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On the existence of a density
by

. Rigo TErraAY (La Jolla, Calif)

We shall give the details which demonstrate a formula for & number
theoretical density which played o vital role in our paper [2], but doubts
about exigtence and correctness of the formula have been expressed by
A. Garsia, H. Moeller, and the editors. In the meantime Evereft [1] has
nged our encoding idea to derive & new proof for one of oir assertions.

“We ghall recall some of the conventions and symbolisms in our paper.
We considered a function T, mapping the positive integers into themselves,
given by '

. (1) Tn = (3%00y + X (n)}/2,

where X (n) = 1 when # is odd and X(n) =0 when » is even.

Given an integer » we considered iterated partities m, Tn, T%n, ..
..., T%n and we agreed to stop the iberation at the very firgt instanee
when T*n < n. This stopping time was denoted by x(n) = k. Infinite -
values for the stopping time were permitted. We also introduced & second
stopping time t{n) which had a periodicity property. The gquantity
P[v = k] was defined to be the proportion of integers in [1, 2%7 which
satisfy the relation =(n) =%. The quantities Plr< k] and Plr= k]
wers defined similarly in the same block of integers.

Tt A is a set of pogitive integers then the density of 4 is defined in
terms of the counting function p to be
(2) S(A) = lim (1fm)u{n <m| ned}

=D

provided this limib exists. We now set [x =F] ={n=0] y{n) = kY,
and we define [z < %] and [v > %] in a similar manner.

Trmorm. The denisty of the set [y = k] ewists and is given by

(3) ' S[y=k] =Plv=kl.

Proof. The trick invohfed is to get this formmula withoub foiming
any infinite sums. In [2] we established the formula [y = k] =Pz = k]
Finite additivity of density gives d[y <kl = P[r < k]. Since the sets
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[ < %] and [y %] are complercentary setg of positive infegers one hat
that d[y > k] exists and that

(4) Sy < Ei+é[x=k] =1.
One also hag the relation
(B} Plr< k]+Pr=k] =1,

which holds because we have defined the quantities involved in termng o
a finite block of infegers [1, 2¥]. The assertion of the theorem follows

The relation P[z > k] = d[y = %] enables one to compute explici
values of [y = k] for quite lavge values of k. In [3] we consider tw«
quite distinet general algorithms in & probabilistic context which enable
one to perform such a computation. A table of these density values alread;
appearsed in [2].
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