

## On some parameters associated with normed lattices and on series characterisation of M-spaces

by

# Y. A. ABRAMOVIČ, E. D. POSITSELSKIĬ, and L. P. YANOVSKIĬ (Leningrad)

Abstract. Considering some parameters of normed lattices, the authors give the positive answer to the conjecture of Schlotterbeck: In every Banach lattice X, non-isomorphic to an abstract M-space in the sense of Kakutani, there exists an unconditionally convergent series  $\sum\limits_{n=1}^{\infty} x_n$  such that the series of absolute values  $\sum\limits_{n=1}^{\infty} |x_n|$  is divergent. Some other results are proved.

We introduce and investigate some parameters of normed lattice which are order analogues of known Macphail's constants [6]. In Theorem 2.1 we compute these parameters for classical  $l_p^n$ -spaces  $(1 \le p \le \infty)$ . Our main result, Theorem 3.1, contains some estimates for those parameters. The following fact (Theorem 3.2) follows from received estimates: In every Banach lattice non-isomorphic to an M-space, there exists an unconditionally convergent series  $\sum\limits_{n=1}^{\infty} x_n$  such that the series of absolute values  $\sum\limits_{n=1}^{\infty} |x_n|$  is divergent. It confirms the conjecture of Schlotterbeck, formulated in [5]. The last Section 4 contains some open problems. In the terminology concerning normed and partially ordered normed spaces we follow [2] and [8]. The symbols  $l_p^n$  and  $l_p$   $(1 \le p \le \infty, n = 1, 2, ...)$  have their usual meaning.

## 1. Definitions and auxiliary results.

DEFINITION 1.1. Let X be an KN-lineal ( $\equiv$  normed lattice). For every  $k=1,2,\ldots$  we define

$$\psi_k(x) = \inf \frac{\sup_{\epsilon_i = \pm 1} \left\| \sum_{i=1}^k \epsilon_i x_i \right\|}{\left\| \sum_{i=1}^k |x_i| \right\|},$$

where inf is taken over all k-tuples  $\{x_1, \ldots, x_k\} \subset X$ ,  $\sum_{i=1}^k |x_i| \neq 0$ , and the sup is taken over all  $\varepsilon_i = \pm 1, i = 1, \ldots, k$ . Obviously, we have  $1 = \psi_1(X)$ 

 $\geqslant \psi_2(X) \geqslant \ldots \geqslant \psi_k(X) \geqslant 0$ , so there exists  $\lim_{k \to \infty} \psi_k(X)$ . We will denote this limit by  $\psi(X)$ . Obviously,  $0 \leqslant \psi(X) \leqslant 1$ .

As was mentioned in the introduction, the constant  $\psi(X)$  is the order analogue of known Macphail's constant, precisely, the *l*-absolutely summing constant [4],

$$\mu(X) = \inf_{\{x_i\}} \frac{\sup\limits_{\epsilon_i = \pm 1} \left\| \sum\limits_{i} \epsilon_i x_i \right\|}{\sum\limits_{i} \|x_i\|}.$$

Let us observe that for KN-lineals  $l_i^n$  we have

$$\psi(X) = \mu(X)$$
.

We recall another constant introduced in [1].

DEFINITION 1.2. M-constant of a KN-lineal X is the following (finite or infinite) quantity

$$P_{M}(X) = \sup \{ ||x||: \ x = x_{1} \lor \dots \lor x_{k}; \ x_{i} \land x_{j} = 0 \ \text{for} \ i \neq j, \\ ||x_{i}|| \leqslant 1, \ k = 1, 2, \dots \}.$$

It was proved in [1] that  $P_M(X) < \infty$  if and only if there exists on X an equivalent M-norm (1)  $\|\cdot\|_M$  such that

LEMMA 1.1. If X is an M-space, then  $\psi_k(X)=1$  for all  $k=1,2,\ldots,$  so that  $\psi(X)=1.$ 

The proof easily follows from the representation of an *M*-space (the Kreins-Kakutani theorem) as a normed lattice of continuous functions on some compact space.

The following lemma will be frequently used in the sequel.

LEMMA 1.2. Let X be a KN-lineal; then, for every  $k=1,2,\ldots,$   $\psi_k(X)\geqslant P_M^{-1}(X),$  so

$$(1.3) \psi(X) \geqslant P_M^{-1}(X).$$

Proof. It is enough to consider the case where  $P_M(X) < \infty$ . Then by (1.2) and Lemma 1.1 we have

$$\psi_k(X) = \inf_{\substack{\epsilon_i = \pm 1 \\ |x_i|}} \frac{\sup_{\epsilon_i = \pm 1} \left\| \sum \epsilon_i x_i \right\|}{\left\| \sum |x_i| \right\|} \geqslant \frac{1}{P_M(X)} \inf_{\substack{\epsilon_i = \pm 1 \\ |x_i|}} \frac{\sup_{\epsilon_i = \pm 1} \left\| \sum \epsilon_i x_i \right\|_M}{\left\| \sum |x_i| \right\|_M} = \frac{1}{P_M(X)}.$$

In the following section (see the remark after Lemma 2.2), we will obtain a stronger estimate from below for  $\psi(X)$  when X is finite-dimensional KN-lineal.

LEMMA 1.3. Let X be a KN-lineal and let Y be an M-space. Let Z = X + Y be a KN-lineal of all pairs  $z = (x, y), x \in X, y \in Y, with ||z||_Z = \max(||x||, ||y||)$  and a natural order. Then  $\psi_k(Z) = \psi_k(X)$  for k = 1, 2, ...

We omit an easy proof.

**2. Finite-dimensional** KN-lineals. Everywhere in this section, KN-lineal X is assumed to be finite dimensional;  $\{e_1,\ldots,e_n\}$  will denote the natural basis for X. Let us recall that the cone of positive elements  $X_+$  consists of vectors of the form  $\sum\limits_{i=1}^n a_i e_i$ ,  $a_i \geqslant 0$ . We can assume that  $\|e_i\| = 1$  for all  $i=1,\ldots,n$ . We will identify the vector  $\sum\limits_{i=1}^n a_i e_i$  with the sequence of coefficients  $(a_1,\ldots,a_n)$ .

The following remarks will be used later.

(a) It follows from (1.2) that

$$(2.1) P_{\boldsymbol{M}}(X) = \|\mathbf{I}\|,$$

where  $\mathbf{1} = (1, ..., 1)$  is the vector with unit coordinates.

(b) For every  $k=1,2,\ldots$  there exist vectors  $\vec{x}_1,\ldots,\vec{x}_k\in X$  on which the inf in (1.1) is attained, i.e.

(2.2) 
$$\psi_k(X) = \frac{\sup_{i=\pm 1} \left\| \sum_{i=1}^k \varepsilon_i \, \overline{x}_i \, \right\|}{\left\| \sum_{i=1}^k \left| \overline{x}_i \right| \, \right|}.$$

The proof of the following lemma uses easy combinatorics and is omitted.

LEMMA 2.1. Let dim X = n and  $k \ge 2^n$ . Then  $\psi_k(X) = \psi(X)$ .

Our next goal is to compute  $\psi(X)$  for classical spaces  $X=\mathbb{I}_p^n$ . At first let us recall that for  $n=2^m$   $(m=1,2,\ldots)$  in n-dimensional space X there exists an orthogonal basis of Walsh's functions  $u_1^n, u_1^n, \ldots, u_n^n$ . The inductive construction of these functions can be described as follows:

$$\begin{array}{lll} \text{for } n=2 & u_1^2=(1,1), & u_2^2=(1,-1); \\ \text{for } n=2^2 & u_1^4=(1,1,1,1), & u_2^4=(1,1,-1,-1), \\ & u_3^4=(1,-1,1,-1), & u_4^4=(1,-1,-1,1), \end{array}$$

and so on, i.e. passing from  $n=2^m$  to  $2^{m+1}$ , from each function  $u_i^n$  we construct two functions:  $u_{2i-1}^{m+1}$  and  $u_{2i}^{2m+1}$ , whose coordinates are coordinates of  $u_i^n$  followed by the same coordinates; once with the sign + and once with the sign -.

<sup>(1)</sup> That is, the norm  $\|\cdot\|_M$  satisfies the condition  $\|x \vee y\|_M = \max(\|x\|_M, \|y\|_M)$ , for x, y > 0, and consequently  $(X, \|\cdot\|_M)$  is an M-space.

icm<sup>©</sup>

In the case where  $X = l_1^n$   $(n = 2^m)$ , we have

$$\sup_{\varepsilon_i = \pm 1} \left\| \sum_i \varepsilon_i u_i^n \right\| = \left\| \sum_i u_i^n \right\| = n.$$

THEOREM 2.1. For spaces  $l_p^n$   $(1 \le p \le \infty)$  the following estimates are true:

(1) if  $2 \leqslant p \leqslant \infty$ , then  $\psi(l_p^n) = P_M^{-1}(l_p^n) = n^{-1/p}$ .

(2) if  $1 \leqslant p < 2$ , then  $cn^{-1/2} \leqslant \psi(l_p^n) \leqslant n^{-1/2}$ , where c is some positive constant independent of p and n.

Proof. Let  $2\leqslant p\leqslant\infty$ . By (2.1),  $P_M(l_p^n)=n^{1/p}$ , so, by Lemma 1.2,  $\psi(l_p^n)\geqslant n^{-1/p}$ . Let us prove the opposite inequality. Observe that  $\|\cdot\|_{l_p^n}\leqslant\|\cdot\|_{l_p^n}$  since  $p\geqslant 2$ .

Let us start with the case  $n=2^m$ . Let  $u_1^n,\ldots,u_n^n$  denote  $2^m$  Walsh's functions. Then for  $k\geqslant n$  we have

$$\begin{split} \psi_k(l_p^n) & \leqslant \psi_n(l_p^n) \leqslant \frac{\sup\limits_{\epsilon_i = \pm 1} \left\| \sum \epsilon_i u_i^n \right\|_{l_p^n}}{\left\| \sum |u_i^n| \right\|_{l_p^n}} = \frac{\sup\limits_{\epsilon_i = \pm 1} \left\| \sum \epsilon_i u_i^n \right\|_{l_p^n}}{n \left\| \mathbf{1} \right\|_{l_p^n}} \\ & \leqslant \frac{\sup\limits_{\epsilon_i = \pm 1} \left\| \sum \epsilon_i u_i^n \right\|_{l_p^n}}{n \left\| \mathbf{1} \right\|_{l_p^n}} = \frac{1}{\left\| \mathbf{1} \right\|_{l_p^n}} = P_M^{-1}(l_p^n) = n^{-1/p}, \end{split}$$

so  $\psi(l_p^n) = \lim \psi_k(l_p^n) \le P_M^{-1}(l_p^n) = n^{-1/p}$  what proves the desired equality in the case  $n = 2^m$ .

Let now n be arbitrary. We can choose the natural number m such that  $2^{m-1} < n \leqslant 2^m$ . Let us consider the space  $Z = l_p^n + l_\infty^{2^m - n}$ . By Lemma 1.3,  $\psi_k(Z) = \psi_k(l_p^n)$ . But the dimension of Z is  $2^m$ , so Z contains  $2^m$  Walsh's functions. As above, we can prove that, for  $k \geqslant 2^m$ ,  $\psi_k(Z) \leqslant P_M^{-1}(l_p^n)$ . This proves equality (1).

To prove the case (2) we start with an observation that

$$\|\cdot\|_{l_p^n} \leqslant n^{1/p-1/2} \|\cdot\|_{l_2^n}.$$

If  $n=2^m$  and  $u_1^n, \ldots, u_n^n$  are Walsh's functions in  $l_n^n$  and  $k \ge n$ , we have

$$\begin{split} \psi_k(l_p^n) \leqslant \psi_n(l_p^n) \leqslant \frac{\sup\limits_{\substack{\epsilon_i = \pm 1}} \left\| \sum \varepsilon_i u_i^n \right\|_{l_p^n}}{\left\| \sum |u_i^n| \right\|_{l_p^n}} \leqslant \frac{n^{1/p - 1/2} \sup\limits_{\substack{\epsilon_i = \pm 1}} \left\| \sum \varepsilon_i u_i^n \right\|_{l_p^n}}{\left\| \sum |u_i^n| \right\|_{l_p^n}} \\ &= \frac{n^{1/p - 1/2} n}{n \left\| \mathbb{I} \right\|_{l_p^n}} = \frac{n^{1/p - 1/2}}{n^{1/p}} = n^{-1/2}, \end{split}$$

so, for 
$$n = 2^m$$
,  $\psi(l_p^n) \leqslant n^{-1/2}$ .

Using Lemma 1.3, like in the proof of case (1), we get this inequality for arbitrary n.

To prove the theorem, we have to establish the inequality  $cn^{-1/2} \leq \psi(l_p^n)$ , for some c>0. As we remarked  $\psi(l_1^n)=\mu(l_1^n)$ , and the Macphail constants  $\mu(l_1^n)$  satisfy the inequality  $\mu(l_1^n) \geqslant cn^{-1/2}$  (cf. [4]), where c is a constant independent of n. To finish the proof it is enough to prove the following

LEMMA 2.2. Let X be an n-dimensional KN-lineal. Then  $\psi(X) \geqslant \psi(l_1^n) \geqslant cn^{-1/2}$ .

Proof. By remark (b) (cf. (2.2)) and Lemma 2.1, there exist  $\bar{x}_1, \dots, \bar{x}_k \in X$  such that

$$\psi(X) = rac{\sup\limits_{arepsilon_{i}=\pm 1} \left\| \sum arepsilon_{i} \overline{x}_{i} 
ight\|}{\left\| \sum |\overline{x}_{i}| \right\|}.$$

Obviously, we can assume that ||z|| = 1, where  $z = \sum |\overline{x_i}|$ . We can construct a hyperplane supporting the unite ball of X at point z. We assume that this hyperplane intersects all coordinate axes (the general case can be reduced to this one by an easy approximation). By  $\|\cdot\|_1$  we denote the new monotone norm on X, determined by the condition that the positive part of the new unit ball coincides with the set of positive elements in X lying below our hyperplane. It is clear that  $\|\cdot\| \ge \|\cdot\|_1$  and that  $(X, \|\cdot\|_1)$  is order isometric to  $l_1^n$ . We have  $\|z\| = \|z\|_1 = 1$ , so

$$\psi(X) = \sup_{\epsilon_i = \pm 1} \left\| \sum \epsilon_i \overline{x}_i \right\| \geqslant \sup_{\epsilon_i = \pm 1} \left\| \sum \epsilon_i \overline{x}_i \right\|_1 \geqslant \psi(l_1^n) \geqslant c n^{-1/2}.$$

Remark. Lemmas 1.2 and 2.2 imply the stronger estimate from below for n-dimensional KN-lineal X:

$$\psi(X) \geqslant \max(cn^{-1/2}, P_M^{-1}(X)).$$

3. Characterisation of M-spaces. Now we prove our main theorem. It shows the relation between  $\psi(X)$  and  $P_M(X)$ .

THEOREM 3.1. For an arbitrary KN-lineal X we have

$$P_M^{-1}(X) \leq \psi(X) \leq P_M^{-1/2}(X)$$
.

In particular, if  $P_{\mathcal{M}}(X) = \infty$ , then  $\psi(X) = 0$ .

Proof. We need to show only the right-hand side inequality. Let us start with finite-dimensional KN-lineal X, dim X = n and let  $\{e_j\}_{j=1}^n$  be the natural basis in X. We will assume  $\|e_i\| = 1, j = 1, 2, ..., n$ .

By  $\Lambda$  we denote the *n*-dimensional Lorentz space with the norm defined by

$$||x||_A = \sum_{i=1}^p x_i^* + (P_M(X) - p)x_{p+1}^*,$$

where  $p = [P_M(X)]$  is the integer part of  $P_M(X)$ , and  $\{x_i^*\}$  is the decreasing rearrangement of absolute values of coordinates of the vector x.

One can show that  $\|\cdot\|_A$  is the strongest lattice norm on X satisfying  $\|e_j\|=1$  for  $j=1,2,\ldots,n$  and  $\|1\|=P_M(X)$ . To see this, let us observe that for the strongest norm  $\|\cdot\|'$  satisfying the above conditions, the set of extreme points of the unit ball coincides with the set of extreme points of the unit ball of  $\|\cdot\|_A$ . This implies  $\|\cdot\| = \|\cdot\|'$ .

An easy calculation shows that

$$\max_{0 \neq x \in X} \frac{\|x\|_A}{\|x\|_{l_n^0}} = \sqrt{p + (P_M(X) - p)^2},$$

so (using the fact that  $(P_M(X)-p)^2 \leq P_M(X)-p$ ) we infer

$$||x||_A \leqslant P_M^{1/2}(X) ||x||_{l_n^n}.$$

Without loss of generality we can assume that  $n=2^n$  (see Lemma 1.3), so we can consider Walsh's functions  $u_1^n, \ldots, u_n^n$  in X. Let us recall that  $|u_i^n| = 1$  and  $P_M(X) = ||1||$ .

Using the fact that  $||x|| \le ||x||_A \le P_M^{1/2}(X) ||x||_p$ , we get

$$\begin{split} \psi(X) \leqslant \psi_n(X) \leqslant \frac{\sup\limits_{\epsilon_i = \pm 1} \left\| \sum \varepsilon_i u_i^n \right\|}{\left\| \sum |u_i^n| \right\|} &= (n P_M(X))^{-1} \sup\limits_{\epsilon_i} \left\| \sum \varepsilon_i u_i^n \right\| \\ &\leqslant (n P_M(X))^{-1} \sup\limits_{\epsilon_i} \left\| \sum \varepsilon_i u_i^n \right\|_A \\ &\leqslant \frac{1}{n P_M(X)} \left\| P_M^{1/2}(X) \sup\limits_{\epsilon_i} \left\| \sum \varepsilon_i u_i^n \right\|_{l^{\frac{n}{2}}} \leqslant \frac{P_M^{1/2}(X)^{n_b}}{n P_M(X)} &= P_M^{-1/2}(X), \end{split}$$

so  $\psi(X) \leqslant P_M^{-1/2}(X)$  and the theorem is proved for finite-dimensional X. Now we will reduce the general case to the previous one.

Let  $P_M(X) < \infty$ . Then for every  $\varepsilon > 0$  there exist  $x_1, \ldots, x_n$  such that  $\|x_i\| = 1$ ,  $x_i \wedge x_j = 0$  for  $i \neq j$  and  $\|x_1 \vee x_2 \vee \ldots \vee x_n\| > P_M(X) - \varepsilon$ . Let  $X_n$  be the linear span of  $x_1, \ldots, x_n$ . Since  $x_i$ 's are pairwise disjoint, we have that  $X_n$  is KN-sublineal in X, thus  $\psi(X_n) \leqslant P_M^{-1/2}(X_n)$ . But  $P_M(X_n) = \|x_1 \vee x_2 \vee \ldots \vee x_n\|$  and  $\psi(X) \leqslant \psi(X_n)$  so  $\psi(X) \leqslant (P_M(X) - \varepsilon)^{-1/2}$ . Since  $\varepsilon$  was arbitrary, we have  $\psi(X) \leqslant P_M^{-1/2}(X)$ .

If  $P_M(X) = \infty$ , the analogous proof shows that  $\psi(X) = 0$ . This proves the theorem.

Remark. The inequalities  $P_M^{-1}(X) \leqslant \psi(X) \leqslant P_M^{-1/2}(X)$  are exact

as follows from Theorem 2.1: we put  $X=l_1^n$  for the right-hand side inequality and  $X=l_\infty^n$  for the left-hand side one.

DEFINITION 3.1. We say that KN-lineal satisfies condition (J) if there exists an unconditionally convergent series  $\sum x_n$  in X such that  $\sum |x_n|$  is divergent.

There is a clear connection between condition (J) and the well-known Dvoretzky–Rogers theorem saying that in every infinite-dimensional Banach space there exists an unconditionally convergent but not absolutely convergent series. In fact, for the space  $l_1$  condition (J) is equivalent to the Dvoretzky–Rogers theorem. For  $l_p$ ,  $1 , Jameson observed that Dvoretzky–Rogers theorem implies condition (J). Apparently these are all the connections. Jameson [5] have shown that <math>l_2$  satisfies (J) and asked whether  $l_p$  for p > 2 also satisfies (J). Moreover, at the end of paper [5] is quoted the conjecture of Schlotterbeck saing that condition (J) is fulfilled in every KN-lineal, not isomorphic to an M-space.

Using Theorem 3.1, we can easily confirm this conjecture.

THEOREM 3.2. For Banach KN-lineal X the following conditions are equivalent:

- (1) X admits an equivalent M-norm;
- (2)  $P_M(X) < \infty$ ;
- (3)  $\psi(X) > 0$ ;
- (4) X does not satisfy condition (J).

Proof. As we remarked in the introduction, the equivalence of (1) and (2) was shown by one of the authors in [1]. Condition (2) is equivalent to (3) by Theorem 3.1. The equivalence of (3) and (4) easily follows from definitions, as was observed in [5].

Remark. If, analogously to condition (J), we introduce the condition (J<sub>C</sub>), which requires the existence of an unconditionally Cauchy series  $\sum x_n$  such that  $\sum |x_n|$  is not Cauchy, we can prove a theorem similar to Theorem 3.2 for arbitrary KN-lineals (not necessarily norm complete).

- 4. Additional remarks. (1) The alternative proof of Theorem 3.2 can be obtained by using results of Fremlin [3]. It can be found in the book of Schaefer [7].
- (2) It is interesting to find the procedure for exact evaluation of  $\psi_k(X)$ , at least for classical  $l_p^n$  spaces,  $1 \leq p < 2$ . It is also interesting to compute  $\psi(X)$  (and maybe also  $\psi_k(X)$ ) for finite-dimensional Marcinkiewicz spaces M(C) and Lorentz spaces  $\Lambda(C)$ .
- (3) Instead of Walsh functions used in proofs of Sections 2 and 3 one can use another set of functions, namely the set K of all vertices of the unite ball of  $l_{\infty}^n$ .

### Y. A. Abramovič, E. D. Positselskii, L. P. Yanovskii

(4) It would be interesting to find those sets of vectors on which  $\psi(X)$  is attained (for finite-dimensional X). Probably, the set K is good for symmetric spaces.

The authors are thankful to V. Gejler and F. Wojtaszczyk for attention and for the help in translation of this paper into English.

#### References

- Y. A. Abramovič, Some theorems on normed structures, Vestnik L. G. U. 13 (1971), pp. 5-11 (in Russian).
- [2] M. M. Day, Normed linear spaces, Springer-Verlag, Berlin 1973.

8

- [3] D. Fremlin, A characterisation of L-spaces, Indag. Math. 36 (1974), pp. 270-275.
- [4] Y. Gordon, On p-absolutely summing constants of Banach spaces, Israel J. Math. 7 (1969), pp. 151-163.
- [5] G. J. O. Jameson, Unconditional convergence in partially ordered linear spaces, Math. Ann. 200 (1973), pp. 227-233.
- [6] M. S. Macphail, Absolute and unconditional convergence, Bull. Amer. Math. Soc. 53 (1947), pp. 121-123.
- [7] H. H. Schaefer, Banach lattices and positive operators, Springer-Verlag, Berlin 1974.
- [8] B. Z. Vulikh, Introduction to the theory of partially ordered spaces, Wolters-Noordhoff, Groningen 1967.

Received February 17, 1976 (1122)



### STUDIA MATHEMATICA, T. LXIII. (1978)

### О ветвлении и устойчивости периодических решений дифференциальных уравнений с неаналитической правой частью

### П. Г. АЙЗЕНГЕНДЛЕР, М. М. ВАЙНБЕРГ (Москва)

Резюме. Авторами был предложен метод для решения задачи Пуанкаре и выяснения вопроса об устойчивости решений этой задачи в аналитическом случае (Доклады АН СССР 165.2 (1965), стр. 255–257; 176.1 (1967), стр. 9–12; 179.5 (1968), стр. 1015–1018). Полное доказательство всех предложений данных работ было дано в монографии М. М. Вайнберга и В. А. Треногина (*Теория ветемения решений нелинейных уравнений*, Наука, Москва 1969). Здесь рассматривается неаналитический случай задачи Пуанкаре в вещественном банаховом пространстве. Предлагается метод для нахождения числа решений и их асимптотического представления. Для иллюстрации предлагаемого метода приводятся примеры. Идея метода заключается в том, что если функция, действующая в банаховом пространстве, не является аналитической, но дифференцируема по Фреше прав, то ее можно представить в виде суммы полинома степени п и остатка. В статье показано, как в этом случае можно находить число решений и асимптотику. В том случае, когда пространство конечномерно, исследуется вопрос об устойчивости решений.

## 1. Рассмотрим уравнение

(1) 
$$rac{dx}{dt} = Ax + \lambda F(t, x, \lambda) + \lambda Q(t, x, \lambda),$$

где  $\lambda \geqslant 0$  — малый параметр; A — линейный ограниченный оператор, действующий в вещественном банаховом пространстве E;  $F(t,x,\lambda) = \sum_{i+k=0}^n F_{ik}(t)x^i\lambda^k$  — полином в смысле Фреше с непрерывным и T-периодическими коэффициентами; Q — периодическая по t функция с периодом T, непрерывная и ограниченная на некотором множестве

$$K = \{(t, x, \lambda) \colon t \in \mathbb{R}^1, ||x|| \leqslant \varrho_0, \ \lambda \in [0, \varrho_0], \ \varrho_0 > 0 - \text{const}\}$$

и удовлетворяющая равномерно по тусловию

(2) 
$$||Q(t, x, \lambda)|| = o((||x|| + \lambda)^n)$$
 при  $||x|| + \lambda \to 0$ .

Определение. Функция  $x(t,\lambda)\colon \mathbf{R}^1 \times [0\,,\,\overline{\varrho}_0] \to E$ , где  $0<\overline{\varrho}_0\leqslant \varrho_0$ , называется малым T-периодическим решением уравнения (1), если выполнены условия: 1) она дифференцируема и T-периодична по t при