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Abstract. Considering some parameters of normed lattices, the authors give
the positive answer to the conjecture of Schlotterbeck: In every Banach laitice X,
non-isomorphic to an abstract M-space in the sense of Kakutani, there exists an uneon-

©
ditionally convergent series Y a, such that the series of absolute values Y Joo,| is

n=1 n=1
divergent. Some other results are proved.

We introduce and investigate some parameters of normed la,ttlce
which are order analogues of known Macphail’s constants [6]. ITn Theorem
2.1 we compute these parameters for classical Ij-spaces (1<<p < o).
Our main result, Theorem 3.1, contains some estimates for those paramebers.
The following fact (Theorem 3.2) follows from received estimates: In every
Banach lattice non- isomorphic to0 an M-space, there exists an uncondition-

ally convergent series Z’m such that the series of absolute values 2 |2,

is divergent. It eonﬁrmes the conjecture of Schlotterbeck, Iormlﬂated
in [3]. The last Section 4 contains some open problems. In the terminology
concerning normed and partially ordered normed spaces we follow [2]
and [8]- The symbols I and I, (1<p< o0, n =1,2,...) have fheir
usnal meaning.

1. Definitions and auxiliary resulis.

DermsrrioN 1.1. Let X be an KN-lineal (= normed lattice). For
every k¥ =1,2,... we define

(1.1) yp (@) = inf T,

13

where inf is taken over all k-tuples {®, ..., %} = X, > lm| # 0, and the
4=l

sup is taken over all g; = +1,4 =1, ..., k. Obviously, we have 1 = (X}


GUEST


icm°

2 Y. A Abramovid, E. D. Positselskiy, L. P. Yanovskil

Zp{X)=... 2 9(X) >0, so there exists limy,(X) We will denote
ko0
this limit by p(X). Obviously, 0 < p(X)<1
As was mentioned in the introduction, the constant ¢(X) is the

order analogue of known Macphail’s constant, précisely, the I-absolutely
summing constant [4],

| Sl
X wmEl f
P =T Sad

Let us observe that for KN-lineals If we have
v(X) = u(X).

‘We recall another constant introduced in [1].

DEeFINITION 1.2. M-constant of a KN-lineal X is the following (finite
or infinite) quantity

Py(X) =sup{lel: » =,V ... vay; o;am =0 for § #£7,

] Il <1, B =1,2,...}.
It was proved in [1] that P (X) < oo if and only if there exists on
X an equivalent M-norm (*) .||y, such that
(1.2) IRPESRES Pyr(X) |l lag-
Lemva 1.1 If X is an M-spa,ce, then v (X) =1 for oll £ =1,2,..
so that p(X) = 1.

The proof easily follows from the representation of an M-space
(the Kreins—Kakutani theorem) as a normed lattice of continuous funetions
on some compach space.

The following lemma will be frequently used in the sequel.

Levmuva 1.2. Let X be a KN-lineal; then, for every k =1,2,...,
(X)) = Py (X), 80
(1.3) (X)) = Py (X).

Proof. It is enough to consider the case where P (X) < oco. Then
by (1.2) and Lemma 1.1 we have

snp"Ze a |
inf 3721 >

@ 2l

v

sl Saale

nf _ )
Py (X) zmi} 12l “.’M Py (X)

(X)) =

(*) That is, the norm [|-]l3 satisfies the condition [wv ylzr = max (=i, i),
for ,y > 0, and consequently (X, ||-{lar) is an M-space.
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In the following section (see the remark after Lemma 2.2), we will
obtain a stronger estimate from below for ¢ (X) when X is finite-dimen-
sional KN-lineal.

Lemma 1.3, Let X be a KN-lineal and let ¥ be an M-space. Let Z = X +Y
be a KN-lineal of all pairs z = (2, y), # € X,y e X, with [zll; = max({z], lyl)
and o natural order. Then v, (Z) = y,(X) for £ =1,2,...

We omit an easy proof.

2. Finite-dimensional KN-lineals. Everywhbere in this section, EN-
lineal X is assumed to be finite dimensional; f{e;, ..., ¢,} will ddenote the
natural basis for X. Let us recall that the cone of positive elements X,

consists of vectors of the form Va 1655 G; == 0. We mn assume that llg;} =1
1

foralli=1,...,n We will 1dent1fy the vector }_:a ¢; with the sequence
of coeﬁmlents (al, ceny @),

The following remarks will be used later.
(a) It follows from (1.2) that

(2.1) Py(X) = LI,

where 1 == (1, ...,1) is the vector with unit coordinates.

(b) For every k = 1,2, ... there exist vectors %y, ..., % € X on which
the inf in (1.1) is attained, i.e.

Sl |3 o]
2.2) (X = 2
| 3 @il

/—J
=1

The proof of the following lemma uses easy combinatorics and is
omitted.

LevMuMA 2.1. Let dimX = n and k> 2". Then y,(X) = p(X).

Our next goal is to compute y(X) for classical spaces X = Ij. At
first let us recall that for # = 2™ (m =1, 2,...) in n-dimensional space
X there exists an orthogonal basis of ‘Walsh’s functions w7, 4y, ..., Uy,
The inductive construction of these functions can be described as fo]lows:

forn =2 af=(,1), u =( —1);

for n =22 =(1,1,1,1), = (1 1, -1, —1),

up = (1, —1,1, — )’ uj = (1’ 1 -1, 1)
and so on, i.e. passing from n = 2™ to 2™*!, from each function u} we
construct two functions: ug?ljl and u-:n Tl, whose coordinates arve coordi-
nates of u} followed by the same coordinates; once with the sign 4 and
once with the sign —.
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In the case where X =I* (n.=2™), we have
\ 1 i
mwp || Yot | = | St
g=%1""% 7

THBEOREM 2.1. For spaces I; (1 < p < oo) the following estimates are true:
(1) if 2<p < oo, then () = P37 (i) = w7,
(2) if 1<p<2, then en™ "<
constant independent of p and n.
Proof. Let 2 <p < co. By (2.1), Py () = u'?, s0, by Lemma 1.2,
p(@) > n~"". Let us prove the opposite inequality. Observe that |- s
L

VIUAES w2, where ¢ s some positive

<l simce p>2

Let us start with the case n =2™. Let ul, ..
functions. Then for k¥ > n we have '

.y Uy, denote 2™ Walsh’s

sup DX H sup || 3 eut]l,
) < p () < 2 o o
3 = ¥Yn = =
Pella) S Pl 3wt nil,,
n
sup || 3 e;uf ||,
s=z1 2 1 - _
= i = PR () =,
LIt 1 e
pd P
50 (Y = limy, (1) < Pa(lp) = Y2 what proves the desired equality

in the case n =2™.

Let now n be arbitrary. We can choose the natural number m such
that 2™ < n < 2™, Let us consider the space Z = l”—]—l‘ ~*, By Lemma
1.3, p(Z) = w,(I;). But the dimension of Z is 2™, s0 Z contains 2™ Walsh’s
functions. As above, we can prove that, for k>2", v,(Z) K Py (lp).
This proves equality (1).

To prove the case (2) we start with an observation that

i1l n < MR I]
I n =2™and uf, ..., u, are Walsh’s functions in I} and % > n, we have
sup || Secutly 0 sup | et
8= &=k 2
ve(l2) < vallp) < =<
5 | X1l I 201 [
» »
pHP=12 g pMP—12
= = e =
nli, n'® ’
»

5o, for n = 2™, (i) < 07
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Using Lemma 1.3, like in the proof-of case (1), we get this inequality
for arbitrary .

To prove the theorem, we have to establish the inequality en**
< 9(lp), for some ¢>0. As we remarked w(If') = u(If), and the Macphail
constants u(lf) satisfy the inequality u(If) = en™'” (cf. [4]), where ¢ is
a constant independent of n. To finish the proof it is enough to prove
the following

LeMMA 2.2. Let X be an n-dimensional KN-lineal. Then p(X) = v(If)
> c,n~1/2.

Proof. By remark (b) (cf. (2.2)) and Lemma 2.1, there exist %, ..., %

€ X such that
| Se]

i Z "L“ i

Obviously, we can assume that |z|] = 1, where z = > |7;]. We can construct
a hyperplane supporting the unite ball of X at point 2. We assume that
this hyperplane intergects all coordinate axes (the general case can be
reduced to this one by an eagy approximation). By [|-|l; we denote the new
monotone norm on X, determined by the condition that the positive
part of the new wunit ball coincides with the set of positive elements in
X lying below our hyperplane. It is clear that ||-§ > [|- ||, and that (X, {[-ll;)}
is order izometric to I . We have |z] = 121[1 =1, so

y(X) = sup | Dezl=

p(X) =

™ > en” .

Remark. Lemmas 1.2 and 2.2 nnply the stronger estimate from
Dbelow for n-dimensional KN-lineal X:

p(X) > max (en™?, Pz (X)).
3. Characterisation of 1/-spaces. Now we prove our main theorem.
It shows the relation between y(X) and Py (X).
THEOREM 3.1. For an arbitrary KN-lineal X we have

P3H(X) < p(X) < Py (X).

In particular, if Py (X) = oo, then p(X) = 0.
Proof. We need to show only the right-hand side inequality. Let us
start with finite-dimensional KN-lineal X, dimX = » and let {g}}, be
the natural basis in X. We will assume [l =1, =1,2,...,n.
By 4 we denote the n-dimensional Lorentz space Wlth the norm
defined by
P
leila = ), @+ (Pa(X) —p)a}

D+1?
=1
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where p=[P;;(X)] is the integer part of P, (X), and {}} is the decreasing
rearrangement of absolute values of coordinates of the vector .

One can show that |||, is the strongest lattice norm on X satistying
llgl =1 forj=1,2,...,n and |1} = Py(X). To see this, let us observe
that for the strongest norm || ||’ satisfying the above conditions, the sef
of extreme points of the unit ball coincides with the set of extreme points
of the unit ball of ||-||,. This implies ||-[| = |||

An easy caleulation shows that

ll-’l? Vp L @ =),
= P 2
omex lmlln ( u(X) P) )
o (using the fact that (P (X)—p)*< Py(X)—p) we infer

lkells < P3F(X) il

‘Without loss of generality we can assume that n = 2™ (see Lemma
1.3), so we can consider Walsh’s functions u}, ..., u; in X. Let us recall
that [P =1 and Py (X) = |1l

Using the fact that o] < o], < P (X) 2], we get

sup | 3'esut |
gp==1

——— = ‘ -1 Y
PO < D) < s = (P (D sup | Yot
nl
< (nPy(X) sup]lz_‘a u l‘ .
1 P2 of o Pa(@n e
< Py (@) (X)sup \ ye U ‘”< P (T (X)

s0 p(X) < P3/*(X) and the theorem is proved for finite-dimensional X.
Now we will reduce the general ease fo the previous one.
Let Py (X) < oo. Then for every &> 0 there exist @, ..., , such
Cthat o] =1, maz; = 0for i 7 j and o, va,v ... V&, > Py(X)—e Letb
X, be the linear span of »y, ..., #,. Since z;’s are pairwise disjoint, we have
that X, is KN-sublineal in X, thus u(X,) < Py?(X,). But Py(X,)
= |8,V BV ... v, and p(X) < p(X,) so p(X) < (Py(X)—s " Since
e was arbitrary, we have y(X) < P37*(X).
' If P, (X) = oo, the analogons proof shows that (X) = 0. This
proves the theorem.

Remark. The ineqﬁa]}ties P#H(X) < p(X) < P3P(X) are exact

icm
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as follows from Theorem 2.1: we put X = I for the right-hand side
inequality and X = 17, for the leff-hand side ome.

DEFINITION 3.1. We say that KN-lineal satisfies condition (J) if there
exists an unconditionally convergent series > @, in X such that 3 |o,|
is divergent.

There is 2 clear connection between condition (J) and the well-known
Dvoretzky—Rogers theorem saying that in every infinite-dimensional
Banach space there exists an unconditionally convergent but not absol-
ntely convergent series. In fact, for the space I, condition (J) is equivalent
to the Dvoretzky—Rogers theorem. For I, 1 < p < 2, Jameson observed
that Dvoretzky—Rogers theorem implies condition (J). Apparently these

-are all the connections. Jameson [5] have shown that I, satisfies (J) and

asked whether I, for p > 2 also satisties (J). Moreover, at the end of paper
[5] is quoted the conjecture of Schlotterbeck saing that condition (J) is
fulfilled in every KN-lineal, not isomorphic to an M-space.

Using Theorem 3.1, we can easily eonfirm this conjecture.

THEOREM 3.2. For Banach EXN-lineal X the following conditions are
equivalent:

(1) X admits an equiva.lenf M-norm;

(2) Par(X) < 005

(3) »(X)>0;

(4) X does not satisfy condition (J).

Proof. As we remarked in the introduction, the equivalence of (1)
and (2) was shown by one of the authors in [1]. Condition (2) is equivalent
0 (3) by Theorem 3.1. The equivalence of (3) and (4) easily follows from
definitions, as was observed in [5].

Remark. If, analogously to condition (J), we introduce the condition
(J¢), which requires the existence of an unconditionally Cauchy series
> wy, such that > |w,| is not Cauchy, we can prove a theorem similar to
Theorem 3.2 for arbitrary KN-lineals (not necessarily norm complete).

4. Additional remarks. (1) The alternative proof of Theorem 3.2 can
Dbe obtained by using results of Fremlin [3]. It can be found in the book
of Schaefer [7].

(2) Tt is interesting to find the procedure for exact evaluation of (X)),
at least for classical I spaces, 1< p < 2. It is also interesting to compute
p(X) (and maybe also y, (X)) for finite-dimensional Marcinkiewiez spaces
M(C) and Lorentz spaces A(C).

(3) Instead of Walsh funetions used in proofs of Sections 2 and 3 one
can use another set of functions, namely the set K of all vertices of the
unite ball of I7,.
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(4) Tt would be interesting to find those sets of vectors on which y(X)
is attained (for finite-dimensional X). Probably, the set K is good for
symmetric spaces.

The authors are thankful to V. Gejler and F. Wojtaszezyk for at-
tention and for the help in translation of this paper into English.
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O BETBJICHHH H YCTOHYHBOCTH NEPHOMHYIECKHX pemeHmii Juddepennmannrbx
YpaBhReHnil ¢ HeaHANMTHIECKOH HpaBo# YaCTHIO

I, T. AUBEHTEHJIEP, M. M. BAUHBEPT (Mocxsa)

Peyome. Apropamu OHI TpefuoseH MeTOR [NIA pemmeHus Bsajaum Ilyamxape
¥ BHACHEHHS BONpoca 06 ycToHYmBOCTH pelmeHEH »TOH 3ajJaum B AHATATHYECHOM
cayuae (Howmamer AH CCCP 165.2 (1965), crp. 255-257; 176.1 (1967), cTp. 9-12;
179.5 (1968), crp. 1015-1018). IlomHOe MOKABATENHLCTBO BCEX IPENAOKLHMRE NAHHEX
pabor 6rmo mamo B Momorpadum M. M. Ba#nGepra u B. A. Tpenormaa (Teopusn eem-
enenun pewenull neaunelnwr ypasrenuii, Hayka, Mocksa 1969). 3xecs paccmarpusa-
eTCA HEAHANNTHYOCKMI cayuyaii sagaum Ilyankape B BemlecTBeEHOM GAHAXOBOM IpO-
crpacTe. IlpemmaraeTcA MeTOX AMA HAXOMJEHHA 9WCIA PONieHHN X WX aCHMITOTH-
YeCKOT'0 NPEJCTABIeHAA. [JIA HAMOCTPANHYN NPEAJaraeMoro MeToxa IPEBOJATCA
npuMeps. Vs MeToa 3aRI0IASTCA B TOM, 910 6cnu $YHKNHA, feficTBymad B ana-
X0BOM NPOCTPAHCTBE, He ABIAETCH aHAIMTHYECKOH, HO mudpdepemmupyema mo Opeme
n pas, TO ee MOKHO IPEJCTABATE B BHZe CYMME NOIMHOMA CTeIGHK 1  OCTATKA. B craTse
OKABAHO, KAK B BTOM CIy9ae MOKEO HAXOJWTH YHCIO PelleHMH m acuMmToTuRy. B TOM
cayuae,; KOTAA HNPOCTPAHCTBO KOHEUHOMEDHO, MCCIERYeTCA BONPoCc 06 yCroMdmBoCTH
pemenmii.

1. PaccmoTpuM ypaBHeHme

dz
(1) ‘%‘ =Aw+lF(t,m,Z)+2Q(t,w,l),
rue 4> 0 — mausli mapaverp; 4 — AuHEHHBIH OTPaHMYEHHEL! 0IIEPATOD,
neﬁc'rBymmuﬁ B BelUeCTBeHHOM OamaxoBoMm mpocrpaucrse B; F(t, z, ) =

ZFtk

i+k=0
-IepHOTIYecKIME Koddfunuentamu; ¢ — mepmoudeckas Io i dyurmua c
nepuoniom T, HempephiBHAf M OTPAHMYEHHAR HA HEKOTOPOM MHOMECTBE

K = {{t,,4): te R, ol <

t)a*A* — mommmom B cmbicre ®peme ¢ mempephmHEM B T-

00y 4 €10, o], 05> 0—const}
¥ YJOBJIETBOPAILIAA PaBHOMEPHO no’ ¢ yCIoBHIO
(2) 1Q@, %, Al = o((lel-+4)7") wpm

Oneermmmmge. Oyarmus ¢(t, 1): R x[0, ] — B, rne 0 <2, < g5, HA-
3HIBAETCA MaablM T-nepuoduueckum peuleHueM yPaBHEHHEA (1), ecam BEITIOI-
memsr yciosns: 1) oma pmupdepenumpyema m T-mepmwopmdna To i IpH

llell +2—0.
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