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Gauss snms and solutions to
simultaneous equations over GF@EY

by

Joax D. Fortow (Clernzon, 8.C.)

1. Introduction. Tet ¢ =2% 4y =1, and let ¥ — GF (g}, the finite
field of order 4. For a e 7, i(a) =a+a*+ ... " defines o homomor-
phism # of the additive group (¥, +) onto the additive group of the prime
subfield {0, 1} of 7, and e(a) = ¢**@ gofines a homomorphism e of (F, )
onto the multiplicative group of integers {1, —13}([3], p. 29). '

Thus, it can be seen that

1) Sotary = | 270
= 0, as20.

Let F¥* denote the vector space over I congisting of vectors y
= (1, B3y ..., @) Let @ be a quadratic form of full Tank & on FH** and
let g be its associated bilinear form. Then there oxisty a bagig for e
(131, p. 197) such that if y == (@1, %o, ...y 2,) € ™, then Q{y) equals
precisely one of the following

(1.2) By + Bayynt ooo + W@+ 25, ., &8 =2k+1,
(1.3) Byl g~ Balp ot oo By, 8= 2k,
(1.4) Gy BBy oo + Cpllyp By - Tagy Bagyn + Plprs

s = 9b42,

where in {1.4), 8 is any element of F such that the polynomial 2+ e + fo?
Is irredueible in the polynomisl ring Flu, v]. .

We say that quadratic form @ has type .= 0,1, or —1 aceording
a8 ¢ 18 equivalent under change of basis for F¥** to (1.2), (L.3), or (L.4),
Tregpectively. :

- 2 — Acta Arlthmetica XXXV.1
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Similarly, under any change of basis for F'*® which produces one
of the forms (L.2), (1.3), or (1.4) for @, for & = (by, by, ..., ;) and g

= {0y, By «oey &) ID B g(&, x) equals
(1-5) blmk+1+ sae —]—bkﬂﬂ‘gk—]-bk_]_lﬂ?l—l— vew “"!‘bzkmk j.f ¥ = 0 (8 = 2k+1),

(1;6) bl“'vk-{-l + “en + bkm2k+bk+lml+ can _[_bgkmk if Te=1 (8 = 2]‘;),

(L) bt F 0@yt bp® b o F 0 Bt b1 Baprs F bapsaBorg

it ve= —1 (s = 2k+2).
Thus, if v = 0, ¢ is less than foll rank; while i v = L1, ¢ is of full
rank s. . ' ’
For arbitrary t, %, v in ¥, we ghall determine the number N (s; 1, u, )
of solutions (£, y) € F*** x F"*® to the system of simultaneons equations

(1.8) Q&) =1,
(1.9) Q(x} = u,
and
(1.10) ' g(&, x) = .
Iy = (4,85 ...,9) and @(x) = Z%fm%: then Q(y) = 245",

i<j
Where A = (ay) Is upper ftriangular. Moreover, if & = (b4, by, ..., By)y

g(&, x) = E(A+AT)4". Let P be the matrix of change of bagis for F**®
which takes ¢} to ons of the forms (1.2), (1.3), or (1.4) and ¢ to the cor-
responding form (1.5), (1.6), or (1.7).

Henee,{for ¢ = 2k+1,
Q) =4 £ =.(§P_1)PAPT(§P_i)T = (§P )Gy (EP7)T = Qu(EP7);
Q) = (2P ) uu(rP™) = QolxP™);
and
98, 2) = £{A+AT) 7 = (EP)P(A+ A7) PPy PYF
‘ = (P ) Py (P 7)" = go(£P77, 2P,
where if § == 1, @; has the form {1.2), g, has the form (1.5),

0 I .
sz+1 =100 0f, Fopyy = Gapyy +G2Tk+17
{00 1 LY
i1 =0, @, has the form (1.3), g, has the form {1.6),

0r
GEF:: [0 Ok]i

By, = G+ O
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and if } = 2, ¢, has the form (1.4), g, has the form (1.7),

01,00
00 00
600 11’ Fﬂk-ﬁ-ﬂ = Gak—z—:"f‘Gg;:-i-z-

00 08

G2k+2 =

The superscript T denotes uamspose, and I, denotes the kxk identity
matrix.

Sinee P~ i an 1som0rphlsm of vector spaee F**, the nmmber sol-
utions (£, y) to the system of simnltaneous equations defined by (1.8),
(1.9), and (1.10} is precisely the number of solufions to the system

(1.11) Qi) =14,
(1.12) G (x) = u
- (1.13) 9al&,y 2} = ®,

-where ¢, is given by one of the equations {(1.2), (1.8), (1.4) and the cor-

responding g, is given by one of the equations (1.5), (1.8), {1.7). Therefore
we seck the number N (s; %, u, v) of solutions (£, y) e F**" o the system
defined by (1.11), (1.12), and (1.13).

In determining N (s;%, «, v), we use results established by Ga,rhtz
(11, [2]) concerning G»a;u&b, or exponential sums defined for equations
over F = GE(2Y).

2, Enumeration of solutions te QB(E) =1. Let N,{s;1) denole the
vumber of solutions £ = (by, by, ..., b,) to (1.11). Then from (1.1},

21)  gWiis;8) =) _,E’e{e(@»(;m)} = Me(a) D e{oQ(£)).
: ] e 3

If s =2k+1, then from {1.2),

&
Qo(8) = D bibigi+ B,

T

and (2.1) becomes

(2.2)  N,(2k+1, 0= D e(ct)

Z c‘bzk—)—l)HZ Ze(ﬁbibkﬂ)

4 i=1 by bpas
= Qﬂk+l+25(ﬂt) Z 3(Gb‘k+1)HZ Z (0bebyys).
e#0 Bagta i=1 by bpy¢
Let y = aby,.,,, where a* = ¢ in F. Hence, in (2.2),
(2.3) D) o) = > o) = Mefy) =0,

by v ) ]
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by (1.1), since squaring permutes . Thus, by applying (2.3} to (2.8),
we obtain

(2.4) N (2k4-1,4) = g% = ¢ L.
I s = 2k, then from (1.3),

k
Qo(8) = X bibisis
i=1

and (2.1) becomes

&
(2:5) ek 8 = et [[ X 3 oobibys)

i=1"¥; bk_H
=%+ Yo GﬂHZ D elohby,)
=0 =1 b; brig

= ¢* 4 ¢® Ze(ct).

[t

Now from (1.1},

g—1 i t=0,
2.6 ch) =
@6 c;:e() l—wl it 150,
Thus,
) 2k—1 —1f, : -
@ ook, = ¢ +4"g—1) # t=0,
Pl g it iw0.

If s =2k-}-2, then from (1.4},

k
Qo( ‘E) = 2 bibk+i+ bgk«i—l + bzk+1 bak-z.z + ﬁ b§k+2
i=1

and (2.1) becomes
(2.8)  gNy(2k+2,1)

S - % ‘
= Ze(m 2 2 elBht ooy e+ 0B [T 37 Y elobibe )

bakt1 bagtz Pl By By

= g* 23 22 y2+y1?!2+ﬁyz)nz Ee(cb iDpi0)

(] ¥i Yo i=1 b Bpyy

=@+ Ye(et) 3 Yo y1+y1ys+ﬁy2),

o0 vl Wy

where y; = aby,,; and y, = aby, ., with a2 = ¢. Now Carlitz [1] has shown
‘that

(2.9) 223(?/“'“?/1?]24-13%)

n w
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Hence,
L _(g—1 it t=0
{2.10) N (2k+2,8) = qo (-1 ’
gl +q" if 10,

3. Determination of 2 (s, t,4,9). Let & ={b,...,b,) be any of
the N, (s; %) solutions to §,(£) =i, Where Ni(s; %) is given by one of (2.4),
{2.7), or (2.10). Then go(£, y) of (1.13) is given by ene of the eguations
{1.5), (1.8}, or {1.7} and may be denoted by Ly{x), since it is for given &
& linear function of y = (»,...,s,). Thus, let N,(s;w, o) denote the
number of solutions y = (@, &4, ..., 3,) to the simultaneous system of

equations
(3.1) Qolz) = 4,
(8.2) ' Lolg) = v,

where & == [by, ..., b,) is any solution to Q,(&) = £

¢ for s = 2k-+1, £ =(0,0,...,0,¥%), then I, is the zero lineap
function and IV, (s; «} of {2.4) gives the number of solutions ¥ to the system
defined by (3.1) and (3.2) for ¢ = 0. There are no solutions in thig case
if v £ 0.

Algo, if for any &, & = (0, 0,...,0) ig the specified solution to Q,(£)
=0, Iy is the zero linear function, and ¥, (s; w} of {2.4), (2.7), ot {2.10}
gives the number solntions y to the system defined by (3.1) and {3.2)
for v = 0 according as 5 = 2&--1, 2&, or 2k 42, respectively. There are
no solutions in this case if v = 0. :

Only if £=1(0, 0,..., V1) for & = 2k+1 or if &= (0,0,...,0) for
any s, is I, the zero linear map. Thus, it will be implicit from the
following arguments that

[(Nl(s; B—1)No(s;u, 0) LNy (s;%) Hi=0=0
and § i8 even or if » = 0 and s is odd,
(3.3). Nis;é,u,v)=1{ (Nals; H~1)Nols;u,0), if1=0,0%0
and s is even or if » == 0 and s i3 odd,
_{Nl(s,_t YN {8; u, ), otherwise.

Thus, let & = (b, by, ..., b;) be any of the solutions to @y(%) =1
such that I is not the zero linear function. Hence, for each w in ¥, there
exigt ¢°' vectors y = (#, %, ..., #%,) such that Ly(y) = u.

From (1.1), we obtain

(3.4) P Ny(s; %, 0} = ?223{ e(Qoly) +u) +
= 2 Ze (ou -+ dv) Ze.{cczo(maza(x)}
wvf+§’23(m+dv)2e{c@n )+ aLa(x)}-

c#0 d

( o(%)‘{’v)}
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Carlitz [2] hag defined

(3.5) G(Q, I) = D) e{Q(n)+ L)}

Using (3.5) in (3.4), we have

(3.6) ENa(55u,0) = ¢+ ) M o(ou+dv)&{eQy, dLy).
c#0 4

If s is even, it can be determined from Carlitz work [1], [2] that
3.0 Gy, ALy) = T¢e(a @) i ¢ 0,
, where 7 is the type of §,. Hence, for & even, (3.7) applied to (3.6) becomes

(3.8) @@ N {s; %, ) = g“"—l—t'g-i;"szge(cu—}-dw)e(c“ldzt).
c=0

X ¢ =0, then (3.8) beeor_nes
(8.9) | | PN (35 u, v) = g’—l—"rg"’zZe(cu) 2 dv,

. c70 a .
and (1.1) can be applied. Otherwise, if ¢ % 0, then ‘(3.8) becomes
(3.10) Ny (s5u, v) = q"—l—rg“”zZe(au)Z s(c 1@ - od).

d .

cE0

In the latter sum in (3.10), let #* = ¢~ 44" and k — y/~T. Caxlitz [1] has
ghown that - '

: . ) g i a=1
(3.11) (0 Lar) — I )

2,7 0 if a1,
Therefore,

l_q if ¢ =t with v £ 0,

(3.12) Zd,’-e(a“ltdz-l—vd) =26(72+7wr) =10 if =0 or if ¢ = to~?
T with 2 £ 0.
Hence, ‘
(3.13) _ B
' £+ rg" ™ Mg—1), t=u=v=0,
- —~2 _ o als—2He — e 3
Nolss u, v) ~ q 74 , t=0=0, w0,

¢ : " t=0,2#0o0rt£0,v=0,

P rg® Welunty, 40,0 2 o0, (s even).
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If 5 is odd, it can be determined from Carlitz work [1], [2] that

¢ efihod™) i CFER =1,
3.14 @ al,} =
( ) (OQO? ﬂ) 0 if c—lm(b: )2 ?l__ 1,

where in Carlitz work Q,{y) iz given by our equation (1.2) but where L,(x)
is given by _

Io(x) = b;a”'kﬂ‘}‘ —:bzmzk‘:‘b;-i-lml‘i' +b;kmk+b:k+1w2k+1'
However, in view of (1.5), the coefficient of »,,,, in (3.2) is zero. Hence,
for our purposes (3.14) reduces %o
(3.15) G{eQ,, 4L,) = 0.

Applying (3.15) to {3.6), we obtain
(3.16) Fols;u, ) = ¢ %, & odd.

Thus, by using (2.4)’, (2.7}, or (2.10) for N,(s;#) and (3.13) or (3.16)
for N,(s; %, v) in (3.3), we obtain N(s; 7, %, 0).

4. An example. In determining [4] the number of # x¢ matrices X
of rank 7 over F = GF(2Y) such that XAX?T = Bmod«,, the additive
group of nx n alternate matrices, for given 4 and B, upper friasngular
matrices of full rank quadratie forms @, and @, on F*** and F'*", respect-
jvely, we needed to determine N(s;1,a,1), the number of solutions

[ﬂ to the matrix eguation ‘
£ 11 .
@1y | Jenem, 71 = [§ &]mota,

where &, is the matrix of quadratic form @, on. F*** given by one of (1.2},
(1.3), and (1.4) and where o is such that the polynomial w2+ ur - ap?
ig irreducible in Flw,v]. .

Thus, the number solutions N;{8; 1} t0 Qo(&) =1 from (2.4), (2.7},
and (2.10) s -
gt it ¢ is odd,

(4.2) Nifs; 1) =‘f_1__1g(s—z)rs if ¢ is even.

Let &£ = (bi, b;, ..., by) be any solution to Qo(£) = 1. If s is odd, the sol-

“ution & = {(0,0,...,0,1) to Q&) =1 leads to L, being the zero linear

function, and sinee Ly(x) = g(£, ) must be 1, there are no solutions x
for this £ to-the system go{&, %) = Ln(y) =1 and Qo(z) = o. Henee,
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if"E #(0,0,...,0,1) is a solukion to (&) =1, from (3.13) and {3.16)
we find that ' _ .

¢, s odd,

T 4+7g" M e(a) = @~ 7g® I, 5 even,
where e{a) = —1 ([3], p. 199). Therefore, from (3.3), we obtain

(¢ —1)g"?, s odd,
(gs_l_'tq(s—g}lg) (QS“Z;TQ(S_E)Iz)y § even,

which is the number of solutions to (4.1).

43)  Ny(s5a,1) ml

(44)  N{(s;1,a,1) = [
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Some results on p-extensions of local and global fields
by
RoserT J. Bowd (Chegtnut Hill, Mass.)

1. Introduction. Let K be a local or a global field, p a prime, and A
the maximal p-extension of K; ie., K is the compositom of all Galeis
extensions of K of p-power degree. Let Qe (p) be the Galois group of £ .
over K. The structure of G (p) is well-known in the loeal cage and is studied.
in some detail in the global case by Koch [3] and Héchsmann 21

In this paper we consider the following question: what information
about K is contained in Gy(p) considered as an abstract pro-p-group
A similar question was answered by Neukirch in the case where X is a finite
normal extension of the rationals. He shows in [4] that K is debermined
completely by the Galois group of the maximal solvable extensions of K
over K. It K i3 a global field of non-zero characteristic, the effect of the
Galois group of the separable closure of K over K is considered in [1].

Let K be a local field with residue class field % of characteristic p, = p.
We prove that Gg(p) determines &*(p), the p-primary part of the mulbi-
plicative group &* = &k —{0}. In the global case we show that G (p) deter-
mines whether or not K has a primitive pth root of unify. We then restrict
owr atbention to function fields with fintte constant field & and show
that @x(p) determines %*(p), p = charK; more explicitly, if X and K’
are two funetior fields of char p, #= p with constant fields % and &’ respect-
tvely and if Gg(p) and Gg(p) are isomorphic algebraically and topo- -
logically as pro-p-groups, then ¥*(p) ~ E™*(p).

‘We then consider continuous awtomorphisms of G{p) where K is
& function field containing & primitive pth root of unity. We prove that
H L iz a constant field extensions of K of p-power degree, then & (p)
is a characteristic subgroup of Gg(p). 1

First some notation. If X is a field, X will denote the maximal p-exten-
sion' of K and Gg(p) or G(E/EK) the Galois group of K over K. G, wil
denote the Galoiz group of the separable closure of K over K. H“(G.K (»)
will be the nth cohomology group H" (@« (1), Z[pZ). If v is a valuation of K
we let K, be the completion of K with respect to v. We will write $(K) =1
or 0 depending on whether or not K has a primitive pth root of unity:



