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for positive numbers a and B. Then, for every feL'(r?) and for any pair
{ny}, {m;} of non-decreasing sequences,

limmgm, [ [ f(o+u, y-+0) O(ma) Plmo)dudo = (5, 9)

—00 -0

almost everywhere on R
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Vector measures on the closed subspaces of a Hilbert space
by
R. JAJTE and A. PASZKIEWICZ (L6dz)

Abstract. The present paper is concerned with vector valued measures defined
on the lattice of all orthogonal projectors in a separable Hilbert-space H, with values
in a Banach space X. Those measures can be extended to bounded linear. operators
on the space L (H) of all linear operators in H. In particular, we consider the measures
taking their values in a Hilbert space # and in L (). As a corollary we obtain a de-
scription of homomorphisms of a standard Hilbert logic into itself. This is the gener-
alization of the well-known theorem of Wigner.

Introduction. Let H (or #) denote a Hilbert space (real or complex).
Throughout we always assame dim H > 3. Let 8z (resp. S,) be the lattice
of all orthogonal projectors in H (resp. &) and let L(H) be the space of
all bounded linear operators acting in H.

An operator M e L(H), which is self-adjoint, nonnegative and trace-
class will be called the s-operator. -

For any subspace H' < H we shall denote by Sp. the lattice of all
projective operators acting in H'. -

Sg will also he treated as a set of operators from Sy which vanish
on HoH'. ' : ’

Let X be a Banach space (real or complex).

DeFINTTION 0, The mapping &: Sy—X will be called the wvector
Gleason measure (VG-measure) if

(i) for any sequence of mutually orthogonal: projectors Py, P, ...
from 8y the series

(0.1) ' 2 E(P)

is weakly convergent to E(OP;

(i) sup [£(P)] = K < oo.
PeSH

By the well-known theorem of Orlicz [4], the accepted definition
immediately implies unconditional and strong comvergence of (0:1).

2 — Studia Mathématica EXII13
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Gleason’s theorem [2], giving the general form of a probability measure
on the lattice of projective operators, is the basic ool in the study of
VG-measures. This theorem states that if £: §y—~R* is a non-negative
V@&-measure, then there exists an s-operator M such that

(0.2) EP) =tr MP, Pelg.
In 1971 Sherstniev [6] gave the following generalization of Gleason

theorem for bounded real-valued measures.

TagorEM 0.1 Let X = R. For each VG-measure &: Sp—~R thefe
ewists a self-adjoint s-operator M such that (0.2) holds.

Theorem 1 in §1 can be obtained as an easy consequence of Sher-
stniev’s theorem. The proof given by us differs from that of Sherstniev
and makes use only of the Gleason theorem.

§1

1.1. Now we shall give some description of a geﬁéral VG-measure.
TegorEM 1. If &: Sg—>X is a VG-measure which takes values in
a Banach space X, then for every x* € X* there ewist self-adjoint trace-class
operators ML, M. such that
(1.0) (E(P), &%y =tr MWP+1tr MZP
for amy operator P € 8. ’
Tf H is & complex Hilbert space, then of course, we can write
E(P), %) = tr M. P,
where M. is an s-operator of the form M. +iMZ..
First we shall show the following

- Remark 1. For a finitely-dimensional subspace X < H there exist
uniquely defined limear self-adjoint operators My, M% acting in X such that

(1) = (6(P),#%) =tr MxP+itr M¥P (Pefy),
and for two finitely-dimensional subspaces X « X' « H
(1.2) Mis =Py Mie (i =1,9; veX)

{Px an orthogonal projection on X).

Proot of Remark 1. Let X Z c H and 3 <dimZ < co. Tho
functions

#: P—ctr P+ Re (£(P), &%),
v3: P—otr P+Im (£(P), 2%,
where ¢ = sa:é) | (&), #*)| (& means one-dimensional projection on the line

s
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gpanned by @ e H), are positive VG-measures on 8. Hence, by Glea-
son’s theorem,

w(P) =t M'P (i =1,2; Pefy)

for some self-adjoint operators M', M? in Z and for M} = M —el,,
i =1,2 (1 the identity operator on Z) we obtain

(P), w%) = tr MLP+itr MZP (P e8p).
To obtain (1.1) it suffices to put
Miz =Pz Mhs (i =1,2)

for ® € X, where Py is the orthogonal projection on X.

Qondition (1.2) is also satistied, as the operafor MY is uniquely
defined by the function m—(Mya, ) = | tr Mia on X, ie. by the
function z—>[@|f Re(£(%), #%), and My is defined by the function z->
Nl Ton{ £ (), %) '

Proof of Theorem 1. For z,y e H, pub
(1.3) d(,y) = (Miz,y) (i=1,2)

where X is the space spanned by vectors &, y.
& (#,y) is then uniquely defined and homogeneous. Liet now Z be
the space spanned by vectors », o',y e H. Then, by (1.2},
deta,y) = (Myla+a),y) = (Mg, y)+(Mo', 9)
=d'(z,y)+d(@,y) (1=1,2).
Similarly we obtain )
@, y+y’) = a'i("‘"s y)+ai(w7 y) (@,y,yeH,i=1, 2).
‘We also have i
- sup (@', @)] < sup | (£(0), %) | < Kl
zeH fzll=1
lzi=1 ‘
and thus there exist bounded linear operators M., M. such that
(aim:y) = (J‘M;:‘w)y) (mayEHy i=1, 2).
Clearly, M., M2, are s-operators since for any orthonormal sequence
21, %2y ... in H we have

Z (Miz, 2) = 2 Re(£(3), #*) = Re (5 (2 &), a;*),
i i

i

D (Mt &) = m(§( &), %),

i A

and (1.0) is satisfied.

e AT
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1.2. CororLARY 1. Hach VG-measure taking values in & Banach
space X can be evtended to o continuous Unear operator E: L(H)-»X
ddentical with & on Sy (L(H) and X are endowed with uniform and strong
topologies, resp.). (%)

Proof. Let us call A e L(H) a simple operator if
4 =3P,
i=1

where 4, ..., 4, € R (or C) and P,, .
mutually orthogonal), and let

f4) = Zn‘ A &Py

i=1

(1.4)

-y P, €8y (Py, ..., P, need not be

if A is simple. By Theorem 1, &is uniquely defined and

(1) £ is a linear operator on the space of simple operators.
Moreover, by condition (i) of Definition 0, -

(2) for any simple operator A
IE(4)] < 4K 4],

Indeed, we have

where K = gup [|&(P)].

PeSg

IEA)) = (E4), o),
for some #§ ¢ X*, |lng)| = 1 and, by Theorem 1,
NEA) =t MA 4itr MPA.
Let P*, P~, @*, O~ be such projections that
(MY =P *M'—P~M', M| = QT M —q~ I,
where |3 — VOIF (i =1,2). Then, by (ii), '
tr A+ tr A < AN (|30 -t {227

~x
< ANIE@H+HEEN+ 1@+ 1@
) < 4K |41
For any operator A e L(H) there.is a se 5l
pera £ . quence of simple operator
Ay, 4y, o which tends uniformly to 4 if H ig complex and fo &(AI; —}-A(')“l)‘S
where A¥ is the operator adjoint o A, if H is real. Then we can put

E(4) =lim g(4,). ()

’

(*) The space X must be complex when the space H is a complex one.
() In the real case wo have £(4) = & {4 +4+)/2). '
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By (1) and (2), £ is a well-defined and continuous operator on L(H),
what completes the proof.

Obviously, it is also possible to extend any VG-measure & to an
operator on some space of unbounded (integrable) operators on H bub
such “theory of integration” will be the aim of a subseguent paper.

1.3. We shall now single out an important class of VG-measures,

DerINITION 1. VG-measure &: Sg—# taking values in a Hilberf
space # is called an orthogonal Gleason measure (OG-measure) it
(j) for any mutually orthogonal operaiors P, Q € Sy, the vectors &(P)
and £(Q) are muiually orthogonal. '
It can easily be verified that for VG-measure, taking values in the
Hilbert space, conditions (i) and (j) imply (ii). Indeed,
6P = 1EIx)F — 16 Ig—P) < NI

for any operator P € Sy. Let us notice the following trivial
ProPOSITION 1. For each OG-measure &: Sg—> there is a umiquely
defined self-adjoint s-operator M such thal

(6(P), £(@) = tr MPQ

for any commuting operators P, Q € 8.

Proof. By OGleason’s theorem there exists an s-operator M
such that .

@) = tr MP
for any P € Sg. For commuting operators P, @ € § we obtain, by (j),
(E(P), E(Q)) = IE(PQ) = tr MPQ.

The following theorem gives the general form of OG-measure.

THEOREM 2. Let £: Sg—>3 be an arbitrary orthogonal Gleason measure.
Then ‘

1. If both the spaces H and # a,rercomplem, then there ewist s-operators
M’ and M' acting in H such thai

(1.5) (8(P), £(Q) = = MPQ+tr M"QP

for any projections P,Q € 8. When dim H = oo, the operators M' and
M are uniquely determined by the measwre &; if dim H = n< co, then
the correlation fundiion of & can be umiquely recorded as

(1.5%) (£(P), £(@)) = tr M'PQ+tr M"QP+ o tr PQ,

where o > 0 is a certain constant, and we additionally require the operalors
M’ and M to vanish on some subspace of H.
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IL. If both the spaces H and # are real, then there ewists. strictly one
s-operator M acting in H such that

(L6)  (E(P), &(Q) = tr MPQ =tr MQP, P,QeSy.

The authors wish to thank Professor C. Ryll-Nardzewski for having
noticed that the original version of Theorem 2 was incorrect, which enabled
them to improve their paper. They would also like to thank Dr E. Hensz
for her help in giving shape to the corrected proof.

Let us notice that Theorem 2.1T follows immediately from Corollary 1.

Tndeed, let £: L(H)->2# be the “integral” of the measure &. Then
there is an s-operator M, uniquely determined, such that

(€(P), (@) = IEPQIF = tr MPQ

for any commuting operators P,Q eS8y, and M is now self-adjoint.
Therefore, when the operator 4 e L(H) is a finite linear combination
of mutually orthogonal projections, then

IECA)F = tr 4%
For any operators P,Q € 8y we have

P+Q =lim4,,

where each operatior A, 'is a finite linear combination of mutually ortho-
gonal projections and convergency is uniform. Thus

IEP+QIF = lim [[E(4,)|} = tr M(P+Q)
and, as M is self-adjoint,

IE@+QIF = 2 tr MPQ +tr MP+tr MQ.
Therefore

2(6(P), £@Q) = IEP)+ EQIF —IE(P)F - 1E(Q)IF = 2 tr MPQ.

The proof of Theorem 2.I is more complicated. First we shall intro-
duee some notations and prove some auxiliary lemmas,

For any set M < H, let [M] denote the subspace of H spanned by
vectors from M. [M] is the real Hilbert space if H is real, and [M] is
complex if H is complex.

The projective operator which projects on [M] will be denoted by
the same symbol. The field of real (resp. complex) numbers will be denoted,
a§ usual, by R (resp. C) and &, for a € C, will denote the number con-
jugate to a. :

‘We shall prove the following
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Tmmua 1. If H, is the n-dimensional complex Hilbert space wit{z tm
orthonormal Dagis - €y ..., 6y, and the mairiz (Tpgrslpgrs—1, ..., » satisfies
the conditions ‘

1.7 Togrs = Tropg »

Py, 78 =1y,

(1.8) ’ 2 qurs(Pepy 3q) (Qe,, ;) = 0

Lrs=1
for any commuting operators P, Q € 8g,, thew

(1.9) Tpu=0 i aFoandb=d,

Tt = Totat = —Tiota = —Ttar = Fab
if az#bandli=1,...,n

(1.10)

(i.6. Ty does not depend on 1) and
(1.11)
(1.12)

T = —Toapa (0 particular, Typeq = 0),

T sy + Tocve+ Toaca =0
for any a,b,6,d =1,...,%

5 B
Proof. Putting in (1.8) P =[], €@ = [g,,] (where @ =1,...,%,
b=1,...,n are taken independently), we obtain

(1.13) Too =0, G0 =1,..,m.

Now if we put P = @ = [ae,+Be;] (where a, f e C, [a[f—i—]ﬂ;’- =1;
a+#b, a,b=1,...,m), then the only non-vanishing matrix elements

(Pey, &), (Qer, &) are
(Pes, 62) = (Qear &) = lal’,
(Peg, &) = (Q¢a; &) = aB,
(Pey, €5) = (Qep €a) = af,
(Pey, &) = (Qep; €) = 1Bl
and condition (1.8) by (1.13) gives
T a1 0B + Taaplal*ap + Topa 2 8B 4 Topap lal* 1B+ Tappa @™ B+
+Tabbb¢7ﬁ5552+Tba.m1G|243+Tbaabazl§2+1’babula]2 1B+
+ Toup 2B 1B + Topas @B 18 + Tonpa P Bl =0.

This polynomial with respect to a, B is homogeneous. Therefore the con-
dition |a?+ 18P = 1 is not relevant and it is easy to check that thfa coef-
ficients at all different products of variables «, &, 8, § must vanish, so
we have

(1.14) Toure = —Tooar  Lavaa = —Toa
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and
(1.15) Toos = —Toavas  Tasea = Toams = 0,

by the vanishing of the coefficients at ag|p? laag, lal*|Ipl2 a2 6%, 2B
Similarly, putting in (1.8)
P =[ae,+ 6], @ =Tles 6] (la*+18° =1),
as a result of the vanishing of the coefficient at &, # we obtain
Toswe = —Topaa-
Thus by (L.14) :
Tanw = —Toppa = —Tapaa = Toaba
and by -(1.7) we have already obtained (1.10) for ¢ e {a, b}. Note that
(1.9), for ¢, d e {a, b}, is reduced to : ‘
Towws = Topaa = Tatba = Toamy = 0-

Therefore by (1.13), (1.15) all formulas (1.9)—(1.11) are satisfied in the

cage of the indices a, b, ¢, d, ¢ taking two different values at the most

and pg has already been defined for any a, b =1,...,n, a #b.
~Formula (1.10) is now a consequence of :

(1.16) Tate = ~Teoea = Bapy & #b #6 #d,
and by (1.7), the condition o o
{117 Leoas = Tappe = 0

implies (1.9) when three of the indices a, b, ¢, d at the most
mutually different. . T 0% may Do

It we put P = [ac,+ ey, o], @ = [8(a,+ fey) +
- : Dty (e, By, 8 € C
lal* + 181" = ly[P4-18' = 1), then PQ = QP (as Q = P),cand’ (1.83 gives’
a homoggeneous polynomial with respect to the variables y, 8. The restric-
tion [yl + 16 = 1 i3 not relevant and as a coefficient at 67 we may write
Tonaelaf* @+ Togpelal* B+ Topgelaf* B+ Toppeap® -+
+ Toaae @B + Lyape @181 + Thpae 2 1B +
& TotpeB 181" + Tocacallal® + 1) +ToB {1l -+ 1812) = 0.
In this form the coefficient is a homogeneous polynomial with respect
to a, f and as coefficients at af’, |al*f and «|8® we get

(1.18) T = 0,

TabM+Taabc+Tncbc = 0,

(1.19)
Tevae+ Toabe + Tocae = 0. .
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Now we pub
P = [o(aes+Bept+e.)],
Q = [Ql(alea +ﬁ, €p— (aa,_*"ﬁﬁl)ec)] ]
where
e = (laf+ 167 +1)7
o' = (&P +Ip'1+laa’ +BF 1"
and a,d, B, €C are arbitrary, satisfying l&’| 4181 > 0. Then P 1@,
otherwise (1.8) holds once again. The polynomial (with respect to a, B,
o', f') given by (1.8) is now extremely long, but we can immediately write
the coefficients at o' f and apa’f ~
(1.20) ‘ ‘
(1.21)
Tn fact, by an analysis of all non-vanishing elements (Peyy ¢;) and (@6, , £;)
i can be noticed that if we treat the products (Pe,, ¢,)(Qe,, &) a8 poly-
nomials with respect to a, o', 8, §, then the monomial o'f appears only in
(Pe, 6,)(Qesr ) = ngliatﬁl) '

and afa'8 ocours only in

(Pe,, €)(Qea ) = o*¢apa’F,

(Pegy 6)(Qecs &) = 0*¢™*(—apa’B — 1B I ")

(Pegy 6)(Q¢a, €) = 0%'*(—apa’B’ —lal'la’’),

(Peyy 6)(Qecr ) = o*¢*(laf* o'+ 1B\ + e F +aa' BE).

Formulas (1.17) and (1.16) follow from (1.18), (1.20) and (1.19).
Condition (1.12) is (by (1.13), (1.11)) a consequence of (1.21), thus Lemma
1 is proved when dim H, =n =3 (and the indices a, b, ¢, &, can take
three different values at the most). :

To prove Lemma 1 for n >3 it is now enough to exhibit (1.9) for
mutually different numbers (&, b, ¢, d). For the purpose we put P = [ae,+
+Bep), @ = [ye.+0eg) (laf + 18 = lyP+16f =1) in (1.8) and thus we
obtain T,,; = 0 as the coefficient at afys.

Let J denobe the set of all positive integers if dim H = oo, and leb
J ={1,..., dim H} if dim H < co. We denote by (e;);.s an orthonormal
basis in H such that
(1.22) Me; = Ay
where M is given in Proposition 1, and put

H, =[],

Tome®e® =0,
020" (T gy — Topcb — Lacae +Looze) = 0-

jed,

ned.
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Liemma 2. There ewists @ matrid (Upgpe)pgrees SUCh that for any pro-
geotors P, Q € By, (for some m €J)

(@), 6@) = D) UpgrelPey, €)(ery ),

(1.23)
pars =1
and
(124) Upars = Urspg

for any pyq, 7,8 =1, ..., ‘

Proof. Let £ be the linear extension of the measure ¢ onto the whole
gpace L(H). The correlation function (4, B)—~(£(4), £(B)), when
A, BeL(H,), is linear with respect-to 4 and anti-linear with respect
to B, and by the well-known properties of bilinear transformations for
a fixed n € J there exists a Matrix (Uygrs)p, g r.s=1, .,n SUCH that

(E(4), EB) = D Upp(4ey ¢)(Beyy6,), for  A,Bel(H,).

pars=1

Let ug define the operator
it p=a,

1%
E"bep_{o it p#a

for arbitrary numbers ¢,b =1,...,n. Now we have’

n
U:bcd = 2 ’ Uzm (Eabep) eq)(EcdeH 68)

pgre=1
= (S(Eab)y E(Ecd)) = (E(Ecd_)7 g(Eab)) = U:;)cd = Uz;ab
for any a,b,¢,d =1,...,n and n<n'.
Thus, to obtain (1.23), (1.24), it is enough to put
U Pyq, 7, 8€d,

pars T U;qra 3

where 7 = max (p, ¢, r, 8).

Lemma 3. Theorem 2.1 is valid if we in (1.5) additionally require that
* the operators P, Q € 8z with the fized n eJ.

Proof. Let the operator M be given by Proposition 1. For any
commuting operators P, Q € 85 we have by (1.22)

(E(P), £@) = tr MPQ = D] 4,(Pe,, Qe,)
D=1

1

D Iy 80a(Pey, 65) (Qe,, €,)

pers=1

(where 8,, —= 1 if p — ¢ and 8,, = 0 if p 1)
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If we put

Tpars = Upgrs— ApOprlgsy Py, 7,8 = 1,...,%,

then, by Lemma 2, (1.7) and (1.8) are valid for any commuting operators

P,Qe8y, and consequently, by Lemma 1, (1.9)—(1.12) hold for any
p,q,'r,s=1,...,na.ndthusfora.nyp,q,r,seJ. )

TFirst we shall examine consequences of relations (1.11), (1.12). It

we pub .

&1:0: pEJ1P>2:

&p = Tlplp ’
then

Tomwe = qulq_Tlplp = &g_&p for p,qed.
Thus, for f, = A,—d, (»€J);

Upewg = papa+ Ay = Ep+&a'
Moreover, (if a¢,b<ned)

Bats = Unap = Z Uspars (Bt €0) (Eapry €) = (B = 0.

pars=1
Thus for
Og :&a_mf&pi Ba =Aa—0q
ped
we have
{(1.25) totBa =2y Batm = Unamy 0az0
and moreover
(1.26) B.=0

for any @, b €J, & # b. Indeed, for an arbitrary e > 0 there exist a, < ¢
(¢ €J) and a,+ Py = G, +B, > 0forany b e J. Thus f, > —a;> —¢ and
(1.26) is satistied.

Taking advantage of relations (1.9), (1.10), (1.25) and putting po, =0
(# € J) we can verify that

Upgrs = Hor Ogs —igs Opr 1+ (Bp+ 0g) Bpr Bgs

with p,, = E (p, q,7,8 €d). Now we shall take info congideration the
case of the infinitely-dimensional Hilbert space H apart from the finitely-
dimensional one.

" If dim H = oo, then we define the matrices

'm':zlb = fapt+ BanBas

(1.27) ,
Mgy = — g+ O O

a,bed.
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For any operators A, BeL(H,) we now have

(1.28) (E(4), & 2 Upars (A6, €) (Bey, )
pars=1
= D7 (my (e, 6,) (Be,, 6) + My 6,i(Aey, 6)) (Be,, ¢,))
parg=1

I

pr=1

Z M (BT Ao, €,) + Z Mgs (AB* ey, ¢,),
gs=1

where by Bt we denote the operator adjoint to B.
We shall demonstrate that the matrices {my}, {m,,} are positive-
defined. For an arbitrary finite sequence #,, ..., 7, of complex numbers

)3
and &> 0 let s find a, < 8/;21 Ini* (by (1.25), (1.26) a, < 4, and a,—0

a8 a—co). The operator

%

4 = 7971‘-E'1‘1'L0

’ i=1 .

belongs to L(H,) for # = max(n,, k), i.e.
~ B 1
< (E(A), E(-A)) = 2 mpr’?p”r"’ Zmnonoﬂg’?q
=1 7=1
% .
= 2 m;:r"?_‘pﬁr'l' anoz ]ﬂq|2;
pr=1 a=1

that is,
13
Z m;)’r"?pﬁr = —-e
pr=1 :

for every &> 0. So, the matrix {m,,,} is non-negative-defined. Similarly,
for the fixed numbers 7, ..., 7, € C, s > 0, there exists an element

ﬂno < E/Z i’]i’z
=1
(since f, < 4,—0 as n—oc0). Taking in (1.28)

=1

we find that

k
2 MM Tls = —¢,

gs=1
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which means that the matrix {m,} is also positive-defined. Hence there
are s-operators M', M’ such that

(1.29) (6as M) = Mgy,
(1.30) (6ay M) = my, a@,b=1,2,...
In fact, since the matrix {my,} is positive-defined, by (1.27) we have

2R ’ ’
iMgp]” < Mg Myy = "y

(e} o0
ie, a8 > a, << ) A, =tr M << oo, we have for any »,y e X
a=1

a=1

D @, ) (e, 9)miy) = Za 1% 6a)! Zabr(ub,y
ab=1

a=1
AR RPN TE
a=1 b=1
hence the quadratic form
@ 1)~ D (@60, Y)my, @,yeH,
a,b=1 .

is well defined and bounded. Consequently, there exists a linear bounded
operator M’ such that

(@, M'y) = D) (2, 6,) (e, Y)my, @,y eH,
ab=1
and (1.29) holds. Simﬂarlj, there exists a bounded operator M’ fulfilling
(1.30), and M’, M must be s-operators.
If A, B e L(H,), then we have by .(1.28)

(E(4), E(B)) = tr M"AB*+tr M"B*A.

Besides, the measure ¢ uniquely determines the extension £ (when
the space H is complex) and consequently, the matrix U, and operators
M’, M" are uniquely determined.

If dim H = n< oo, then for the matrices {my}, {my} defined in
(1.27) we put

= min 2 MasTyTls

g} ga= 1

= min 2 rﬂpnri

{1} pr=1
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where {»;} is any complex sequence with n elements, satisfying Zn"qi 7; = 1.
The matrices =t

7‘;';8 z’m’{,zs"w‘aqs’ q,8 =1,...,m,
a’h;,',,=m;’,——w”6m, _'pyr—_‘]-;---.,"l',

are already positive defined and uniquely determined by the measure &
At the same mme there exist non-vanishing sequences of complex num-

bers 7 ..., 7, and 77, ..., 7, such that
2 R Ty
2,5=1 pr=1

Taking now the operator
n
4 = 77;’7;:1’}1117

p=1

we will find by (1.28) for v = w'+ "

Inql o p T T
D, r=1
n

+ 2 75 |* g, +

»,9,8=1

+w(2n' Igl?) - (Zn‘ Inp.)
7=1 p=1
Con
~ w(Z: mélz)-(,S iy 12),
o= p=1
o 2> 0. For the operators M’, M", fultilling

(gaa-M 61‘;)—"";’:13; (8,6 =1,...,n),

0< (§(4), £(4)

that is,

) {easy M) = gy,
(1.5") holds.

Proof of Theorem 2. I. By Lemma 3 it is enough to prove Theorem
2.1 for dim H = oco. By Corollary 1 the measure £ must be continuous,
it '8y is endowed with the uniform topology. For any finitely-dimensional
operator .P e 8y there exist both a sequence of integers ,, Mgy -... and
2 sequence of projections P,,P,,... such that P, €8y, (a= 1 2,..))
and P,—P uniformly as n—>oco. Thus, by the well- known propertws of

jfraces of operators, formula (1.5) is valid for any finitely-dimensional
opera.tors P,Q e8yg.

For a.rbltra,ry operators P, @ € S5 we have
P= Dzl Q=1
i . i
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(the series are finite or not), where [a;] (resp. [y;1)(j =1,2,...) are
mutually orthogonal one-dimensional projections. Let (3)

n = E[mj]) Qn =2[’£/)]-
j=1 i=1
Then

and, as it can eagily be verified,
tr M'PQ =limtr M'P,Q,.

Indeed, M’ is an s-operator, and P, (resp. Q,) tends weakly to P (resp. @)
for m—+oco. Similarly,

tr M'QP = limtr ¥"Q,P,
and thus e
(S(P)7 E(Q)) = lim (tr M'PnQn +tr M”QnPn)

B0
=tr M'PQ+1tr M"QP.

This ends the proof of Theorem 2.

Formulas (1.5) and (1.6) have the following interesting interpretation
in the theory of random measures.

A stochastic process (£(P):P eS8y} is called a Gaussian-Gleason
measure it -

(1) &(P)is a Gaussian random variable with the mean value E&(P) =0;

(2) for any sequence of mutually orthogonal projectors Py, Py, ...
from Sg, the random variables £(P;), £(Ps), ... are independent and

E(ZP,-) =2 E(P;) ae.

Formula (1.5) or (1.6) gives the general form of the covariance function
for such a measure.

Using Theorem 2, we can also easily obtain the following corollary
(see [3]):

COROLLARY 2. Let H' and # be complex Hilbert spaces and dim H' > 2,
and let the mapping n: H'—H satisfy

(A) Im(e,y) =0 implies (n(@),7(y)) = (@,9)
G fFdimP< o0 (resp dim @ < o) it is enough to put P, = P (resp. @, = @),
n=1,2,...
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for =,y e H'. Then there exists a real constant &, k| < 1 such that

(B) ) = Re (s, y)+ik Im(o, )
for any =,y e H'.

Proof. Let the Hilbert space H be the orthogonal sum H = H' @[e]
and Je} = 1. We can also assume the existence of a vector f e o, ||f|] =1

such that #(») | f for any » e H'. Let us extend # onto the space H by
the formula

(1.31)
and let

{n{@), n(y)

n(ee+2) = af +n(®), ael,zecH’

£(P) =n(Pe), Pelyg.

Then, for any mutunally orthogonal operators Py P,, ..
an isometry on the set {( Y P;)e, Pye, Pye, ..

. from 8z, 7 iy
-} (by(A)) and

1S Be) = X n(pie).

Thus £ is an OG-measure and, as the norm [|£(P)| is equal to || Pe| (P & Sg),
formula (1.5) in Theorem 2 reduces to

(£(P), £(@)) = Re(Pe, Qe)+ik Im(Pe, Qo)

and |kl < 1. (%)
By (A) we have 7(aw) = an(x) for any « e R, and

n@+e) =n(le+el(la+e|e)
= lle+el’n(lz+ele) = II$+6HZ§([$+6[)
for # € H'. Thus, as £(le]) = ne = f, for any x e H' we obtain, by (1.31),
7(®) =n(@+e)—f = o+ el E(Ja+e]) — £(je]).

(P,Qc8)

Therefore

7

= (Hw+6}}?£([m+ e])— &([ed), ly +el* €([y +e]) —
= Re(lz+el*[s+ele—e, ly+elf [y +ele—e) -
+ik I (o + el [0+ ele—e, IL?/+6M [y+ele—e)
= Re(w,y +ik Im( Y

Now we examine the case where the Hilbert space H is real and 3 is
& complex one. The complex extension H of the space H is constructed

(n, 1) £([e]))

() We htwe (6 —[e]), &(I—[e])) = tr M'(T— [a]) +tr B (I—[6]) = 0 and
thus M’ = afel, M = f[e] for some a, f > 0. Moreover, atf = 1 as (&([e1), £([eD))
=1, and it is enough to put k =f—a.
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as a complement of the quotient space X /N, where X is a pre-Hilbert
space of all formal finite linear combinations

n
Zﬂimﬁ

=1

with the non-negative Hermitian form-

(2 7%, Z C,?Ij}

t=]

nel,m;eH,i=1,..,n,

2 7 (@ ¥7),

and ¥ < X is a null subspace of X. ThespaceHWlﬂbetre&tedasasuhset
of H. Any orthonormal basis {¢;} in the space H is also an orthenormal
basis in the space H, and every bounded linear operator A acting in H
can be extended to the operator A acting in H with the same matrix
elements

(_g.g“ ej) = (Ag‘ii 6}-).

Let us notice that if the operator 4 is symmetric (trace-class, projective),
then A is self-adjoint (trace-class, projective).

COROLLARY 3. If the spaces H and 5 are real and complex, respeci-
ively, then for any OG-measures §: H—>3# there ewists sirictly one self-
adjoint non-negative s-operator M asting in H such that

(£(P), £(@)) = tr PG =& HQP, P,Qe8y.

Proof. Let &: L(H )->R Dbe the “integral” of the measure £ For
an arbitrary operator 4 e L(H) we may pub

E(d) = E(4,) +iE(4y),
where A4,, A; € L(H), and

(Arep 61) = Re(de, 6),

(Aiey, 1) = Tm (e, ¢1)

for a fixed basis {e,} in H. In this way & can be treated as an “integral”
of some OG-measures on Sy and thus

(&), £@) = (), £Q)) = tr H'PG +tr H"GP.
Moreover, the operator M with the matrix elements
(Hey, &) = (M6, &) +(H"ey, &)
is self-adjoint, non-negative and trace-class and
tr HPG = Y (HPQe, e) = Y (' PQey, o)+ D) ('QPey, &)
k k k
= tr M'PG +tx M"'GP
for any P, Q € Sz, which completes the proof.

% . atudia Mathematica LXIIL.3
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§2

2.1. The well-known Wigner theorem [7] gives the general form
of automorphism « of & standard quantum-mechanical Hilbert logic 8.
Namely every such automorphism is of the form

2.1 a(P) = UPU™Y, Pelg,
where U is a unitary or antiunitary operator in H. Formula (2.1) describes
some operator measure on Sz. This suggests the following definition.

DerFINITION. The mapping &: Sz—>L(s#) is called an orthogonal
operator measure if for an arbitrary sequence of mutually orthogonal

operators Py, Py, ... from 8y, the operators £(P), £(Py), ... are mutually
orthogonal, i.e.
EPYTEP) =0 for d#£j(E,]=1,2,..)
and the series
(2.2) D &Py

converges in the weak operator topology to &(3 P;). By Orlicz theorem
H

the series (2.2) is then convergent in the strong operator topology.

The orthogonal operator measure taking values in 8, is called a spectral
Mmeasure.

Theorem 1 enables the extension of an orthogonal measure to an
“integral”, i.e. for the orthogonal operator measure &: Sz—L(H#’) there
exists a continuous linear operator Z: L(H)->L(#) equal to & on Sz.

Similarly to the well-known property of orthogonal opemtor
measures on Boolean algebras, we have

PropoSITION 1. If &: Sp—>L(oF) is an orthogonal normed operator
megsure (i.e. &(Ig) = L4, where Iz and I are the wnit operators in H and
o, respectively), then & 48 a spectral measure.

Proof. For any opérator P e 8y it is enough to consider the pro-
jections &(P) and &(Ig—P) = I,,— &(P). Since

0 = E(Izg—P)T&E(P) = (I, —&(P))T £(P),
we have

. E(P) = E(P)E(P).
The operator on the right-hand side of this formula is self-adjoint, so
;(};)f: E(P)* and then £(P) = (E (P))z. Thus £(P) is a projective operator
in . :

2.2. ¥ a normed specml mea.sme £is a homomorphmm of the

lattice Sy info S, (ie. &( VPi) '“\/EPi and E(/\-P{) —/\ 5(1’1;) for
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any family Py, Py, ... € 8g), then the dimension of the subspace £([x]),
equal to tr £([#]) (finite or not), is independent of « (see, for example,
[8], Proposition 3). It will be proved that the same is fulfilled by any
spectral measure &: Sz—S, for the real Hilbert space H. The spectral
measure &: Sy—S, is, in some sense, characterized by its dimension
defined as

dim & = dim £([z]), weH,s #*0,

namely, we have

THEOREM 3. For amy mormed speciral measure &: Sg—S., where
H and # are real separable Hilberi spaces, and -dim H > 3, there -ewist
unitary operators Uy H—>#;, iel, where I = {1,...,n}, (if dim & =»

<o) or I ={1,2,...} (if &im & = co), such that # is an orthogonal
sum
(2.3) = @F,
i
and
(2.4) §P)= @ UPU; !

for any operator P e S.

If the speciral measure £: Sy—> 8. is an womorphwm, then dim £ =1
and we oblain the theorem of Wigner for a real Hilbert space H.

Proof of Theorem 3. For any vector z e 5 the function

7o (P) = §(P)w, Pelyg
is an OG-measure and, by Theorem 2,
(n2(P), 7.(Q)) = tr M, PQ.

(as H is real), where M, is some s-operator in H. When « € &([e]) (®)
for some vector e € H, [le]] = 1, then

tr M, leo] = (E([eo])m, E([eo])®) = ol

and

tr M, = (£(Ip)a), (§Im)a) = Il

Thus (as M, is self-adjoint and non-negative) M, =
vectors @, b € H, |all = ||b]l = 1, we obtain
(&([aDy, E([B])) trum[f[e][a][b]

=1 ([a]e, [b1e)  if

lzl2 [e] and for

(2.5)

I

i

z e £([e]).

() We shall often identify the projective operator P with the subspace on
which it projects.



GUEST


248 R. Jajte and A. Paszkiswicz

For each vector z & £([e]), e e H ([le]| = 1), we can define a function

lial?

(2.8) U,(z,a) =mf([a])m’ azH,

(a, }5%0.

Then we have

U, (z, a')’l" Uy, a),

2.7 U, (w+y,a) =

(@8) o = U, @0

and by (2.5)

@9 (U.a@, o), Ta(o, ) = 0 U a 110, 336) = e, )
@9 0,0

for any vectors =, y € £([e]), a,bcH, (a,8) # 0 # (b, e).

For a fixed # a function U, («, -) can be extended to the linear operator -

on the whole spaces H, and properties (2.7) and (2.9) will be still preserved.
The operators U,(f,-), where |f| =1, f e £([e]) for some 6 € H, lle]| = 1,
have the following properties-

) (Ue(f’ 7y ) (@, b), a,beH;

(b) U(f, a)e 5 [a] aeH (a 5+ 0);

(e) fLSF, 1, e&([e]) imply Uy (f, a) L U(f', b), a,beH;

@) i f = T,(f, e)ye el, ]| =1, then Uey (F'y ) = U,(fy *)

Property (a) follows immediately from (2.9).

Property (b), for (a,e¢) # 0, immediately follows from (2.6). If
(a,e) =0, a %0, we put
an

o n=1,2,..).

1
@, =a+—e and
n

Op=
Then

L= Udfe)eECe] awd (f*‘

s H) € &([a]).

By (2.8), (2.9), ‘we have

ll f! a) ‘n fn: "— 1.< "Us(f! “)‘"fn[H-‘

Ve (f”’ Ilaﬂ) ‘

||—>0 (a8 n—>o0)

— 05, )+ l\ AT

and

Ufya) =Lm U, (f,, 6) € &([a]).

Vector measures on subspaces of Hilbert spacs 249

Now we shall prove (¢). If £ 1 f, f,f € &(leD, Ifl
by (2.7), (2.9),

(Ue(f3 a): U,(f', a’)) = %I(

= [If'll =1, then,

U(f+], o), U(f+f, ®)) —
_(Ua(f7 a)y Ue(.f! a)) —(Ue(f,: G) Ua(.f) a))]
= Hal (If +1E— WA~ 1F1F) =0

for any @ & H. Let now (e;);.; be an orthonormal basis in H. Then

U.(f,6) LUl &)

and, by (b)

U (f,e) LULS, 6)
fori #§ (i,j =1,2,...). Therefore

U.(f,a) LULS, b)

for any vectors a,beH (as the operators U,(f,-) and U.(f’,-) are
linear).
To prove (d), let us put {compare (2.8) and (b))

z=f= Us(f96)7

y =f = B(f,¢) = U, ¢)
P = £([a])
for some vectors e, e’,a cH, fe &([e]), llel = ¢l = Ilfl =1 and (a,e)

# 0 # (a, ¢'). Therefore, by (2.6),

(@, 6)

(a, ¢)

= = U.(f
Py uanz Ue(f: a); -Py nanz c'(f ’a')
and, by (2.9), the following can be verified (by (a), If'll =1)
_ Ma, o)l _ la, @]
Pal] = -’ eyl i’
_ (8, 6)(a, )
(‘Pw’ y) - Haug
Thus (Pz,Py) = (Px,y) = sign{(a, €)(a, €) )[LPm]HLPyI], which implies
_ (a,€)
Pz = ) P,

and U,(f,a) = U, (f, a). The last condition holds also if the’ vector
a is orthogonal to e or to ¢ and (d) is proved.
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To prove Theorem 3 it is enough to put U;(") = U.(fi, ) (i el)
where (f)ir is an orthonormal basis in &([¢]) for some vector ¢e H,
flell = 1. By (2), U; is a unitary operator from H into s#. Moreover, for
any vector ¢’ e H, |l¢’| = 1, a sequence (f; = U,e'),; is an orthonormal
basis in &([e']). Indeed, by (b), (¢), (fi)ier is an orthonermal sequence in
&([¢']). I we assume existence of a vector f’ € &([¢']), f' Lf; (i € I), then,
by (¢) and (d), TS, e) L UAfise) = Uy(f;, 6) = f; for any i e I. Thus
Uy(f'; ) = 0 and f* = 0, so the whole space £([e’]) is spanned by (f;)
In conclusion, if (¢;);y is an orthonormal basis in H, then '

# =DE[g]) =@ ®LU¢] = @ 4,
jer ie jer ieT

iel*

and (2.3) is satistied. For any e eH, ll¢'| =1, the o !
) , perator &([e'])
= ._,S’l [U;e] reduced to #; = @ [U,¢] is equal to U;[e’]1U7Y, so £([¢'])
i€ jeJ

can be written as an orthogonal sum of operators:

&[] = (-BI U;[e'] U

For any operator P e 8y we have P = [a,]+[a,]+... So ‘(2.4) holds
and Theorem 3 is proved. 4
’ Ren;arlk 2. It Hilbert spaces H and # are real, then the extension
of & spectral measure &: S;—8,, to the linear tor £:
o & spectral 7S, operator &: L(H)—L(#)
£4) =0 U, AT},

iel

A eIL(H),

where the operators U;: H->a#, are unitary and

H =@ A,
iel

Remgrl; 3. Theorem 3 and Remark 2 are true and the proof need
3101; any differences when the space H is real and # is complex. U, A U;*
18 now the unique extension of the operator U;ATU;!: U~(H)—>‘U (il )
on the complex subspace o#; = [U,(H)] (for any A eL(H); '

* The set* U;(H) < o# is of course a real Hilbert space.

Let  Ap (resp. A,) be the space of Hilbert—Schmidt operators in
H (resp. ##) with the inner product (4, B) =tr AB* for any operators
A4, B from Ay (resp. A,). If the space H is real, then:

Remark 4. For a finitely-dimensional spest :
operan peciral measure &: Sy —>8,, the

7 = (dim £~
s an isometry from Ag inte A,
The same is true when H and # are complex.
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Proof. Observe that for every non-negative s-operator 4 we have

trf(4) = dim £tr(4), E(4Y) = (E(A))"

' Using the above formulas o the operator A = Z 4§ we obtain after easy

transformations
(2.11) tr E(H)E() = dim & tr 29.

Since one-dimensional projectors generate the space Az, formula (2.11)
establishes the required isometry.
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