y
(ili) J,,(0) =0 it m 0. m

§ 3. Multiplier operators. We introduced multiplier operators on
M(2) in Section 1. In this section we shall show how the L” boundedness
of such operators is related to properties of operators on SO (3) or ST(2).

If m(n) is a 2n+1 by 2n-+1 matrix for each non-negative integer n,
then we define the multiplier operator m on L” (S0 (3)) induced by {m (n)},
to be the apemtor which maps f e L?{80(3))n I*(80(3)) to the function

mf{(p,"0, ) Zo(?n—i—l)tr[m(n F(m)P*(g, 0, y)]. Multiplier operators on

e _ ®

icm
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8T (2) are defined analogously. If {jmfl, < C{fl|, for f e I’ n I”, the mul-
tiplier operator m is said to be bounded on L”.

Let K denote the canonical two-to-one map of SU(2) onto SO(3)
(cf. [2], p. 105, for details). If f is a complex-valued function on S0(3),
define f, on SU(2) by setting fo(%) —f(Ru u e SU(2). It is easy to check
that }foﬂp‘sw) If llp,s05y- Moreover, f,,(n ) =0"if » is a half-integer,
while f (%) —f( ) if # is an integer.

Using these observations it is not hard to prove the following lemma:

Lemma B. If {m(n)}5., defines a bounded mulliplier operator on
I?(8T(2)), then {m(n)}s2, defines @ bounded multiplier operator on L*(80(3))
with the same operator norm.

Next we show how multiplier operators defined on M (2)- induce
multiplier operators defined on SO(3). Let M (R) be a countably infinmite
matrix-valued function on the positive real numbers with j, & enfry
M(R,;j, k). Let M be the corresponding multiplier operator on M(2).
For each 42> 0, M induces a multiplier operator on SO(3), denoted m,,
by the following process. Let m,(n) be the 2n-+1 by 2n -1 matrix whose
j, k entry is M(n/2,j, k), —n<j, k< n. Then m; is the multipler ope-
rator defined by {m,(n)}3,. '

We are now in a position to state the fundamental theorem of this
paper.

TesoreM B. Let M be o boundsd multiplier operator on I*(M(2)).
Suppose that the matriz eniries M (R,j, k) of the function M (R) defining
M are continuous functions of R for each j, k. For 2> 0, let m, be the mul-
tiplier operator on SO(3) induced by M. If the operator norms of m, on
L7 (80(3)), 1< p< oo satisfy hmmfﬂmznp< oo, then M is a bounded
operator on LP{M(2)).

Proof. Define M f = I.+Mf. If we show that

(4) ‘ WM afllp, 2y < A Nf s, 220y

whenever f e L?(M{2))~ I* (M (2)} with 4 independent of s and I, the
theorem will be proved. To see this, note that using the proof of Property
A, lim ”ki*ﬂff—Mﬂ]z,M(z} =0.

I>00

Thus
lim f]cs*Mg(u) (w)du = fMg(u h(u)du
e @) . 3(2)
for he 0P (M (2)), the infinitely differentiable functions with compact
support on M (2). Holder’s inequality and (4) imply that if
1p+llg =1, | [ Mg(u)h(u)du| < Algl, e for all heCP(M(2)) such
M(2)
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that |[hlly, e = 1. An application of the converse to Holder’s inequality
proves our claim: the hypotheses of Theorem B and (4) imply || Mgl u )
< ANy, 2102y -

A computation shows that M, is the multiplier operator induced
by the matrices M (R), R > 0, with j, k entries

= _
(1 )(1-%)1{(13,]',70) i j<l, 0<R<s,

My(R,j, k) = 82

0 otherwise.

For 4> 0, let m,,; be the multiplier operator on SO (3) induced by M.
We claim that liminfmg,ll, < co. To see this, note that the multiplier
A0

opera,tt')r my; defined by {(1 — mz)} is bounded on L? (ST (2)),1< p < co,
2n=0

with bound independent of 1 and s. This follows easily by applying

a theorem of Coifman and Weiss: [2], p. 87. Use Lemma B to conclude
84

that the multiplier operator m,; defined by {(1— %—)2)} is bounded
=0

on IP(80(3)),1 < p < oo, with bound independent of 1 and s.
Observe that if

2 [sin%(l—}-l)y]z

Fyly) =
W) =0y | 2smy

then
an
mauf(@, 0,9) = [ Fyly)mamaglp, 0, p—y)dy.
0

It follows that from the standard propertiey of the Fejér kernel that
s fls.som) < Dlifl,s06) With D independent of s, I, . We have reduced

the proof of Theorem B to showing that liminf|mgl, < co implies -

f} 20 .
1M if U, 30y < A Nfllp,agey Tor f € L* (M(2)) 0 L7 (M (2)) with A independent
of 1 and 8.

We require a further reduction. If fe I? (M (2)), set

2n 27

Flesryw) = f f FO)F(B)flp+y, 7, p+pdyap

with F* as defined above. It is easy to check [that |l s < If lp,
independent of ‘I. Similarly, considering

am 2w

Sl b,9) = f { PP @) fo+y, 0, p+pdydp

to be a funetion on SO(3), If*ly,so) < Ifly,s05 independent of 1.

iom°
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The standard properties of the Fejér kernel imply that for fe L?(Q)
Emfiff—fll,o =0 if @ = M(2) or SO(3). Since C°(M(2)) is dense in
l>c0
I?(M(2)),1<g< oo, Theorem B will be proved if we show that
ﬁirlxligi Imgall, < oo implies [ Myfilly, ey < ANy, are for fe 0y (M(2)).

Let feOg"{M(2)) have support in (0, 2%) x (0, #] X (0, 27). Define
fale, 0,9) = flo, 10, ). For 2 sufficiently large, the support of f, will be
contained in (0, 27) x (0, =) X (0, 2=) so that we may consider f, to be
a function in Cy(80(3)). It will be convenient to study fi (g, 6, v}

=flp,0,y+o¢). Clearly, ffllnsos = filnsow- The hypothesis
liminf |jm,;,)l, < co implies that for infinitely many i:
A—>00

| 3 en-r1)t ) (D1 () T@, 6, 9)] | 500 < Il | (7 In,s00-
=0

Thus,

| }j on-FLYtr [ () ()71 () T, 05 w—0)]], o0 < 1t I i, s005)-

Note that

2r 7w 2w

f ff 1f e, 16, v)|Psin 6dgd0 dy

=1 [ f 9(2/1 in | cos — dpdrd
— 32 r 2 dwdr
. J af J‘ | (‘P: Ty 'P)t 8 Py 97 14

and

o

| > entaymlmun T e, 0, v =9l ]

=0

2
8=

2,80(3)

2% 2w 2¢m

ff f‘ y(2'ﬂ/+1 sll('n' HN @, 0, p— 9;)]’ %
X (2151]1 %) cos%i dpdrdyp.

r
These equalities together with the fact that llm (9 sin— 57 )eos-o—l =r
and Fatou’s lemma show that “

5

|

Ot
~

27

[ [iming| 3 en sty O I

< ]iinini grallpllf il 2200y -

L\'JIH
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Define

o©

> a1yt (mas 157 ()

n=0

G (@7, 9) =

r
Tn(q” 7 "/"“p))'

then

3

I we show limGsu(qo,r, ) = Mg flley7, v), (8) irplies that

WM f ey < A iy, 222y amdl thus by oul previous reductions, Theorem
B will be proved. Computing [(f)* , we find

s2

Gsli.(‘?: 7, "P) = 2(2”+1) (1_ (:LT)J) X

n=>0

Z DX (25 o) -2 o B2 - IG;I)I(S Ay

j=—n k=—n @=—n
IJ]<l la—Eki< tal<l

27 m 2m

x [ [ [ 110, 0, ®)dt-aerig (0,9, 0)sinoavasay 1, (qg, z 111—97)-
LU

A
We shall use Lemma A to study this expression.
We begin by fixing X > 0 and making the following restrictions:

0 <r< X;1jl, 1kl < 5 1], k] < L; 0 < n < sA. These imply that fn < 8X
=N. Usmg Lemma A, we obtain the equality

r I :
© nLooms) - eermeomeess, (o) vof)
where the bound on 0( ) depends only on I, s, and X, hence only on NV
14
and L. It is not difficult to check that J;_j (791,) —J_ (7(%2 —jz)l/z)

,—O( (n—(n? — )Y )) The above restrictions give —;—(n—(ng—jg)”z)

<nl =N b
< n-i— = v. ‘

We conclude that Jj_,,( i — )”ﬂ) =J, ,,(’" )+0(1), where the
bound arising from the O(1) depends only on I and N. Combining this
estimate with the fact that 1> 1 implies %g X, we see that (6) implies

M ennyfr,

r Noai '
T ‘P“‘P) = Ope~ilk—de+iul; —k']:i—k (% 'n) +(2n+1)0 (1)

1 ©

icm
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where the bound on O(1) depends only on N and L. When n = 0, (7)
holds trivially, therefore we have established equality (7) whenever 0 <7
< X140, b < n; 1l Bl < L5 0< n < sk

Next, suppose that 0 <= < si;lal, [k <n;ljl, sl <L. Since f
€ 0P M(2)), we see thab

Falm) ; ,

2m An 2% —-——*—‘r

: o .
= (87:2),2)—1ffj flo, r, p)dlE-awrarlg (0, 7 (})(zlsin 23 )cos—— depdrdy
N 0 0 0

2w lﬂ 2ﬂ ——;‘—_—
= @@ [ [ [ flo,r, motearien, 0, 2, o) rapap-+ 170 (0.

D 0 0

£ has support in (0, 2%) % (0, #]x (0, 2=); thus we may assume that 0 < #
< p, which implies nrjA < ps. Applying Temma A to this expression and
simplifying in the manner described above, we see that

®)  fuln)

ax i

—_ (8.—:212)_1 f J' flp, 7, qp)e’[(k“”)°:+“"]'l,a'kJ ( 91,) 'I'dq&d?‘dlp—{—l'g()(l)
¢ 0.0

where the bound on O(1) depends.on L, s and u (hence f). The fact that
(@, 7{A, 9) = J,(0) implies (8) holds ior n=0.
Combining estimates (7) and (8), we have shown

Ll 7, ¥)
D

82 nt n
- ;(1 —W)j:

i<t la—F<l |al<I

X [(wﬁrwf (%, a, k) +z~’20(1)] X

% [om—tl(k—:r)?ﬂw] = JJL j( )(2n+l 0(1)]

Noting that the bounds corresponding to the “O” terms depend only on
1
L,s, and f, that sup Hﬂf(%,j, )1 0 << s |fl, lal < z} <oo, and
that n/A < s, an easy coniputation shows mGy,(p, 7, v) = Mqf e, 1, p)-
A->00

As we noted above, this proves Theorem B. m
Combining Theorem B with Lemma B, the following corollary is
immediate. |
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OorOLLARY B. Let M be a bounded. multiplier operator on I2 (3(2)).
Suppose thai the function M (R) defining M is continuous on (0, o). For
A>0, let m be the multiplier operaior on SU(2) defined by the sequence

\
{m(n)}5n—0, where the §, & eniry of m, is M(%,j,}k), —2n <4, k< on,

0 < 2n < oco: If the operator norms of the m, on L”(SU(,‘Z)), 1<p< oo,
satisfy 1i1§amfﬂmlllp< oo, then M is a bounded operator on *(M (2)).

§ 4. An application. In this section we show how the results we
have obtained may be used to prove a transplantation result for Bessel
functions. Consider the multiplier operator, M. , defined on M (2) by the
matrices, M(R), with j, % entry equal to one if j = I,k =0, and zero
otherwise. An eagy application of Corollary A shows that this operator
is bounded on I*(M(2)). For 4> 0, let m, be the multiplier operator on
8T (2) induced from M by the procedure described in Corollary B. Since
the entries of M(R) are independent of R, the matrix entries of m, are
independent of 1. The operators m, were studied by Coifman’ and Weiss
([2], pp. 136-138) who showed that these operators are bounded on
PISTU(2), 1< p< oo. Applying Corollary B to M, we find that it ig
bounded on LP(M(2)}, 1< p< co. Let f: (0, 00)=»C be such that the

Hankel transform Of F(R)J,(rE) RAR belongs to I*((0, oa) ,~rdr) for some in-
teger % and some p greater than one. :
Define

F(@,7, V) = @) [ f(B)J,(rR)re™*° RAR.

F(®,r, P)eL?(M(2)). Applying M to F shows. th
- that | MPF|
< APl 1), Which implies that et

Of | oj f(B)T, 1 (rB) RAR[ rdr < Af ] f (BT () RAR P rar.

By iterating this procedure and by considerin, ipli
] g the multiplier operator
on M(2) defined by the matrices with j, % entry equal to one if j P= —1
=0 and zero otherwise, we obtain the following corollary: ’
. QOROLLARY C. If f: (0, oo)?O’ is such that for some integer u,
3{ J(B)T(Br)RAR € I7((0, o), rdyr), then given any integer v, there ewists
a number A, such that

Df | of F(B)T,(rB) AR rir < A,,fw| f f(R)T,(rR)RAR " rar.

2 ]
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