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~ r ~
ever, G(H)Z[GIC =~ @ Z[¥])¢; under the Z[¥]map > x,G(x)g,C
i=1 :
- D2E; for x, € Z[%]. Hence

LEMmA 4.2 If {€;} is the set of decomposition groups for ome prime
divisor in X of each of the r infinite primes in £ then £ salisfies the exact
sequence

0—+Z~+(—DZ[§]%,-—+££’->O

i=1

where n € Z 'n@,-é.
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Kuroda’s class number relation*
N
C. D. WarTeER (Dublin)

Kuroda’s class number relation [5] may be derived eagily from that
of Brauer [2] by eliminating a certain module of units, but the technique
is applicable to a much wider class of relations which are obtained from
norm relations. The main aim here is to treat the case in which several
radicals of the same prime degree are adjoined to the rational field.

1. Norm relations. Let G be the Galois group of a normal extension K [k

of algebraic number fields and H the sum of the elements in a subgroup
H. Then a relation of the form

(11) MoHEHE =0 (b(H)eQ)
H

is called a norm relation. These have been studied by Rehm in [7] and are
so-called because Artin has established in [1] that the relation holds
precisely when

I Fgme(@)®™® =1 for all o e K*.
H

Here HE is the subfield fixed by H and N is the relative norm. If 1%
denotes the character on G induced by the unit character on H then the -

equation p
(1.2) D1 (g)g = 1HIT DY) gHy™
geG geG
may be used to convert the norm relation (1.1) into the character relation
(1.3) D b(H) H[1G = 0.
H

The most interesting relations satisfy two further conditions:
(1.4) DrrFNTTION. Y'b(H)H = 0 is called & direct norm relation if

* Work completed under a Rouse Ball studentship from Trinity College, Cam-
bridge.
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(i) there is an Hye 8 =
Hes, and
(i) distinet H,, H,eS, = {H eS| H #+ H,, H + @} satisfy

1671@.

This definition and its notation will be subsumed from here on.
All sums and products will extend over H € § and ’ will indicate their
restrictions to H € §,. For any left (resp. right) Z[G]-module M let HM
(resp. MH) be the submodule fixed under the action of H and write 17,
for Y'HM. If M is torsion-free over Z and GM = 0 then

{1.5) M, =Z' HM is a divect sum.

(H| b(H) + 0} such that H, < H for all

lﬂllﬂlﬁl ) IHzrlﬁa =

For suppose H, H' e 8, are distinct. Then HH' e ZG and so H pro-

vides |H||H'|/|G| representatives for each coset of H' in @. Thus H acts
a multiple of the trace on H M/GM. Consequently if m = X mg e M,

with mg € HM then Hm = |H |mg because GM = 0. Hence myg is unique
as M is torsion-free. ‘
(1.6) THEOREM. A direct morm relation has the form

D) HIHI—G\6) = Hy||Hy|—&/16]
and its associated character relation is

D (1% —1) =1§ —1.
Moreover

Hy=N{HeS8}, &=U{HEeS},
and Sy completely specifies the relation.

Proof. When D a(H')|H' 7IH =0 is multiplied by H/IHI for
HeS, or H =@ one obtains

(0 + () |HIT H + 3 o(H) 16176 = 0

where @, = a(H,) and the sum extends over H == H in Spu {G}. This
gives ay+a(H) =0 for Hef, and Ya(H') =0 for H = @ Thus the
form of the norm relation is established. (1.3) gives the character equation
which will henceforth usually be written

{1.8) D a(E)1g =0,

(1.7) Exawprm. If ¢ is an elementary abelian group of prime exponent p
and order p™ and T is the set of (p™—1)/(p —1) maximal subgroups then

D E =@ -p—1) -G+

Hel
is a direet norm relation.
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Proof. Any isomorphism between G and its character group G*
provides a bijection between maximal and minimal subgroups, namely

HeH" ={je@ hig) =0 Yhe HY}

where H™ is the image of H in G*. The order of 7T is the number (p"—1)/
[(p —1) of minimal subgroups. Now g € H if and only if (g)* > H*. So the
number of maximal H containing ¢ is the number of minimal subgroups
of {g>*, namely (p" ' —1)/(p—1) if g = 1. Thus the norm relation holds.
It is dueet because distinet maximal subgroups H and H' satisfy HE'
— p”“‘G

There are several ways of constructing new relations from given
ones by passing from the whole group to a subgroup or quotient group
and vice versa (see [8]). In particular,

(1.8) LeEvMA. Suppose G and G’ areisubgmups of G, such that GG = G
and Db(H)H = 0 is a direct norm relation for G. If HG' = {ng'| heH,

g’ €@} is a subgroup of G, fm" every H € 8 then S’b(H)
norm relation for Gy.

= 0 48 & direct

This is clear because G = HG — G¢'H for H & 8.

2. Brauer’s class number relation. Let U be the unif group of K; W
its subgroup of roots of unity; w,(H) the 2-component in the order of HW;
h(H) the class number of HK;(H) the rank of HU/HW; and n(H) the
degree of HK [k. A bar will denote the natural map U— U/W.

Choose one prime divisor in K of each infinite prime in ¥ and suppose
{0;] 1 < i < r}is the set of their decomposition groups in K /k. Sor =r(G) +
+1 and each C; is determined up to conjugacy. If L is defined by the
exach sequence

{2.1) 0——>Z——>(;1’DZ[G]O'._-——>L—>O

=1
of Z[@G]-modules where neZ — n ®G then Brauer’s theorem may be
1
formulated as follows.

(2.2) TEBOREM ([9], Theorem 4.1). Suppose 3 a(H)1% = 0. If the submodule
M of U is Z[G]-isomorphic to L then

n B(H)*® = n (n(H)ws(H) [ﬁ_ﬁ HM ])“(H).

Unit groups may be written in either additive or multlphcamve
notation but the context will clamfy the choice. Suppose

(2.3) QGU = {ecU| AneZ, n + 0, with necGU}
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is the group of units with powers in %. Then GV = VNQGU for any subset:
V = U and so the equalities hold in the definitions below.

Q* = [HoL: L],
Q = [H,U:H,W + U,]= [H,U:T,],
Qo = [H,U:(H,UnQGU)+ U,] = [H, U:6GH,U+ T,],
I(H) = [HUNQGQU:HW+GQU] = [GHU:GT],
I, = [U,nQQU:W,+GU] = [GU,:GU].
By comparing ranks I(H) and I, are finite. If # € H,X for some Z [G]-
module X then (1.1) gives

—b(Ho)z = b(@)G[How+ ) b(H)H|He.

As H/HQ is the trace for H X /HZX so (1.6) shows that [G:H,], eXo*
Thus
(2.4) [HyX:X,] is finite

if_ X is finitely generated, and all the indices above are finite. The bagic
simplification of (2.2) for direct norm relations is:

(2.5) LEMMA.
[] TET-EMF® = (Qy/q%) [ | 1(mmy .
Proof. (GH,U+ U,)|U, =~ GH,U|GT, whence

(2.6) Q[Qo = I(H,)/L,.

Let V = GU,. Then

Q*[H,U:H,M]/[GU:¢M1I(H,)Q,

= [H,M:M,)[H,U:H,M1[G¢M:GUI[GU:VI[U,: H,T]
= [Up: M) [GM:V] = [Uy: M+ V] since (My+ V)/M, o VIGM

=[O/ V:(My+V)[V] = [[ WHT+V)[V:(EH+V)[V] by (L5)
=[] (EU«EM +V)nET] =[]' [(BU:HM)/[EM+GHU:HI]
=[] [EU-BEM)[6ET: M nGHT]

= [[TEU:BM1/16T:6¢011(H).

Theorem (1.6) completes the proof.
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3. The index Q. Let I, be defined to make the Z[G]-module sequence
{3.1) 0—+7Z—-Z[G]C;—~L;—~0

exact. Associated with it is the submodule L;, = Y HL; and the index
Qi = [HoL;:L;,] which is finite by (2.4). Both (2.1) and (3.1) are exach
when restricted to the submodules fixed by a subgroup H because this
is a left exact functor and any pre-image of an element in HL or HIL;
is certainly fixed by H. Hence

H,L|L, = {H,(@Z[&10,)}/{ > H(@2[610,)
=~ QH,Z[610;/ D HZ[G10)) = @H,Li/ Ly

=[JQZ‘-

Now define a pairing on QIL; X QL; by (z,y) = 167 (1F—1) (zy")
where * is the involution induced by g +— ¢~ ' for g e@. If NV is a Z-sub-
module of I; with basis {n,} let B(N) = |det((n,, n;))| be the regulator
of N. This is independent of the choice of basis and for another submodule N
it satisfies

(3.3). R(N') = [N:N'PR(N)
whenever [N:N'] is defined.
Let HgC,; denote the sum of the distinet elements in {hge| % e H, ¢ & 0},

|HgC,| the number of such elements, and HgC; its image in L; under (3. 1).
It H and H €8, are distinct then there are h € H and 1" e H' such that

hh' = g for any given g e @ So k™ gh’™! =1 and HgH' = HH'. Thus

and so

(3.2)

(Hg0,)(H'g'0;)* e 2G¢ and  (HgCp,H'g'C;) = 0.
However, the HgO,; form a basis of L,u for H e 8, and suitable g € G because

Ly= ZHL is a direct sum by (1.5). Hence the corresponding matrix
for R(L,,) is zero except for blocks of determinant R(HL;) on the diagonal.

This gives
(3:4) (L) = [] RAL).

The number of HgC,; which have |H| elements is

g e @ gy~ e HY/|H| = 1% ()

Whele v; generates C;. Thus the number with 2|H| elements is 7y;(H)
14 (1 —9y;) /2. Set 7, S(H) = dimHZ[G]0; —1. As (3.1) is exact when fixed
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by H so {Hg(;} is a basis of HL; when g runs over representatives of the
non-principal double cosets HN\G/ C,;. If HgC; # HhC; then

(HgC;, HWC;) = — |[HgO,| |[HWC;|[|G]
~and
(HyC,, HyC;) = |HgC;|— |HgO;*[1G.
Hence

R(HL;) = |H | +omi@E|H10,  det A

Where A =I—(|HgC;|/|G), for the identity matrix I. Add together
the rows of A to obtain the constant row [H1C0,]/|G| and use it o ehmmate
(1HgC;l/IG),,5. Thus detd = |[H10;|/|G| and

(3.5) R(HL,;) = |H|1@+ior@ |G

Equation (3.3) gives Q;* = R(L;)/R(H,L
and (3.5) produces

(3:6) Qi = ([ [ i@+ @) j( H 0+ 1)

because D7y, (H)
power of 2. Now

r(H)+1 = dmHL+1 = Y dmHZ[G]0; = D) (r:(H) +1).

;) and combining this with (3.4)

= 3'1§(1—9)[2 = 1§ (1—,)[2 = ry;(H,) removes the
0

Thus (3.6), (3.2), and (1.6) together yield
- H | H |« (E)+1),

4. The Einheitenindex I(H). I(H), which will be written I(HEK/k)
in this section, is a generalization of Hasse’s Einheitenindex ([3], §20)
for an abelian extension of Q over its maximal real subfield. Let &, > &,
> ky be a tower of fields. The basic property is

(41) TErEorEM. I(k,/k,) divides [ky:k,].
This is clear from the next lemma because I (k,/k,) divides I(k,/k,) X
X I (Ry [Fo)-

(4.2) Lmvma. If Fyfk, has no intermediate fields and [ky:%,] = p then
I(ky[ky) =1 or p. In the latter case p 48 prime and ky, = ky(&) for some
unit & such that ¢ € k. Conversely, if p is prime and ky, # ko(Vj) has
this form then I(ky[k,) = 1 or p according to whether or not %, is the unique
extension of ky with the form k; = ky(w) where o €k is a root of unity
with p-power order.

Proof. Let U; and W, be the groups of units and roots of unity in
k;; Wy, the p-Sylow subgroup of W,, and V, the subgroup of units in %,

(8.7) Q™

with some power in Vy = UsW,. Then I(k[ky) = [V,:V,]. The norm N
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for k,/k, induces the pth power map on T /W, and maps V, into U,.
Hence V4]V, has exponent p.

Assume V; # V,. If ee V,—V, then there is an m € Z such that
e™ ¢ U, but ™ e U,. So k; = ky(c™) and 9 is prime. Moreover, if { is a primi-
tive pth root of unity and k; = k() then &;/k, is cyclic with generating
automorphism e, say. The norm N extends to k,/k,. Let ¢ = [W,: T, ].
Then 20-9 ¢ W w<&) for ee Vy. Thus if &, s, €V, then a,d eZ can be
chosen such that ptae or ptd, and (ef )% = 1. So £ % U, and
&2 8 eV,. Hence ¢, ¢V, implies pth and e, € Vilep). 'l‘herefore TV,
is cyclic of order p.

Suppose &, == k(Y — )but ky = ko(e) where ¢” € U,. Then w € W,,(&>
and No =1 give o € {{). So putting o = =9 for ¢ & V, yields 72
o (. In fact, & gives V¥~ = (7). The last part of the lemma holds
because in this case V3~ = 1 if and only if W, = W,,.

5. The indices ¢, and @
(8.1) LeMMA. Q, divides []'[H:H,J&E-"&
Proof. @, is the order of
HU[(Uy+HUNQGU) = (HU+QGU)[(Uy+ QGU) == p(H,U) [p( Uy)

where ¢: U— U/QGU is the natural map. For ¢e H,U the norm
equation (1.6) gives

IR

[6:Hyle = (L— (S & [Hae+ 3 [6:H1H Hoe

so that
(52)  D[¢:H,]p(HD)

= [G:H,]p(U,) = [6:H,Jp(H,U) 2 [G:H]p(HU)

because ¢(GU) = 0. Since the sums )’ are direct by (1.5) and each p(HT).
ir torsion-free, Q, divides the index []'[H:H,]*™*H#? hetween the end
modules. Finally dimep(HU) = r(H)—r(F).

(5.3) LEMMA. If [H:H,] =n is the same for all H 8, then Q divides
I'n@0-r&) for each H' 8, where

— [H,UnQH U:H,W -+ U,nQH U]

T’ divides I(H,E|HK) which divides n.
Proof. Let ¢': U U/QH U be the natural map. Then (5.2) yields

N'ng! (HU) = ng/(Ty) < ng'(H,0) = 3¢’ (HU).
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The sums >’ are direct. Hence Q' = [H,U-+QH U:U,+QH U] divides
the index [['n%™7(HU) | etween the end modules. As

dim¢'(HU) = dimg(HU) = r(H)—r(@) for HelS,, H #H,

and _
2 () — (@) = r(Hy) =(@)
s0 Q' diﬁdes prHo) =) Now

Q=[HU:HW+T,]
= [HyU: Uy +(H,UNQH U)1[Uy+(H,UNQH' U): HW +T,] = Q'I'.
Thus the proof is completed by (4.1).

6. Kuroda's relation. ;
6.1) Muarx THEOREM. Suppose the subgroups of the Galois group G of
a normal extension K [k of number fields satisfy o direct norm relation ((1.4)
and (1.6)) whose corresponding character relation is (1.3'). Then the class
numbers h(H) of the fields HE fiwed by the subgroups H are related by

(6.2) [[H(EY® = (w,Q) [ [{1(H) [(7:HJr@-eem,
H H

The wnit indices Q, and I(H) are defined in §2 and bounded by (5.1) and
(4.1). Further, w; = 1 unless k Z k(l/—l) < HyK when w; = w,(H,) [w,(H,)
Jor the wnique subgroup H; e S, whose fized field contains k(l/—l).

Let C(H) be the subgroup of the ideal class group of HK composed of
classes with orders prime to [G:H,]. Then the part of “the class number re-
lation (6.2) prime fo [G:H,] is induced by the direct sum decomposition

O(Hy)[C(&) = DO(H)[0(®)

given by y= >[H :HO]"lﬁ'oy for vy e O(Hy,)[C(Q) and the natural idents-
Sication of C(H) as a subgroup of C(H,).

Proof. Define w; by wi = [Tw,(H)*™. Then Theorem 2.3 of [9]
gives w; =1 if V=1 ek or V —1 ¢ H,K. Otherwise, if J is the Galois
group of K/k(V/—1) then (1.6) yields

DV THNIH G 6) = TN G161

Consequently JH/|J||H| = G/|G| for at least one Hef,, say H;, and
H; = J for such a subgroup. However, if J also containg H;ef, then
HH; # G and so H; = H;. As wy(H) = 2 for all H ¢ &, except H = H,
the value of w; is w,(H,)jw,(H,).
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Now Ya(H)r(H)=0 is apparent from equating the ranks of H,U
and U,. Hence (6.2) iz obtained from (2.2), (2.5) and (3.7). The class
group relation holds because the norm equation gives

v = D [H:H,]H/H,y.

A particularly useful special ease of this theorem is a generalization

of Kuroda’s result [5] which includes the formulae of Herglotz [4] and
Parry [6].

(6.3) THEOREM. Let p be a rational prime, n > 2 an integer, and a; (1 <4< n)
elements of a number field . Suppose

»_
ke =k(Va;] 1<i<n)

has degree p™ over % and let {k | T e T} be the set of (p"—1)/(p—1) éubfielcls
of degree p over k. Denote by h, s by s Usy Uy, Uys and Wy, W, W, the
class numbers, unit groups, and groups of roots of unity of ks, k;, and %

respectively. Set
Q = [U*:W*HUt].
tel
Let w be the number of algebraically independent fields ky of the form k(e)
where & € U,,. If one of the k, is k(l/:—i) let v satisfy 2 = w,q Jw,; where W
and ws; are the 2-components of the numbers of roots of unity in k, and k( VZT).

Otherwise put v = 0. Let 7y, 1;, and 7, be the Z-ranks of U.|W,, U, Wy,
and U, |W,. Then

h. h
]
kgep
where
1 1{p"—1 L

The index @ divides p® for B = B,— (n—1)(re—7+1) and any fidd ¥,;
and the p"~'-th power of every wnit of ki lies in W] U,.

For Q = Fu, Ky, or & let C(Q) be the natwral embedding into C (k)
of the part of the ideal class group of Q formed from classes whose orders are
prime to p. Then there is a direct sum decomposition

O(lta)[0(R) = D)0 (k) [C(K).

el

Remarks. The same theorem holds more generally provided only

- that the Galois group concerned is isomorphie to the one here.

4 — Acta Arithmetica XXXV.1
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‘When applied to different relative extensions within %./k the
theorem produces all relations between the class numbers of intermediate
fields which can be deduced from relations between induced prinecipal
characters.

The value of B cannot in general be improved beyond

B =} +1)(n—1)— 3 (r+1) (" =D /(p—1) —1)

because p®' is the value of Q when U, /W, is isomorphic to the lattice L
of (2.1). .
Proof. Example (1.7) gives a relation between the Galois groups

B, p_ D__ 3
of the fields k. (V1), k,(V1), and %k(V1), and Lemma (1.8) allows  this
to be lifted to a-direct norm relation between the groups of the fields &y, k;,
and k. (6.2) gives the required relation once the following equalities are
proved:

(6.4) w; = p°,
(6.5) n [H:H,JB0@E-1E _ p=ows
for # = (n—1)(re—1)—{(@" -1 /(p—1)—1}{r,—1},
(6.6) Q¢ [[I(H)™ = @up~v for y=(@"—1)/(p—1)—u.
The first is trivial and for the second note that
n [H: Ho]a(H)(r(H)—l)iz — n ([H: Ho]pl—n)a(ﬂ)(r(ﬂ)—l)lz = P,
By (2.6) the last is equivalent to
g [ [ TOP = I(H)p=*,

' [L=gp"

i

that is,

in the obvious notation.

By (4.2) the index I; is 1 or p. If k(e) and k(e,) are two of the %,
with ¢ and ¢ in U, then % (e, &,) is k or another such k. Thus if there are »
algebraically independent such fields then the total number is the number
of subfields %; of their composition %,, »iz. (p*—1)/(p —1), and, by (4.2),

nIt = p?*¥=%  where 6 = 0 or 1.

Precisely, 6 = 0if no field k; has the form %(w) where v € Wy hag p-power

order, or if one of the %, is k(l/:I) and it has corresponding index I, = p.
Otherwise § = 1.

Let us suppose that if one of the &, is %(V :) then I; =1 for it.
The linear combinations of u algebraically independent generators &
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of the %; with ¢? e U, generate each U;nQTU, over W,U, and so generate
UonQU, over W,U,. No linear combination which is not a pth power can
lie in U}, because of their algebraic independence. Therefore any combin-
ation in W, U, lies in the equivalence class modulo Uy, of a root of unity
© ¢k with o” ek and yields a subfield %, of k. with I, = 1. Conversely,
such a &, in k, leads to a linear combination in W, U,. Hence I, = p*~°.

Now suppose that k; = k(Vr——l) is one of the &, and that I, = p.
Then the u algebraically independent ¢ generate each U,nQ U, over W, U,
except when ¢ = 4. Thus they generate over W, U,. a subgroup of index p
in Uy,nQU,. On the other hand there is a linear combination of them
which lies in the same class modulo U, as V—1. Thus again I, = p*~¢
and I;*[[ I, = p¥ which proves (6.6).

The bounds on the order and exponent of U, /Wi [ U; come from (5.3)

and from applying (1.6). The first remark is clear ; for the second see [8];
and for the last use (3.7).
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