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REMARKS ON STABLE MEASURES ON BANACH SPACES

BY

Z. JUREK axp K. URBANIK (WROCLAW)

This study continues the investigations on stable probability measures
on Banach spaces started in [6] by Kumar and Mandrekar. Qur aim is
to give a representation of the characteristic functional of stable measures
on’ Banach spaces analogous to that established by Kuelbs for Hilbert
spaces ([5], Theorem 2.1, see also [4]).

Let X denote a real separable Banach space with the norm ||~| and
with the dual space X*. By (-, -> we shall denote the dual pairing between
X and X*. By a probability measure u on X we shall understand a countably
additive non-negative set function x on the class of Borel subsets of X
with the property u(X) = 1. The characteristic functional of x is defined
by the formula

Ay) = [d¥Duds) (yeXY),
X

It is well known that the characteristic functional determines uniquely
the probability measure. Further, for two probability measures x and »
on X, we shall denote by u * » the convolution of x and ». Given u, by 4°
we shall denote the symmetrization of u, i.e. the probability measure
u*u'y where u'(E) = u(—E) for every Borel subset E of X. Clearly,
u® = |u|2. For every z € X, §, will denote the probability measure con-
centrated at the point 2. By R and Rt we shall denote the space of real
numbers and positive real numbers, respectively. For any a € R*, T, u
is defined to be the measure on X given by T,u(E) = u(a ' E) for every
Borel subset E of X. Clearly,

- ~ *
Top(y) = p(ay) for yeX'.

We say that u is a stable probability measure on X if for each pair
a, b € R* there exist a number ¢ € R* and an element x € X such that

TopxTop =T p*0,.
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According to Kumar and Mandrekar ([6], Corollary 2.12) the class
of stable probability measures on X coincides with the limit laws of normed
sums of independent identically distributed X-valued random variables.
Every stable probability measure 4 on X is infinitely divisible, i.e. for
every positive integer n there exists a probability measure u, on X such
that 4 = u,", where the power is taken in the sense of convolution ([6],
Corollary 2.13). Hence, in particular, it follows that u(y) # 0 for all
y € X*. Moreover, there exist a positive constant p and a function z from
R* x Rt into X such that

(1) jt(ay) i(by) = &<V u((aP 4-bP)1P y)

for all a,b e R* and y € X* ([6], Lemma 2.6).

The Tortrat representation of infinitely divisible laws is a crucial
step in our considerations. We recall that for any bounded non-negative
Borel measure F on X vanishing at 0 the Poisson measure ¢(F) associated
with F is defined as

>y 1
e(F) = e-F(X’ZTd-F*", where F* = 4,.
k=1

Let M be a not necessarily bounded Borel measure on X vanishing
at 0. If there exists a representation

M =supF,,
n

where F, are bounded and the sequence {¢(F,)} of associated Poisson
measures is shift compact, then each cluster point of translates of {¢(F,)}
will be called a generalized Poisson measure and will be denoted by é(M).
The measure é(M) is defined uniquely up to a shift transformation, i.e.
for two* cluster points, say u, and u,, of translates of {¢(F,)} there exists
an element x € X such that u; = u,xd, ([9], p. 313). It is clear that the
measure M is finite outside every neighborhood of 0 and é(M,) = é(M,)
implies M, = M,. The set of all measures M for which é(M) exists will
be denoted by #(X). By a Gaussian measure on X we mean a measure p
such that for every y e X* the induced measure yo on R is Gaussian.
Tortrat proved in [9], p. 311 (see also [1], p. 22), the following analogue
of the Lévy-Khinchine representation of infinitely divisible laws: each
infinitely divisible measure x4 on X has a unique representation u =
oxé(M), where o is a symmetric Gaussian measure on X and M e .#(X).

LEMMA. Let p be a stable measure on X. Then either u 18 Gaussian or
p = é(M) and there exists a constant p (0 < p < 2) such that T,M = a*M
for every a e R*. '

Proof. Given y € X*, we put f(a) = log|u(a'®y)| (a € RT), where
the constant p is defined by formula (1). Clearly, f is continuous on R*
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and, by (1), f(a+b) = f(a)+f(b) for every pair a,h < R*. Thus f(a)
= af(1), which implies '

(2) la(ty)* = exple(y) [t1’] (¢ e R),

where ¢(y) = 2log|u(y)|. Since for measures concentrated at a single
point the assertion of the Lemma is obvious, we may assume that u + 4,
for all x ¢ X. Then there exists a functional y, € X* with the property
lu(¥,)] < 1 and, consequently, ¢(y,) < 0. The characteristic function of
the symmetrization of the induced measure y,u on R is equal to |u(ty,)[.
Taking into account (2) we infer that (y,u)® is a non-degenerate stable
measure on R. Hence it follows that 0 < p <2 ([7], p. 327). If p =2,
then, by (2), for any y € X* the symmetrization of yu is Gaussian. Hence
it follows, by the Cramer decomposition theorem ([7], p. 271), that yu
is Gaussian for every y e X*. In other words, i is Gaussian. Suppose
now that 0 < p < 2 and take the Tortrat representation u = g*é(M),
where ¢ i8 a symmetric Gaussian measure. If o = 4,, then there exists
a functional y, € X* with the property o(y,) < 1. Then the symmetri-
zation of y,u contains a non-degenerate Gaussian component, which
contradicts (2) since stable laws with exponent p < 2 on R have no Gaussian
component. Thus ¢ = §, and, consequently, u = é(M). Taking into
account (1) we obtain the equation

3) T,M+T,M =T,M,

where ¢'= (a” +b*)"? and a,b € R*. Let B be a Borel subset of X such
that 0 does not belong to the closure of E. Then T, M (F) is finite for all
aeR*. Put g(a) =T, M(E) (a € R"). The function g is non-negative
and, by (3), fulfils the equation
gla+b) = g(a)+g(b) for all a,b e R*.

Thus ¢ is monotone non-decreasing and, consequently, g(a) = ag(1),
which implies T, M (E) = a®? M (E). The Lemma is thus proved.

Now we are ready to prove the main result of the present paper.

THEOREM 1. Let u be a probability measure on a real separable space X.
Then u is stable tf and only if either u i8 Gaussian or there exist a constant p-
(0 < p < 2), a finite measure y on the unit sphere 8 of X, and an element
xo € X such that, for every y € X*,

- _ . 1Y, u)
@ itg)=expicy, o0~ [ (L7 b v, )i, wpian],
where '
tan% if p #1,

h(w,y,p) =
;logKy, uyl  if p=1.

/
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Proof. Suppose that either the characteristic functional of a prob-
ability measure 4 on X admits representation (4) or u is Gaussian. Then,
after some computation, we have equation (1) which implies the stability
of u. This proves the sufficiency.

To prove the necessity it suffices, by the Lemma, to consider stable
measures of the form u = é(M), where T,M = a’M (a € R*) for a certain p
(0 < p< 2). We define a finite measure y on § by

y(U) = pM {w e U, lal> }

for Borel subsets U of S. It is easy to check the formula

TM{ U, ||w|l>a} =M{w —eU, ||wl|>1} forallacR™.

ll ll [l
Thus -
~-p

®_ U, ol > a} —-“p—y(U)

M{“" Iz

and, consequently,

alp:£c v, as nwu<b}—y<v>ft,,+l

This shows that
r dt
(5) M(B) = [ [ Lotw) gz v(@n)
S o

for any Borel subset E of X. Here 15 denotes the indicator of E. Further,
irom the Dettweiler representation of the characteristic functionals of
fnfinitely divisible measures on X ([1], p. 27) we get the formula

i(y) = expliy, o>+ [ K(aly) M (da)],
X

where z, € X and
K(z,y) = e —1 — iy, z)1g(2),

B being the unit ball in X. By a simple computation similar to that
in the case of the real line ([7], p. 329-330) for every uw € § and y € X*
we get the formula

<y, u)
<y, w)l

- d
[ K, 9) gz = o<, wy— (1 72 b, 3, ) <0, P,
0
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where is a.‘real constant. Combining this with (5) and setting

Ty =&,+¢ fuy(du),
5

where the integral is taken in the Bochner sense, we obtain the required
representation (4). The theorem is thus proved.

The measure y appearing in representation (4) will be called the
representing measure for u. Let I‘p(X ) denote the set of all representing
measures corresponding to stable measures on X with the exponent p
(0 < p < 2). Clearly, y € I',(X) if and only if the measure M defined by
formula (5) belongs to . (X). It is easy to check that the set .#(X) has
the following property: if N is a non-negative measure on X and N < M,
where M € #(X), then N € #(X). Hence y € I,(X) if and only if the
measure y, defined by the formula y,(E) = y(#)+y(—F) belongs to
I',(X). This fact reduces the problem of determining I',(X) to examining
symmetric measures y. We say that X is of type (g, 7) (¢ = 0, r > 0) whenever
there exists a positive constant ¢ such that, for any collection &,, &,, ..., &,
of independent symmetrically distributed X-valued random variables,

E”g &

It is obvious that each space X is of type (0, r) with » < 1. Moreover,
for r > 1 the spaces of type r considered by Hoffmann-Jergensen [2]
and by Maurey and Pisier [8] are identical with the spaces of type (0, 7).

THEOREM 2. If X is of type (q, r) and r > p(q+1), then I',(X) consists
of all finite Borel measures on 8.

Proof. To prove the theorem it suffices to show that for each sym-

metric finite measure y on X the measure M defined by (5) belongs to
M (X). Put

I,=[1,), I, =[2%2") (k=1,2,..).

(< en? D EIEI
je=1

Then the measures
dt
MB) = [ [1p00)gry@n)  (k=0,1,..)
S Iy
are finite on X and vanish at 0. For simplicity of notation put u;, = e¢(M,)
(k =0,1,...). Since

e S,

k=0
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.we conclude that M € #(X)i and only if the sequence {uo*u,* ... *u,}
.converges to a probability measure on X or, equivalently, the series

kZ; 7 of mdependent X-valued random variables 7o, 7,, ... With proba-

bility distributions u,, u,,..., respectively, converges almost surely

([3], Theorem 3.1). To prove the a,]most sure convergence of 2 e 16
k=0

suffices, by the Borel-Cantelli Lemma, to show the convergence of the
geries

(6) D wfo: lall > a¥}),

k=0

where a — 20+)~'(Pe-r+p) 1 Setting a;, = M, (X) and w = a;'M,
(k =1,2,...), we have

0 pi = exp[ — ;] Z—f
and
dt
(8) & = y(8) f 7T = py(8) (27 —2¢e),
I

Let &,, &, ..., &, be independent symmetrically distributed random
variables with the common probability distribution »,. Then for a positive
constant ¢ we have

’

[ el vi® (da) =
X

oanEus I
=on°“a,: [ el My (de)
X
= on®*'y(8)a; (r—p) (2 EV-P g keom) 7

Consequently, by (7),

(9) [ Il pp (d2) < €y, 27509 (k =1,2,...),
X

where ¢, is a positive constant and

b, = exp[— “k]Z (n— 1)'

n=1
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Since " 'n? < t""'*? for ¢ > n, and
m1pe nlal-2+g

1! ~* (n_[g1—2)!

for 0<t<m,

where ¢, is a positive constant and [q] denotes the integral part of g,
we infer that

by<c(l+af) (k=1,2,...)

for a certain positive constant c¢;. Consequently, by (8), there exists a
constant ¢, such that

!

by <e2% (k=1,2,..).
Hence, by virtue of (9), we get the inequality
[ 12l i, (@) < 05a®rD (R =1,2,...)
X

with a constant ¢;. Consequently,

.“k({w: ||l > ak}) < a~kr f llell” g (der) < csak (k =!17 2,...),
7 ,

which yields the convergence of series (6). This completes the proof of
the theorem.

In particular, from Theorem 2 for p < 1 and every Banach space X
as well for 1 < p < r and Banach spaces X of type r we get the description
of I)(X). For p>1 and an arbitrary X the problem whether I',(X)
consists of all finite measures on S remains still open. (P 1024)
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