- [7] T. Figiel, An example of infinite dimensional reflexive Banach space non-iso-morphic to its Cartesian square, Studia Math. 42 (1972), pp. 295-306.
- Factorization of compact operators and applications to the approximation problem, ibid. 45 (1973), pp. 191-210.
- [9] C. W. Henson and L. C. Moore Jr., The theory of nonstandard topological vector spaces, Trans. Amer. Math. Soc. 172 (1972), pp. 405-435.
- [10] Subspaces of the nonstandard hull of a normal space, ibid. 197 (1974), pp. 131-143.
- [11] Nonstandard hulls of the classical Banach spaces, Duke Math. J. 41 (2) (1974), pp. 277-284.
- [12] J. Horvath, Topological vector spaces and distributions, Vol. 1, Reading, Mass.
- [13] H. Jarchow, Die Universalität des Räumes c₀ für die Klasse der Schwartz-Räume, Math. Ann. 203 (1973), pp. 211-214.
- [14] J. Lindenstrauss and L. Tzafriri, Classical Banach spaces, Berlin 1970.
- [15] A. Pełczyński and H. P. Rosenthal, Localization techniques in L^p spaces, Studia Math. 52 (1975), pp. 263-289.
- [16] D. J. Randtke, A simple example of a universal Schwartz space, Proc. Amer. Math. Soc. 37 (1973), pp. 185-188.
- [17] On the embedding of Schwartz spaces into product spaces,
- [18] A. Robertson and W. d. Robertson, Topological vector spaces, 2nd ed. London 1973.
- [19] A. Robinson, Nonstandard analysis, Amsterdam 1968.
- [20] A. Robinson and E. Zakon, A set-theoretical characterization of enlargements, in Applications of model theory, New York 1969, pp. 109-122.
- [21] H. H. Schaefer, Topological vector spaces, Berlin 1970.
- [22] I. Singer, Bases in Banach spaces I, Berlin 1970.

Received March 24, 1976 (1139) revised version August 31, 1976

Boundary limits of Green's potentials along curves II Lipschitz domains

by

JANG-MEI G. WU (W. Lafayette, Ind.)*

Abstract. On a Lipschitz domain D in space, let μ be a mass distribution and u the Green potential of μ . Conditions on μ are given so that $u \not\equiv +\infty$; under the same condition we show that the boundary limits of u along curves with certain differentiability properties are zero almost everywhere.

Green's potential occurs in the study of subharmonic and superharmonic functions via Riesz decomposition theorem ([5], p. 116). Let D be an open subset of \mathbb{R}^n having a Green's function G; Green's potential u given by a mass distribution u is defined to be

$$(0.1) u(x) = \int\limits_{D} G(x, y) d\mu(y)$$

for every $x \in D$. When D is the unit disk in the plane, the necessary and sufficient condition for $u \not\equiv +\infty$ is

$$\int\limits_{\mathcal{D}} (1-|y|)\,d\mu(y) < +\infty;$$

under this condition u has radial limit zero at almost every point on the unit circle, see Littlewood [6]. Later in 1938, Privalov [7] proved the similar result for Green's potentials on the unit ball in \mathbb{R}^n . The nontangential limit of Green's potential need not exist at any point on the boundary, as pointed out by Zygmund, [9], pp. 644-645.

The purpose of this paper is to study the boundary limits of Green's potentials in a Lipschitz domain D in \mathbb{R}^n , $n\geqslant 3$ along curves with certain differentiability properties. The problem for n=2 was studied in [11], where, with the aid of conformal mapping, we need only to study the limit of Green's potentials on |z|<1 along curves with the same differentiability properties. When $n\geqslant 3$ the conformal mapping technique does not apply and it is not even obvious for which μ the Green's potential of μ is not identically $+\infty$. Our main tool is an estimate on a certain harmonic function in a cone derived from a series representation of that

^{*} Current address: Purdue University, West Lafayette, Indiana.

function; the representation was used by Gariepy and Lewis, [4], pp. 261–262, to obtain a Phragmén–Lindelöf result for subharmonic functions in \mathbb{R}^n . In Theorem 1, we shall give a sufficient condition on μ in D for $u \neq +\infty$ and in Theorems 2 and 3 we shall show that under this condition, the Green potential has the desired boundary property.

1. Preliminaries. We use $(x_1, x_2, ..., x_n)$ to denote a point x in \mathbb{R}^n , $n \ge 3$, $|x| = (\sum |x_k|^2)^{1/2}$, $x' = (x_2, ..., x_n)$ and $\cos \theta = x_1/|x|$ if $|x| \ne 0$. We denote the cone $\{x: |\theta| < t, |x| < h\}$ by K(t, h). The symbol C will denote strictly positive constants that may vary from line to line.

From now on we shall let D be a bounded Lipschitz domain in \mathbb{R}^n , $n \geqslant 3$. That is, ∂D can be covered by a family of open right cylinders L; there is a local coordinate system $x=(x_1,x')$ corresponding to each L with $x_1 \in \mathbb{R}$, $x' \in \mathbb{R}^{n-1}$ and x_1 -axis parallel to the axis of L so that $x_1=f(x')$ is Lipschitz for x on $\partial D \cap L$ and $L \cap D = L \cap \{x\colon x_1 > f(x')\}$. And we shall let a>0, a>0 be two number depending on D so that at every point x on ∂D there is a cone with vertex x of size K(a,a) completely exterior to \overline{D} .

We use d(x) to denote the distance from a point $x \in D$ to ∂D ; if $x \in L \cap D$, we use \tilde{x} to denote the point on $\partial D \cap L$ with $\tilde{x}' = x'$ in the local coordinate system in L. It is clear that if x is in L and the point on ∂D closest to x is in $L \cap \partial D$, then $|x - \tilde{x}| \leq Cd(x)$. Let G(x, y) be the Green's function on D, μ be a positive mass distribution on D and u be the Green's potential of μ given by (0.1).

For the properties of Lipschitz domain the reader is referred to [8]. For the properties of Green's potentials in general the reader is referred to [5].

Here we shall give an estimate of certain harmonic functions in cones. The two-dimensional version of Lemma 1 can be proved easily by conformal mapping.

LEMMA 1. Let $v, \ 0 < v < 1$, be a harmonic function on K(t,h) symmetric about x_1 -axis (that is, v can be regarded as a function of |x| and θ alone) and with boundary value 0 on $\partial K(t,\hbar) \cap \{|x| < h\}$. Then there is a positive number $\varrho = \varrho(n,t)$ so that

$$v(x) \leqslant C \left| \frac{x}{h} \right|^{e} \text{ on } K(t, h)$$

and, for any small $\varepsilon > 0$,

(1.2)
$$v(x) \geqslant c \left| \frac{x}{h} \right|^{2} \text{ on } K(t-\varepsilon, h/2)$$

for some positive constant c depending on ε and v. Moreover, ϱ is a continuous strictly decreasing function of t and $\varrho(n,\pi/2)=1$.

Proof. The representation (1.3) of v is adapted from Gariepy and Lewis ([4], p. 262). Let $0 < \gamma_1 < \gamma_2 \dots$ be the eigenvalues of the boundary value problem

$$\delta \varphi + \gamma \varphi = 0$$
 on $C(t)$, $\varphi = 0$ on the boundary of $C(t)$.

where $C(t) = \{|x| = 1, |\theta| < t\}$ and δ is the operator defined in terms of the Laplacean Δ by

$$arDelta = r^{1-n} rac{\partial}{\partial r} \left(r^{n-1} rac{\partial}{\partial r}
ight) + r^{-2} \delta.$$

Let $\{\varphi_k\}$ be the corresponding eigenfunctions normalized by

$$\int\limits_{C(t)} arphi_k^2 dm = 1 \quad ext{ for } \quad k = 1, 2, ...,$$

where m is the surface measure. Because φ_k are symmetric about x_1 -axis, we may regard them as functions of θ alone whenever it is more convenient. Let ϱ_k be the positive root of $\varrho_k(\varrho_k+n-2)=\gamma_k$ and $a_k=\int\limits_{C(t)}\varphi_k(x)v(tx)\,dm(x)$. Then

$$v(x) = \sum_{k=1}^{\infty} a_k \left| \frac{x}{h} \right|^{e_k} \varphi_k(\theta).$$

It is known ([1], VI, § 6) that φ_1 is either strictly positive or strictly negative in C(t) and ([4], p. 262) that the series

$$\sum \left| rac{x}{h}
ight|^{arrho_k - arrho_1} |arphi_k(heta)|$$

converges uniformly in K(t, h/2), in fact on $\overline{K(t, h/2)}$. From these facts, formula (1.3) and the definition of v, it is ready to see (1.1) and (1.2) if we let $\varrho = \varrho_1$. It is known ([1], VI, § 2) that γ_1 is a continuous, strictly decreasing function of t, and therefore so is ϱ . When $t = \pi/2$, it is easy to verify that $\varphi_1 = \cos \theta$ and $\gamma_1 = n-1$. Thus $\varrho(n, \pi/2) = 1$. This proves Lemma 1.

2. Main result. We recall that there is an exterior cone of size $K(\alpha, \alpha)$ at every point on ∂D and let $\varrho = \varrho(n, \pi - \alpha)$ as defined in Lemma 1. We shall give a sufficient condition on μ for $u \not\equiv +\infty$.

THEOREM 1. If

$$(2.1) \qquad \qquad \int\limits_{\mathbb{R}} d(y)^{\varrho} d\mu(y) < +\infty,$$

then $u \not\equiv +\infty$.

6 — Studia Mathematica LXII.3

Theorem 1 is a simple consequence of the following lemma and the fact that, under the assumption (2.1), μ is finite on every compact subset of D.

LEMMA 2. For each $x \in D$, there is a constant C depending on x such that

$$G(x, y) \leqslant Cd(y)^{\varrho}$$

whenever $y \in D$ and 2d(y) < d(x).

Proof. We let $\lambda = d(x)$, $y \in D$ and $2d(y) < \lambda$, w a point on ∂D closest to y and K a cone at w of size $K(\pi - \alpha, \lambda/2)$ whose complementary cone is exterior to \bar{D} . Let v be the harmonic function in K with boundary value 1 on the spherical piece of ∂K , with boundary value 0 on the remaining part of ∂K . When z is in $D \cap$ the spherical piece of ∂K , we have $|z-x|>\lambda/2$, and thus

(2.2)
$$G(z, x) \leq |z - x|^{2-n} < C\lambda^{2-n} = C.$$

From (2.2) and the maximum principle for harmonic functions, we have

$$(2.3) G(z, x) \leqslant Cv(z)$$

for $z \in D \cap K$. Therefore, from (2.3) and Lemma 1, we have

$$G(y, x) \leqslant Cd(y)^{\varrho}$$
.

THEOREM 2. Suppose that μ satisfies condition (2.1) in Theorem 1 and Lis a right cylinder intersecting ∂D , on which there is a local coordinate system with properties described in the definition of D. Then for all points P in $L \cap \partial D$ except a set of $n-2+\varrho$ -dimensional Hausdorff measure zero, u has limit zero along the line segment parallel to the axis of L ending at P.

Proof. By covering $L \cap \partial D$ with small cylinders and using the Lebesgue number argument, we may assume that the diameter of L is less than a and that μ is concentrated on a subset S of L, so that for each $x \in S$ the point on ∂D closest to x is in L.

From now on we use s, σ to denote $|x-\tilde{x}|$ and $|y-\tilde{y}|$, respectively, whenever x and y are points in L. Fix x in L; if y is in L, we use γ to denote |y'-x'|. (We recall that $x'=(x_2, x_3, ..., x_n)$ and $y'=(y_2, ..., y_n)$.) We divide S into three sets in terms of y as follows:

$$\begin{split} &S_1\colon\,y\in S,\ \gamma\leqslant s,\ |\sigma-s|\leqslant s/2\,,\\ &S_2\colon\,y\in S,\ \gamma\leqslant s,\ |\sigma-s|>s/2\,,\\ &S_3\colon\,y\in S,\ \gamma>s\,. \end{split}$$

(2.5)

(2.4) $G(x,y) \leqslant C \gamma^{2-n}$ in S_1 ,

$$G(x, y) \leqslant G \gamma \quad \text{if } S_1,$$

$$G(x, y) \leqslant G \sigma^2 s^{2-n-\varrho} \quad \text{in } S_2.$$

(2.6)
$$G(x, y) \leqslant Cs^{\varrho} \sigma^{\varrho} \gamma^{2-n-2\varrho} \text{ in } S_{\mathfrak{g}}.$$

For any $y \in S_1$

We want to show

$$G(x, y) \leqslant |x-y|^{2-n} \leqslant \gamma^{2-n}$$

We observe that there is a constant c > 0 depending only on the Lipschitz condition on L so that |y-x| > cs whenever $y \in S_0$. Fix $y \in S_0$ and assume that the origin 0 of the local coordinate system is at \tilde{y} . Let Fbe $\{z \in D : |z| < cs/2\}$ and observe that

$$G(z, x) \leqslant Cs^{2-n}$$

for $z \in \partial F$. Let K be a cone at $\tilde{y} = 0$ of size $K(\pi - \alpha, cs/2)$ whose complementary cone is exterior to \overline{D} and v be the harmonic function in K with boundary value 1 on the spherical piece of ∂K , value 0 on the remaining part of ∂K . From Lemma 1, we see that

$$v(z) \leqslant C |z|^{\varrho} (cs/2)^{-\varrho}$$

for $z \in \overline{F}$. By the maximum principle, on F we have

$$G(z,x) \leqslant C|z|^{\varrho}s^{2-n-\varrho}$$
.

If y is in F, then

$$G(y,x) \leqslant C|y|^{\varrho}s^{2-n-\varrho} = C\sigma^{\varrho}s^{2-n-\varrho};$$

if y is not in F, then $\sigma \geqslant cs/2$ and

$$G(y, x) \leq |x-y|^{2-n} \leq (cs)^{2-n} \leq C\sigma^{\varrho}s^{2-n-\varrho}$$
.

We have proved (2.5).

Now fix y in L with $\gamma > s$ and assume \tilde{y} is the origin. Let T be $\{z \in D \colon |z| \leqslant \gamma/4\}$ and observe that $|x| = |x - \tilde{y}| \geqslant \gamma$. Therefore, for $z \in \partial T$

$$(2.7) G(z,x) \leqslant |z-x|^{2-n} \leqslant C\gamma^{2-n}.$$

Let K be a cone at $\tilde{y} = 0$ of size $K(\pi - \alpha, \gamma/4)$ whose complementary cone is exterior to \overline{D} and v be the harmonic function on K defined as in the last paragraph. From Lemma 1, we see that

$$v(z) \leqslant C |z|^{\varrho} (\gamma/4)^{-\varrho}$$

for $z \in \overline{T}$. By the maximum principle, on T we have

$$G(z, x) \leqslant C|z|^{\varrho} \gamma^{2-n-\varrho}$$
.

If y is in T, then

$$G(y,x) \leqslant C|y|^{\varrho}\gamma^{2-n-\varrho} = C\sigma^{\varrho}\gamma^{2-n-\varrho};$$

if y is not in T, then $\sigma \geqslant \gamma/4$ and

$$G(y, x) \leqslant |x-y|^{2-n} \leqslant C\gamma^{2-n} \leqslant C\sigma^{\varrho}\gamma^{2-n-\varrho}$$

We have, in fact, proved that for any two points x, y in L if |x'-y'| $> |x - \tilde{x}|$ then

$$(2.8) G(y,x) \leqslant C\sigma^{\varrho}\gamma^{2-n-\varrho}.$$

Under the notation in the last paragraph, if z is on ∂T , then |z'-x| $> \gamma/2 \geqslant |z-\tilde{z}|$. Thus, from (2.8),

$$(2.9) G(z, x) \leqslant Cs^{\varrho} \gamma^{2-n-\varrho}$$

for $z \in \partial T$. Following the argument in the last paragraph with (2.7) replaced by (2.9) if $y \in T$, or switching the roles of x and y, then following the proof of (2.5) if $y \notin T$, we may obtain

$$G(y, x) \leqslant Cs^{\varrho}\sigma^{\varrho}\gamma^{2-n-2\varrho}$$

if $u \in L$ and v > s. We have proved (2.6).

The following part of the proof is a slight variant of Littlewood's ([6], pp. 392-394); we shall not give too much detail. Let $L(q) = \{y \in L:$ $|y-\tilde{y}| < q$,

$$\varepsilon(q) = \int_{L(q)} d(y)^{\varrho} d\mu(y),$$

and for $\tilde{x} \in L \cap \partial D$, let $\Phi(\tilde{x}, t)$ be the integral $\int d(y)^{\varrho} d\mu(y)$ extended over $L(q) \cap \{y: |y' - \tilde{x}'| < t\}$. It can be shown by a lemma in [3], p. 210, that

(2.10)
$$\limsup_{t \to 0} \frac{\varPhi(\tilde{x}, t)}{t^{n-2+\varrho}} \leqslant \sqrt{\varepsilon(q)}$$

on a set E(q) whose complement in $L \cap \partial D$ is of $(n-2+\rho)$ -dimensional Hausdorff measure $\leqslant C\sqrt{\varepsilon(q)}$. In order to prove the theorem, it is enough ([6], p. 392) to show that for each small q > 0 and for each \tilde{x} in E(q),

$$(2.11) \qquad \qquad \limsup_{L(q)} G(x, \ y) \, d\mu(y) \leqslant C \, \sqrt{\varepsilon(q)}$$

as $x \to \tilde{x}$ along the segment $x' = \tilde{x}'$.

We recall that μ is concentrated on $S \subseteq L$ and, for each $y \in S$,

 $\sigma = |y - \tilde{y}| \le Cd(y)$. From (2.4), (2.5), and (2.6) we may obtain that $\leqslant s^{-\varrho} \int\limits_{s}^{s} C \ \gamma^{2-n} d\Phi(\gamma) + \int\limits_{s}^{s} C s^{2-n-\varrho} d\Phi(\gamma) + s^{\varrho} \int\limits_{s}^{c} C \gamma^{2-n-2\varrho} d\Phi(\gamma),$

where $\Phi(\gamma) = \Phi(\tilde{x}, \gamma)$. (2.11) may be obtained ([6], p. 386) by applying (2.10) and integration by parts to the above inequality. We have proved Theorem 2.

A similar proof gives the radial limit of u in a starlike Lipschitz domain whose boundary is given by $r = f(\xi)$ where $|\xi| = 1$ and f is Lipschitz.

It should be emphasized that when $a < \pi/2$, the exceptional set in Theorem 2 is smaller than the expected set of (n-1)-dimensional Hausdorff measure zero, which is the same as the harmonic measure zero for Lipschitz domains [2]. Although condition (2.1) is too strong in general, the exponent ρ in (2.1) cannot be improved. This can be seen in the case $D = K(\pi - \alpha, 1)$ and μ is on the negative x_1 -axis, with the aid of (1.2).

It is not known (1) at this point if a nontrivial Green potential on a starlike Lipschitz domain has radial limit zero almost everywhere.

We may also consider the limit of u along curves instead of line segments, especially curves which nearly preserve the x_1 and x' distances between points in L.

THEOREM 3. Let D, L, μ and u be the same as in Theorem 1. Let $f = (f_1, f_2, \dots, f_{n-1})$ be a C^1 function from $L \cap D$ to \mathbb{R}^{n-1} and E be a subset of $L \cap \partial D$ of positive (n-1)-dimensional Hausdorff measure (or positive surface measure). Suppose for each point x in E, f and $\nabla f_1, \nabla f_2, \dots, \nabla f_{n-1}$ can be extended continuously to x through some interior cone at x; moreover the normal of ∂D at x, if it exists, is not on $\{\sum c_k \nabla f_k : c_k \in \mathbf{R}\}$. Then for all $x \in E$ except a set of (n-1)-dimensional Hausdorff measure zero, there is a unique level curve of f ending at x, nontangential to ∂D and u has boundary limit zero along that level curve at x. Moreover, the exceptional set can be reduced to $(n-2+\rho)$ -dimensional Hausdorff measure zero if the set on E where no nontangential level curves end is small enough.

For the proof, we first construct a saw-toothed region Ω in D with teeth at points of density of E, next use Whitney's extension theorem to modify f outside Ω so that f is C^1 on \overline{D} , finally prove the theorem when f is C^1 on \overline{D} . Details are similar to those in [11]; we refer the reader to [11].

3. Regions with smooth boundaries. If ∂D is C^1 , then (2.1) can be replaced by

$$\int\limits_{D}d(y)^{\varrho_0}d\mu(y)<\infty\quad \text{ for some } \varrho_0\in(0,1).$$

⁽¹⁾ Added in proof. The answer is now known to be positive.

ich

This is true because for every $\beta \in (0, \pi)$ there exists some b > 0 depending on β so that there is an exterior cone of size $K(\beta, b)$ at every point on ∂D .

If ∂D is C^2 , then at every point x on ∂D there is a ball of a fixed size exterior to \overline{D} and tangent to ∂D at x. If x is a positive harmonic function outside a ball and vanishes on the sphere, then the value of x at a point near the sphere is proportional to the distance from that point to the ball. Using this fact instead of Lemma 1 we may replace x by 1 in Theorems 1, 2, and 3. Thus condition (2.1) is weakened but the corresponding exceptional set is enlarged.

Suppose that D is a Liapunov or a Liapunov-Dini region [10]; by an estimate of a harmonic function obtained in [10], we may also replace ϱ by 1 in the above theorems.

References

- R. Courant and D. Hilbert, Methods of mathematical physics, I, Wiley-Interscience, 1966.
- [2] B. Dahlberg, On estimates of harmonic measure, Arch. Rational Mech. Anal. 65, No. 3 (1977), pp. 275-288.
- [3] N. Dunford and J. T. Schwartz, Linear Operators, I, Wiley-Interscience, 1957.
- [4] R. Gariepy and J. L. Lewis, A maximal principle with applications to subharmonic functions in n-space, Arkiv f. Mat. 12 (1974), pp. 253-266.
- [5] L. L. Helms, Introduction to potential theory, Wiley-Interscience, 1969.
- [6] J. E. Littlewood, On functions subharmonic in a circle (II), Proc. London Math. Soc. (2) 28 (1928), pp. 383-394.
- [7] N. Privalov, Boundary problems of the theory of harmonic and subharmonic functions in space (Russian), Mat. Sbornik 45 (1938), pp. 3-25.
- [8] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton 1970.
- [9] E. B. Tolsted, Limiting values of subharmonic functions, Proc. Amer. Math. Soc. 1 (1950), pp. 636-647.
- [10] K.-O. Widman, Inequalities for the Green function and boundary continuity of the gradient of solutions of elliptic differential equations, Math. Scand. 21 (1967), pp. 17-37.
- [11] J. M. Wu, Boundary limits of Green's potentials along curves, Studia Math. 60 (1977), pp. 137-144.

UNIVERSITY OF ILLINOIS URBANA, ILLINOIS

> Received April 8, 1976, in revised form August 1, 1976 (1144)

On extending and lifting continuous linear mappings in topological vector spaces

W. GEJLER (Saransk, U.S.S.R.)

Abstract. (1) Let 0 . Then there is no non-zero topological vector space which has the extension property for the class of all <math>p-Banach spaces with separating continuous duals.

(2) If $\mathscr X$ is the class of all Fréchet spaces (or of all separable Fréchet spaces, or of all nuclear Fréchet spaces, or of all metric vector spaces) and a space P ($P \in \mathscr X$) has the lifting property for $\mathscr X$, then P is finite-dimensional.

Let $\mathscr K$ be any class of topological vector spaces (1) (briefly TVS's), and let E be any TVS. The space E is said to have the extension property for $\mathscr K$ if for every $X \in \mathscr K$ and for every subspace $Y \subset X$, each mapping (= linear continuous mapping) $f \colon Y \to E$ has an extension to a mapping $g \colon X \to E$. Dually, E is said to have the lifting property for $\mathscr K$ if for every $X \in \mathscr K$ and for every closed subspace $N \subset X$, each mapping $f \colon E \to X/N$ has a lifting to a mapping $g \colon E \to X$ (i.e. $f = p \circ g$, where p is the quotient mapping from X onto X/N). If $E \in \mathscr K$ and E has the extension property for $\mathscr K$ [E has the lifting property for $\mathscr K$], then E is called an injective [projective] space in $\mathscr K$.

Let $\mathcal K$ be the class of all Banach spaces. Then (a) E is an injective space in $\mathcal K$ iff E is a P_λ -space for some $\lambda \geqslant 1$; (b) E is a projective space in $\mathcal K$ iff E is isomorphic to $l_1(T)$ for a certain set F ([2], [10], [11], [13]). Any product [countable product] of injective Banach spaces is an injective space in the class of all locally convex spaces [of all Fréchet spaces] (see [11]). From an argument of G. Köthe ([10], P, 182; see also P, Rolewicz [12], P, 65) it follows that for each P is a cuthor proved in [3] that in the class of all locally convex spaces a space P is projective iff P is a direct sum of one-dimensional spaces. This result is also true for the class of all complete locally convex spaces [4]. Using the method of [3], one can show that in the class of all TVS's a space P is projective iff the topology of P is the finest vector topology for the vector space P.

⁽¹⁾ we include the Hausdorff condition in the definition of TVS.