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Boundary limits of Green’s potentials along curves II
Lipschitz domains

by

JANG-MEI G. WU (W. Lafayette, Ind.)*

Abstract. On a Lipschitz domain D in space, let x be a mass distribution and «
the Green potential of u. Conditions on p are given so that 4 # + co; under the
same condition we show that the boundary limits of % along curves with certain
differentiability properties are zero almost everywhere.

Green’s potential occurs in the study of subharmonic and superhar-
monic funetions via Riesz decomposition theorem ([5], p. 116). Let D
be an open subset of R™ having a Green’s funéetion @; Gleen § potential w
given by a mass distribution u is defined to be

(0.1) = [G(a, y)au(y)
3 4

for every % € D. When D ig the unit disk in the plane, the necessary and
sufficient condition for w % -+ ocois

[a—lhauy) < + oo
D

under this condition % has radial limit zero at almost every point on the
unit circle, see Littlewood [6]. Later in 1938, Privalov [7] proved the
similar result for Green’s potentials on the unit ball in R". The nontan-
gential limit of Green’s potential need not exist at any point on the
boundary, as pointed out by Zygmund, [9], pp. 644-645.

The purpose of this paper is to study the boundary limits of Green’s
potentials in a Lipschitz domain D in R*, n > 3 along curves with certain
differentiability properties. The problem for # = 2 was studied in [11],
where, with the aid of conformal mapping, we need only o study the
limit of Green’s potentials on |2| < 1 along curves with the same differen-
tiability properties. When n > 3 the conformal mapping technique does
not apply and it is not even obvious for which x the Green’s pofential
of u is not identically +oo. Our main tool is an estimate on a certain
harmonie function in a cone derived from a series representation of that

* Current address: Purdue University, West Lafayette, Indiana.
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function; the representafion was used by Gariepy and Lewis, [4],
pp. 261-262, to obtain a Phragmén-Lindelof result for subharmonie
funetions in R"™. In Theorem 1, we shall give a sufficient condition on U
in D for 4 # + oo and in Theorems 2-and 3 we shall show that under
this condition, the Green potential has the desired boundary property.

1. Preliminaries. We use (2, #,,...,%,) to denote a point # in
R 03, lo| = (309", @ = (2, ..., »,) and cos0 = @, /jn| if @] 5 0.
We denote the cone {w: |0f<<t, |#|<< h} by K(¢, h). The symbol € will
denote strictly positive constants that may vary from line to line.

From now on we shall let D be a bounded Lipschitz domain in R",
n 2 3. That is, 0.D can be covered by a family of open right cylinders I;
there is a local coordinate system @ = (»y, #') corresponding to each I
with #, € R, @’ e B"™" and #,-axis parallel to the axis of L 50 that o, = FiC)
is Lipschitz for # on 0D AL and LnD = Lea{n: o, > f(z')}. And we shall
let o> 0, & > 0 be two number depending on D so that at every point z
on (J_D there is a cone with vertex » of size K(a , @) completely exterior
to D. i

We use d(z) to denote the distance from a point x e D to 0D; if
% € LnD, we use & to denote the point on 0D L with # = &' in the local
coordinate system in L. It is clear that if » is in T and the point on 4D
closestto  is in L 0D, then lo—F| < Cd(s). Let G(z, y) be the Green’s

function on D, u be a positive miass distribution on D and % be the Green’s

potential of 4 given by (0.1). ’

For the properties of Lipschitz domain the reader is reférred to [8].
For the properties of Green’s potentials in general the reader is referred
to [5]. :

Here we shall give an estimate of certain harmonic functions in cones.
The two-dimensional version of Lemma 1 can be proved easily by con-
formal mapping. ’

) LEMMA 1. Let v, 0 <0< 1, be @ harmonic Junction on K (¢, b) symme-
tric about @,-awis (that is, v can be regarded as a Jumction of || and 0 alone)
and with boundary value 0 on 0K (t, ﬁ)n{[m[< h}. Then there is a positive
number ¢ = o(n,1) so that )

2

L (11) (@) <0!% on K(t, k)

and, for any small & > 0,

(1.2) v(z)=c

|2
*}7' on K(t—e, b/2)

for some positive constant ¢ depending on & and v. Moreover, o is a contin-
wous strictly decreasing function of ¢ and e(nymf2) = 1.

iom®
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Proof. The representation (1.3) of v is adapted from Gariepy and
Lewis ([4], p. 262). Let 0 < p, < y,... be the eigenvalues-of the boun-
dary value problem .

dp+yp =0 on C(f),
@ =0 on the boundary of C(¢),

“where O(t) = {|#| =1, |8| <} and & is the operator defined in terms of

the Laplacean A by

9 ]
A = Tl—n_é;: (T'n‘l W) +1.—2 8.

Let {p;} be the corresponding eigenfunctions normalized by

f(p,i(l'm, =1 for k=1,2,..,
o)
where m is the surface measure. Because ¢, are symmetric about »,-axis,
we may regard them as functions of 6 alone whenever it is more con-
venient. Let ¢, be the positive root of gp(g+n—2) =19, and a;
= [ p(x)v(iz)dm(z). Then
40

(1.3) o(@) = D a,

1

[
er(0).

z
h
Tt is known ([1], VI, § 6) that ¢, is either strictly positive or strictly nega-
tive in €(¢) and ([4], p. 262) that the series

2

converges uniformly in K (¢, h/2), in fact on K (3, /2). From these facts,
formula (1.3) and the definition of v, it is ready to see (1.1) and (1.2) if
we let o = g;. It is known ([1], VI, §2) that y, is a continuous, strictly
decreasing function of 7, and therefore so is o. When ¢ = =/2, it is easy
to verify that ¢, = cosf and y; = n—1. Thus ¢(n, =/2) = 1. This proves
Lemms 1. :

ep—ey

21 i

2. Main result. We recall that there it an exterior cone of size K (a, @)
at every point on 0D and let ¢ = g(n,w—a) a8 defined in Lemma. 1.
We shall give a sufficient condition on u for w s --oco.

TrroreEM 1. If
(2.1) [ a@rany) < +oo,
D

then u %= + oo.

6 — Studia Mathematica LXII.3
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Theorem 1 i a sirﬁple consequence of the following lemma and the

fact that, under the assumption (2.1), x is finite on every compact sub-
set of D.
LeMMa 2. For each x € D, there ts a constant C depending on © such that

G (2, ) < Cd(y)*

whenever y € D and 2d(y) < d(»).

Proof. We let 4 =d(»), yeD and 2d(y)< i, w a point on 4D
closest to y and K a cone at w of size K (r—a, A/2) whose complementary
cone is exterior to D. Let v be the harmonic function in K with boundary
value 1 on the spherical piece of 0K, with boundary value 0 on the remain-
ing part of K. When # is in Dnthe spherical piece of 0K, we have
l#—a2| > 1/2, and thus

(2.2) - G(z,2) < 1z—m]24"< o = (.
From (2.2) and the maximum principle for };a,rmonic funections, we have
(2.3) Q(z, z) < Co(e) |
for z € Dn K. Therefore, from (2.3) and Lemma 1, we have
Ay, 2) < Od(y).

THEOREM 2. Suppose that u satisfies condition (2.1) in Theorem 1 and L
18 & right eylinder intersecting 8.D, on which there is a local coordinate system
with properties described in the definition of D. Then for all poinis P in LA 0D
6506pt & set of n—2 -+ g-dimensional Hausdorff measure zero, w has limit
zero along the line segment parallel to the amis of L ending at P.

Proof. By covering LnoD with small cylinders and using the Le-
besgue number argument we may assume that the diameter of L is less
than & and that 4 18 concentrated on a subset S of T, so that for each z e §
the point on 8D, closest to « is in L.

From now on we use §, ¢ to denote |z —F| and ly—#l, respecmvely,
whenever # and y are points in L. Fix 4 in L;if y is in L, we use y to denote
' —a'l. (We recall that o' = (my,,,:.., @) and Y = (Y ..., ¥,))
We divide & into three sets in teTms of y as fo]lows:

Bi:yel, y<s, lo—s|<s/2,

Syt yel, y<s, lo—s|> s/2,
8 yel, y>s.

©
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We want to show

(2.4) Gz, y) <Oy ™ in 8y,
(2.5) G(2,y)< 0o ™% in §,,
(2.6) Gz, y) < 0s°0?y* ™ in §,.

For any y e S,
4 Gz, y) < lo—yP "<y
We observe that there is a constant ¢ > 0 depending only on the
Lipschitz condition on I so that |y — | > cs whenever y e 8,. Fix y € 8,
and assume that the origin 0 of the local coordinate system is at §. Let I
be {zeD: |2] < ¢s/2} and observe that
Gz, 3) < 0"

for 2 € 0F. Let K be a cone at § = 0 of size K (= — a, 6s/2) whose comple-
mentary cone is exterior o D and v be the harmonie funetion in K with
boundary value 1 on the spherical piece of X, value 0 on the remaining
part of K. From Lemma 1, we see that

- 2(2) < Cl2l(es/2)~°
for z € F. By the maximum principle, on F we have
Gz, 3) < Olzts* e, ‘
If y is in 7, then
Gy, ») < Cly|Ps*""% = Oos* ™8
if y is not in ¥, then o > ¢s/2 and
Ay, ») < lo—y "< (6s)* " O8> "0,

We have proved (2.5).
Now fix y in I with y >s and assume # is the origin. Let T be
{£ e D: |2] < y/4} and observe that [z| = [z—7| > y. Therefore, for 2z € 0T

(2.7) Gz, 0) < [p—af~" < Oy

Let K be 2 cone at § =0 of size K(n—a, y/4) whose complementary

cone is exterior to D and v be the harmonic function on K defined as in

the last paragraph. From Léemma 1, we see that ;
v(2) < O (v /4)"°

for # ¢ T. By the maximum principle, on T we have

G(z, 0) < Olz)2p* e,
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If y is in T, then
Gy, 0) S Clylry* ™" = 0oty
it y is not in T, then ¢ > y/4 and
@y, 2) < lo—y P < Oy < 0oty
We have, in fact, proved thaf for any two points #,y in L if " —y'|
> lg—&| then i

(2.8) Gy, #) < Oc®y* "0

Under the notation in the last paragraph, if z is on 87, then |¢' —a'|
> y/2 > |g—#|. Thus, from (2.8),

(2.9) Gz, 1) < Osy* ™0

for ¢ e 3T. Following the argument in the last paragraph with (2.7) replaced
by (2.9) if y € T, or switching the roles of » and y, then following the proof
of (2.5) if y ¢ T, we may obtain

Gy, o) < Oy~

if y e L and y > s. We have proved (2.6).
The following part of the proof is a slight variant of Littlewood’s ([6],
Pp. 392-394); we shall not give too much detail. Let L(g) = {y € L:
]y "‘:’7[ < q}i
) = [a(yras(y),
Lig)
and for # e LndD, let ®(#,t) be the integral [d(y)?du(y) extended over
L{g)n{y: ly'—&'| < t}. It can be shown by a lemma in [3], p. 210, that
) i
limsup @9 <Velg)
-0

tn—2+o

(2.10)

on a set H(q) whose complement in LndD is of (n—2+ p)-dimensional

Hausdorff measure < € V:@ In order to prove the theorem, it is enough
([6], p. 392) to show that for each small ¢ > 0 and for each & in H(g),

limsup [ G(z, y)du(y) < CVelq)
Lig)

(2.11)

a8 £ -> & along the segment o’ = 4.
We recall that s is- concentrated on 8 < I and, for each yeS&,

Boundary limils of Green’s potentials 293

o = ly—F| < Cd(y). From (2.4), (2.5), and (2.6) we may obtain that
[ 6@, y)an(y)

Lig)

s s c
<§7[ O pmaAB(y) + [ 087D (p) +t [ Oy 2B ),
0 0 0

where ®(y) = O(&, y). (2.11) may be obtained ([6], p. 386) by applying
(2.10) and integration Ly parts to the above inequality. We have proved
Theorem 2.

A similar proof gives the radial limit of # in a starlike Lipschitz
domain whose boundary is given by v = f(&) where |&] = 1 and f is Lipschitz.

It should be emphasized that when a << /2, the exceptional set in
Theorem 2 is smaller than the expected set of (n— 1)-dimensional Haus-
dorff measure zero, which is the same as the haimonic measure zero for
Lipschitz domains [2]. Although condition (2.1) is too strong in general,
the exponent p in (2.1) cannot be improved. This can be seen in the cage
D = K(r—a,1) and g is on the negative w-axis, with the aid of (1.2).

It is not known (1) at this poins if a nontrivial Green potential on a stax-
like Lipschitz domain has radial limit zero almost everywhere.

We may also consider the limit of w along curves instead of line
segments, especially curves which nearly preserve the », and 2’ distances
between points in L.

TumoreEM 3. Let D, L, and 4 be the same as in Theorem 1. Let
F = 1, o,y fuz1) be a C function from LD to R* ' and F be o subset
of LndD of positive (n—1)-dimensional Hausdorff measure (or positive
surface measure). Suppose for each point z in B, f and Vf, Vi, ..., Vs
can be extended continuously to » through some interior cone at x; moreover
the normal of 0D at w, if it ewists, is not on {3} ¢,V f: e'e RY. Then for all
x el emoept o set of (n—1)-dimensional Hausdorff wmeasure zero,
there is o unique level curve of f ending ot », nontangentiol to 0D and u
has boundary limit zero along that level curve at &. Moreover, the exceplional
set can be reduced to (n—2 - o)-dimensional Hausdorff measure zero if
the set on T where no nontangential level curves end is small enough.

For the proof, we first construct a saw-toothed region £ in D with
teeth at points of density of Z, next use Whitney’s extension theorem
to modify f outside 2 so that fis C* on D, finally prove the theorem when f
is 0* on D. Details are similar to those in [117]; we refer the reader to [11].

3. Regions with smooth boundaries. If 4D is ¢%, then (2.1) can be
replaced by :

fd(y)i‘ﬂd,u(y)< oo for some gy (0,1).
D

(*) Added in proof. The answer iy now known to be positive.
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This is true because for every B € (0, =) there exists some b > 0 depending
on 8 so that there is an exterior cone of size K(f, b) at every point on dD.

It 8D is (2, then at every point 4 on 0D there is a ball of a fixed size
exterior to D and tangent to D at #. If v is a pogitive harmonic funetion
outside a ball and vanishes on the sphere, then the value of » at a point
near the sphere is proportional to the distance from that point to the ball.
Using this fact instead of Lemma 1 we may replace ¢ by 1 in Theorems 1, 2,
and 3. Thus condition (2.1) is weakened but the corresponding exceptional
seti is enlarged.

Suppose that D is a Liapunov or a Liapunov-Dini region [10]; by
an estimate of a harmonic function obtained in [10], we may also.replace p
by 1 in the above theorems.
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On extending and Lfting continuous linear mappings in
topological vector spaces

W. GEJLER (Saransk, U.S.8.R.)

Abstract. (1) Let 0 < p < 1. Then there is no non-zero topological vector space
which has the extension property for the class of all p-Banach spaces with separat-
ing continuous duals.

(2) If o is the clags of all Fréchet spaces (or of all sepa.rable Fréchet spaces,
or of all nuelear Fréchet spaces, or of all metric vector spaces) and a space P (P e ")
hasg the lifting property for o, then P is finite-dimensional.

Let o be any class of topological vector spaces(l) (briefly TVS’s),
and let B be any TVS. The space & is said to have the extension property
for & if for every X e A" and for every subspace ¥ < X, each mapping
(= linear continuous mapping) f: ¥ — F has an extension to a mapping
g: X — B. Dually, F is said to have the lifting property for 2" it for every
X e A" and for every closed subspace N < X, each mapping f: B — X [N

‘has a lifting to a mapping ¢g: F— X (ie. f = pog, where p is the quo-

tient mapping from X onto X/N). If B € A and F has the extension prop-
erty for " [E has ‘the lifting property for '], then E is called an injec-
tive [projective] space in A .

Let A be the class of all Banach spaces. Then (a) F is an injective
space in o iff B is a P,-space for some 1> 1; (b) F is a projective space
in " iff B is isomorphic to I, (I") for a certain set I" ([2], [10], [11], [13]).
Any product [countable product] of injective Banach spaces is an inject-
ive space in the class of .all locally convex spaces [of all Fréchet spaces]
(see [11]). From an argument of G. Kothe ([10], p. 182; see also S. Role-
wiez [12], p. 65) it follows that for each p & (0, 17 the spaces 1,(I") are pro-
jective in the class of all p-Banach spaces. The author proved in [3] that
in the class of all locally convex spaces a space F is projective iff # is
a direct sum of one-dimensional spaces. This result is also true for the
clags of all complete locally convex spaces [4]. Using the method of [3],
one can show that in the class of all TVS’s a space F is projective iff the
topology of E is the finest vector topology for the vector space F.

(1) we include the Hausdorff condition in the definition of TVS.
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