TSUDIA MATHEMATICA, T. LXIII. (1978)

On Toeplitz operators associated with
strongly psendoconvex domains

by

IAIN RAEBURN (Salt Lake City, Utah)

Abstract. Let Q be a strongly pseudoconvex domain with smooth boundary
in C*, n> 2, and let H2(8Q) < I2(89) be the closure of the space of boundary values

of holomorphic funetions which extend smoothly to 0. We show that the *-algebra
of all Toeplitz operators on H2(6Q) with continuous symbol containg the ideal of
compact operators, and modulo this ideal is isomorphic to O(8£2). We also improve
a result of Janas on Toeplitz operators acting in the interior of Q.

Introduction. Let ©Q be a strongly psendoconvex domain with smooth
boundary in C". Toeplitz operators associated with £ were first considered
by Venugopalkrishna [9], who concerned himself with operators with
continuous symbol on the space H*(£) of square integrable functions
holomorphic in . Coburn [2] considered the special case where Qis
the unit ball in C"; he worked with the (*-algebras 7 (2) and 7 (62)
generated by Toeplitz operators with confinuous symbol acting respect-
ively on H*(£) and on H*(6Q), the Hardy space of square integrable
boundary values of holomorphic functions. He showed that both 7 (2)
and 7(6Q) contain the ideal X of compact operators, and that both
7 (Q)|#4 and 7 (8Q) /" are isomorphic to C(6Q). Janas [7] has for general
O identified modulo the compact operators the C*-algebra of B(H*(Q))
generated by Venugopalkrishna’s operators.

In this note we consider Toeplitz operators on H*(8£2), the closure
in I*(5Q) of the boundary values of holomorphic funetions n £ which
extend smoothly to ©. In §1 we consider the tangential Cauchy—Riemann
operator 6,, and observe that Venugopalkrishna’s arguments apply in
our setting. In §2 we discuss the C*-algebra 7 (602) generated by the
Toeplitz operators on H*(6Q2) with continuous symbol; we show that
7 (6Q) contains the ideal A of compact operators and that the symbol
map induces an isomorphism: J (8Q)/A ~C(52). Finally we answer
(Theorem 3.1) a problem of Janas [7]; we show the same result holds
for Toeplitz operators acting in the interior of Q.
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We would like to thank Morris Kalka for some helpful conversations
and Ron Douglas for showing us Lemma 2.1; this considerably shortened
our proof of Theorem. 2.2.

§1. Let 2 be a bounded domain with smooth boundary in €*, n > 1,
and let ¢ be a defining funetion for Q. Let Aq(ﬁ) denote the space of
{0, g) forms on_@whose coefficients can be extended smoothly o a neigh-
bourhood of @, and let 0*(2) denote the set of ¢ A%(Q) satistying
Soag =0 on 602. Let A7 (respectively {9 denote the. sheaf of germs of
A%D) (09(D)}, and let B? denote the quotient sheaf A7/(¢, which is a locally
free sheaf supported on 602. Let B? denote the space of sections of B
Now 8: (“—(0%" and so induces a quotient map &,: B%>B?. For
further details see Folland and Kohn [4]. The usual inner product on
I*(6Q) induces an inner product on B? for ¢ > 0; let #? denote the com-
pletion of B? in this inner product. By 3% (or simply §,) we shall mean
the Hilbert space closure of the operator ‘§,: BB, By 0Z, or §
we shall mean the formal adjoint of 87, which since 602 is a ’compagé
manifold coincides with its Hilbert space adjoint. If 7 is an operator
on a Hilbert space, we shall denote its domain by Z(T). I g >1, let

G(L) ={f e D(&) nD(6F1): 8f € D(6,), 6,f € 2(5,)}
and define Lf = (5,6,+6,3,)f for fe @(L). Tf g:= 0, let
9(L) = (e D(Y: 5f < 2(6,)},

and define If = 6,8,f for fe2(L). For ¢>0, let #7 = :
If = 0}, and let P?: ¥%>#? denote the oxghogo;lal projectio{njf =

Our main interest is in #°, which is just kerd,, and which we shall
d.enote by H*(6Q2) or just H?; we shall also let P = P°. Observe that
since 3 is the closure of 3,: B°»B!, we have {f e B’: 3,f = 0} dense
in H?, By [6], 2.3.2, this means that the set of smooth functions in 52
. ‘with holomorphic extensions to £ is dense in H2 Let ¢ denote the surface
- measure on 402 and P(x, y) denote the Poisson kernel of £. Then Stein

[8] defines H*(2) to be the closed subspace of L? (80 it
Fratot P (682) consisting of those

PLfl(a) =! [P@,0)f@)doly) for scQ
| J _

defines o hologmrp]ﬁe funetion P[f] in Q. Since if f is continuous in &
apd hqlomorphm in @wehave P[f] = f([8], 1. 2), we have H*(6Q) < H2(%).
Thus in particular if f e H*(39Q), P[f] is holomorphic in 0.

Now suppose that n > 2 and that Q is strongly pseudoconvex. We
shall quote some results which are either confained in [4], §5.4 01'- are
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analogous to those for the operator 8 in [4], §3.1. These results show that
T has closed range, and that I is bounded away from 0 on (s#9*. Define
Gy: ¥%—~2? to be the inverse of L on the range of L and zero on its
complement.

TamoreM 11. (a) If g0, Gy is bounded; if 9> 1, G, is compact;

(b) For a € £%, a = LG,L+Pa, and LGya | Pla;

(e) GpP? =P%, = 0; ,

(Q) G, commutes with 5, and 0, on 2(8,) and D (), respectively.

For g € 0(39), let M, denote the bounded operator on I*(6Q) defined
by M,f = ¢f. By using Thecrem 1.2 in place of Theorem 4.1 of [9], we
can follow Venugopalkrishna’s proof of [9], Theorem 2.1 to deduce that
if & is smooth on @, then (I—P) M,: H*(6Q)—~L(52) is compact. Now
we can approximate any s € C(6Q) by smooth functions, and so we have

TemoREM 1.2. If § € 0(5Q), then (I —P) M,: H*(82)—~I*(3Q) is a com-
pact operator.

§2. Let Q be a strongly pseudoconvex domain in " (n > 2) with
smooth boundary. For ¢ € C(59Q), let T, denote the Toeplitz operator
with symbol ¢ defined by T,f = P(¢f) for f e H*(62). Let 7 (6£2) denote
the (*-subalgebra of B(H?®) generated by {T,: ¢ € C(3Q)}. We shall use
the following lemma, which we were shown by Ron Douglas.

LEvwA 2.1, Let K be a closed subspace of a Hilbert space H, and let
T e B(H) be normal. If K is an invariant subspace for T amd the compression
of T to K is normal, then K is a reducing subspace for T.

Proof. Let P denote the orthogonal projection of H onto K. If is
enough to show that K is invariant for T*; in other words, that PT*P
= T*P. Now the compression Ty of T to K is TP, and (Tg)* = PT*P;
hence T normal means that TPT*P - PT*PTP = 0. Now since T(EK) < K
and T is normal, this implies PT(P—I)T*P = 0, or PT(P—IPT*P =0;
but this is the same as PT(P—1I) = 0 which was o be proved.

TemorEM 2.2. The C*-algebra 7 (6Q) contains A (H*), the ddeal of
all compact operators on H*(82), and 7 (892)|" (H) is isometrically *-iso-
morphic to C({62).

Proof. To show that 7 (6Q) contains # (H*) it is enough to show
that 7(8Q) is irreducible and that 7 (62) contains at least one mon-zero
compact operator ([3], 5.39). Suppose that @ is a projection in B(H?)
such that 7,Q = QT, for all g e 0(2), and let Q(1) = ¢. If ¢ is holo-
morphic in @ and 0% in B, then ¢g e H*(602) and so

Q(9) =Q(T,(V) = T,Q(1) =Toy = Plgg) =94-

For all holomorphic polynomials ¢ and u, we have (gf, y) = (Qp, ¥)
= (p, gu), s0 that (§—7, gy) = 0. By the Stone—Weierstrass theorem the
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se?i {py: @, v are holomorphic polynomials} is dense in L*(60Q
¢ is real-valued. Since g e H*(622), this implies that P[g] is a éolgrr?(i'ihsiz
real-valued function, and so g is constant. If @ = 0, then there is some
ngon-'zero fe H*(60) such that f = Qf. For every p holomorphic in 2 and
0™ in 2 we have (Qf, p) = (gf, p) 50 that Qf = gf; then gf = f and so
g = 1. Tt then follows that @ = I and 77 (6Q) is irreducible. If ¢, v € 0(50)
then on H‘-f(é.Q) L{TPT,,—TW =PM (P-I)M,, and so is compact by Thej
orem 1.2; in particular, T, T, —TT, is compact for each ¢ & 0 (692) l\fow
suppose there are no non-zero compact operators in 7 (5Q). Then.T is
normal; but T, is the compression of M, B(L*(5Q))t0 H*(50) ;.ﬁd
f“ by Lemma 2.1 H? is invariant for Ml: = M; . But this in:.plies
:;1 € ﬁ(éQ) whieh is fa.lse'since P[z] = % is not hol(l)morphic in Q. Thus
ereD Is & non-zero compact operator in 7(62) and X (H?) < 7 (39).
. efine 7': 0(6!2)».7'(6!2)/9{(3?’) by T(p) = T,+A (H?); clearly, T
inear. We shall prove that T is an isomorphism. We have alreaidy
seen th.at T,T,—T,,is compact for every ¢, p € ((82); hence T is a homo-
morplu.sm and so is also surjective. It remains to show T is injective
or, equivalently, that T, compact implies ¢ = 0. Suppose that T, is com; aci’s
and t?la,t (@) # 0 for some 2, € 6. Tt follows from, [5], p. 2775 thad? we
can find a funetion f holomorphic in a neighbourhood ,of £ such that
[flme)] = 1 and |f(2)l < 1 for all » € O\ {w,}. Let {U,,} be a neighbourhood
base at z, in 602; by adjusting f we can find holomorphic functions g, such

that |g, (2,)] > 1 and |g,,| <1 in 6Q\U,,. Let n,eN be such that °

lgam < 1/m in 6Q\U,, and |jgim| > 1, and defive f,, = gmm [j| gim
c;mplement of any open neighbour},mod of x,, J{:—w Zm/flg;nl"y -0111191?;2
gh ;?1';}: eféaﬁig)  fnll—-0 as m—>00. Without loss of generality we may ’assume
ttngest 1;}11:0?116 iql in the unit ba,]l. of H? with f,,—g weakly; since 7', is
o th’a.tT m:p es T.,,fm—ﬂ’q,g n norm. Now a standard argument
gl ‘p‘(m ) ;Zgo— cp(mﬂg, and it follows that g (2)] [|f,, — g0 as m—>oo.
et ]gut . ,suvge ave [fn—gll—0 as m—>oco, and so in particular
e g A Tieiqujence of {f,} must converge to g pointwise a.e.,
ol «Commy. 2 s sL :: nonsoens; and 50 ¢ = 0 on 40 as required.
-ond only if ¢ is invertible ZEG((gQ)) thon Ly is o Fredholm. operator if
. mgl;e,_obzerve that the -analogous I:emﬂts for Toeplitz operators with
y: o {62, M,(C)) can be obtained by tensoring the short exact

sequence
02 (H)~T (82)>0(302)->0
with the (*-algebra M,(C) of complex rx 7 matrices,

§3. Again let Q< € (n> 1) be 2 stre
. strongly pseudoconvex domai
with smooth boundary. Let H*(£2) denote the closed subspace of (.)ET(&;

e

©
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consisting of the functions holomorphic in Q, and let P: F{Q)~HY Q)
be the orthogonal projection. If ¢ eC(&), define §, e B(H*(Q)) by
8,f = P(pf), and let 7 (£2) denote the O*-algebra of B(H*(Q)) generated
by {8,: ¢ e 0()}.

THEOREM 3.1. The C*-algebra 7 (Q) contains the ideal A (H2(Q)) of
compact operators and I (Q) [ (H*(RQ)) s isometrically “-isomorphic with
C(89).

Proof. That 7 (Q) contains all the compact operators has been
shown by Janas {7], Theorem 1.1 (a). Define §: 7~ (@) (H{Q))>C(82)
by 8(8,+E) = ¢|so. To show that § is well-defined it is enough to shew

" that if §, is compact, then plso = 0; this can be done by using peak

functions exactly as in the proof of Theorem 2.2. Using [9], Theorem 2.1
in place of our 1.2, we have as before that 8,8, —8,, is compact for
@, peC(R), so that § is a bomomorphism (Janas observed in [7] that
the condition that & ],,Q be non-vanishing in [9], Theorem 2.1 is unnecess-
ary). Clearly 8 is onto, and it is injective by & simple extension of [9],
Theorem 2.3, which completes the proof.

‘We observe that by tensoring this result we obtain the corresponding
result for operators with matrix-valued symbols. This result was originally
obtained by Janas ([7], Theorem 2.1) under the additional hypothesis
+that the analytic polynomials are dense in the algebra A(Q) of functions
continuous in § and holomorphic in Q.

In the language of Brown, Douglas and Fillmore [1], we have shown
that 7 (8R2) and 7 (Q) both define extensions of C(8Q) by the ideal of
compact operators on a separable Hilbert space. This raises an obvious
question: do we get equivalent extensions? The answer is yes when Q is
+the tmit ball in €®, as is shown by Coburn [2]. Whether the result is true
in general we do not know; computations for some specific examples
(in the same spirit as Coburn’s) give the same answer, and we conjecture
that the result is true in general.

Theorem 3.1 was obtained independently dy K. Yabuta, A remark
10 a paper of Janas “Toeplitz operators related to certain domains in C"”,

Studia Math. 62 (1978). pp. 73-T4
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A remark on

Edgar’s extremal integral representation theorem

by
PIOTR MANKIEWICZ (Warszawa)

Abstract. If is proved that if K is a closed, bounded, convex subset of a Banach
space with the Radon-Nikodym property, then for every zec K there is a Borel
probability measure p on K, supported by a “separable extremal set” such that »
is the barycenter of u.

In [4], G. A. Edgar has proved a very nice version of Choquet’s
theorem [7] for separable, closed, bounded, convex subsets of Banach
spaces with the Radon-Nikedym property. Namely, he proved that if
K is a separable, closed, bounded, eonvex subset of a Banach space with
the Radon—Nikodym property, then for every y € K there is a prob-
ability measure 4 on the universally Borel measurable sets in K such that

@ y = [aau),
K

and the set of extreme points of K has g-measure 1. His brilliant proof
is Dbased on the Kuratowski-Ryll-Nardzewski selection theorem and
Chatterji’s theorem on the convergence of bounded martingales in Banach
spaces with the Radon-Nikodym property.

In [56], the same author has generalized his previous result to the
nonseparable case. He defined, for universally Borel, separable supported
probability measures on a fixed closed, bounded, convex subset K of
2 Banach space with the Radon-Nikodym property, an order relation
< in such a way that g, < p, means, roughly speaking, that the support
of p, is closer o the seb of extreme points of K than the support of y;.
He proved that for any y € K there is a measure maximal with respect
to the order relation and such that (1) holds. In such a sefting the result
and, what is more important, its proof becomes much more complicated
than in the separable case.

Below, we present an equivalent version, and we hope — an eagjer
one, of Edgar’s nonseparable theorem on extremal integral representation.
But there are delicate points in the problem which are worth mentioning
in advance. Namely,
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