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Diophantine representation of Mersenne
and Fermat primes

by

Javms P, Jowes* (Calgary)

1. Introduction. In 1970 it was shown that Hilbert’s tenth problem
was recursively unselvable. Hilbert had asked in 1900 for an algorithm
to decide the solubility of all Diophantine equations. Yu. V. Matijasevi# [10],
(11], using 1961 results of Martin Davis, Jnlis Robinson and Hilary
Putnam [2], proved that every recursively enumerable set is Diophantine.
That is to say, he proved that each recursively enmmerable set 8§ may
be represented in the form '
(1.1 zel 3w, @y, .., 0y (Plo, oy, ..., 2) = 0]
where P is a polynomial with integer coefficients and the guantified
variables range over nonmegative integers. Since it was well known thaé
there exist recursively enuwmerable but nonrecursive sets, the unsolv-
ability of Hilbert’s tenth problem follows immediately from Matijasevid’s
theorem.,

One very surprising consequence of Matijasevit’s Theorem is that
every recursively enmmerable set § may be represented in the form

(1.2} BN o Jpy, #ay 00y 8y, (@B, B, -0y 1,) = @),

This follows from a theorem of Hilary Putnam [15]. Putnam noticed
that for P as in (1.1), the positive values of the polynomial @ = z(1 —P%
coincide exactly with the members of 8. For if 0 < o(1—P%), then P = 0.
Notice that n = k41 so that Q has one more variable than P.

Thus polynomial formulae exist for virfually all the different sets
commonty considered in the theory of numbers. Using methods developed
during the course of research on Hilbert’s tenth problem, such poly-
nomials may actually be constructed and written down.

¥ This paper was wrilten during the author’s 1975-76 sabbatical leave at the
University of California, Berkeley. The author wishes to express his gratitude o
Professors Julia Robinson, Raphael M. Robinson and D. H. Liehmer for their generous
adwice and asgirtance.
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A polynomial in 2 variables, representing the set of Fibonaeei numbers,
was congtructed in [7]. A polynomial representing the set of all prime
numbers s given in [6] and [12] and [25].

Tn this paper we construct three polynomials, representing respect-
ively the Mersenne primes, the even perfect numbers, and the Fermat
primes. The three polynomials are easily written down in completely
explicit form. We will prove

THEOREM 1. Each of the following three sets is vepresented by the given
polynomial:

(1) The Mersenne primes:
n{l—[4h+3—nl>— B([2 + n® — a2+ [03d (nd 4+ 2)(h +1)* + 1 —m2]2 +
+[db+d+ehnt+g(de—58)—kn]i 4 [(at—1)e* - 1L —F*n?*]2 4
+[4{a*—1)itet +1—f*]* + _
+[(kn—i—lf)2-((m+f‘l(f2—m))2—l)-(b—i—l %) 1J)}

(2) The even perfect numbers:
(9b+2)nfl [4b+3 —n] mb({7 I — a2+ [n3d3 (nd 42} - (h-+-1)2 4
Sl m?]2
—,—[db—;—d—,—ch;ﬁ-{—g(ia—a)
L [4{a2 )R- 1 — P+
+{(kn +1)2— ({a+F2(f2—a)j2— 1) (b+1+2jc)2—1]2)}.

(3) The Fermat primes:
(6g+5){1— [ph+(6—12)¢+n{24a —145) — d]2— [16b3R3 (bh +1) %
sola--1P L —m2 2 — ‘
—[3g+2—b]*—[2bed-e—bh—1
—[4{e* =1} -1 —f2]P— :
—[(d@-+1f =@+ — @) —1)- (b + 2oy —1]5.

In cach ecase the claim is that the given set of numbers is identical
with the set of positive values of the associated polynomial, as the vari-
ables run thru the honnegative integers. The polynomial (1) hasg 13 vari-
ables, a, b, ¢, &, f, ¢, k, 4, j, ¥, [, m, n, and is of the 26th degree. Polynomial (2)
contains the same 13 variables and has degree 27. The third polynomial (3)
hag one additional variable, e, and degree 25

Of course these polynomials also . mssume cerfain negative values,
about which nothing is claimed. This shortcoming cannot be avoided.

- It is impossible to represent Mersenne primnes, even perfect numbers or
Fermat primes, by polynomials taking no other values. We prove this.

TueorEM 2. Let 8 denoie any one of the following three sets: Mersenne
‘primes, perfect numbers, or Fermat primes. Let P{my, &g, ..., x,) be any
polynomial. If Play, s, ..., 2,) €8 for all nonnegative integers Tyy Doy «n-

veey B, then P is a constami. ' ' :

EnJe+[(a*— 1) +1—kenele

12—k +b—cl2—[(a* ~Lje2+ 1 — @] —
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Proof. The proof depends only upon a simple divisibility property
shared by these three sets. It will therefore apply equally well to any
other set § possessing this property. The property is

1)) aeSafeSaclf - a=§.

Plainly, property (D) holds for any set of primes. {D) also hoids if §isa sek
of perfeet numbers. To see this recall that » is perfect i a{n) = 2n where
o (n) denotes the sum of the divisors of n. Now for 1 < p, yo(a) < o(ya).
Taking § = ya vields the result.

Now suppose that a polynomial P(2, o, ..., #,) maps nonnegative
integers into the set 8. The coefficients of an integer valued polynomial
must be rational numbers, by the Lagrange Interpolation Theorem. Let {
be any conumon multiple of the denominators of coeffieients of P(@,, #., ...

s ). Let P(0,0,...,0) =« We may suppose o =0 because, if 0 e 8,
then 8 = {0} by (D). Let § = P(nyda, nyla, ..., nila). Then § = a{moda)
because Pz, ..., ) is a polynomial. Henee a)f. Hence ¢ = g8, by (D).
Thus P{n,la, nyla, ..., nla) is constant in n,, na, ..., 2. Hence Ploy, .
ovop ) 18 & polynomial of degree zero. The theorem is proved.

A polynomial is a special case of an algebraie funciion. Theorem 2
generalizes to algebraic functions, because an integer valued algebraic
function is necessarily & polynomial (¢f. T. Kojima [26], Theorem 3,
also Skolem [217, 8atz 27, and [6], Theorem £.2). Hence

CoroLLARY. Let S denote any one of the following three sets: Mersenne
primes, perfect numbers or Fermat primes. Let [z, 2., ..., 2,) be any al-
gebraic function, If f{zy, %, ..., &,) € 8 for all nonnegative integers z,, 2., ...

ey By, then f is a consiant.

Tt i3 interesting o consider the question of the minimum number
of variables neeessary in the polynomials constructed here. Concerning
this guestion, Yo.V. Matijasevi¢ and Julia Robinson proved in [13] that
the number of nunknowns in any Diophantine equation may be reduced
to 13. Recently thisresnlt hasbeen improved by Matijasevié fo 9 unknowns.
From this it would follow that the three sets discussed here could be
defined in 9 unknowns and hence that 10 variables are sufficient in the
Putnam polynomials. We will prove here that these three sets are de-
finable in 6 nnknowns.

THEOREM 3. Let S denote any one of the following sels: Mersenne Prmes,
even perfect numbers or Fermat primes. Then S. iz the positive part of the
range of a polynomial in 7 variables.

This value, 6, is almost certainly not best possible, but the ques-
tion of how far it can be reduced is a very difficult one, closely connected
with the old problem of whether there are infinitely many Mersenne or
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Fermat primes. A finite set of numbers can be represented by a poly-
pomial in 1 variable. An infinite sef of primes iy casily seen to require at
least 2 variables (¢f. [6], Theorem 4£.1).

At the present time only twenty five Mersenne primes are kmown.
These are the numbers 2" —1 for the following values of n: 2, 3,5, 7,13,
17, 19, 31, 61, 89, 107, 127, 521, 607, 1279, 2203, 2281, 3217, 4253, 4425,
9689, 0941, 11213, 19937, 21701

The first twenty five even perfect numbers are therefore obtained
by substituting these values of » into Buclid’s formula 2"~'(2" —1). The
three giant Mersenne primes

211213_1’ 21993'1__1’ 927-1 _1=

are the largest known primes at the. present time. They were discovered
by D. Gillies [4], B. Tnekerman [23], and two students Laura Nickel and
Cuortis Noll, age 18. Sierpinski [20] gives an explanation of how such
large numbers ean be proved prime, using a theorem of E. Luecas and
D. H. Lehmer [9]. We will use this same theorem to formulate our Dio-
phantine definition of the Mersenne primes, in Section 3.

At the present time we are unable to prove that there exists a Mersenpe
prime greater than M,,,,. And the situation with regard to the Fermat
primes seems even less hopeful. Only five Fermat primes are known at
the present fime, Fy =3, Fy =5, F, = 17, I, = 2b7 and ¥, = 65037.
All larger Permat numbers, F, = 2241 WhlGh have been investigated
to date have turned out to be composite. In particular F, is known to
be composite for 4 < n < 20 and for many larger values of n. R. M. Robin-
son proved F g composite [20].

On the other side, we are also unable to prove the emstenee of infi-
nitely many composite Fermat numbers. And no one has suceeeded In
proving the existence of infinitely many composite Mersenne numbers
with prime index. It is widely believed that there are infinitely many
Mersenne primes and therefore infinitely many even perfect mumbers.
The faet that an odd perfeet nmumber has yet to be found malkes it seem
very likely that the polynomial (2) actnally includes all perfect numbers,

2. The Pell equation. We shall require a number of lemmas con-
cerning the solufions of the Pell equation #?—{(a*—1)y% = 1. We shall
uze the notation of [13]. Proofs not given may be found in [1], [6], [13], [16],
{17]. All variables denote nonnegative integers nnless otherwise delimited.

The solutions of the special Pell equafion #*—(a®~1)y? = 1 can be
generated algebraically by the equation '

7@("’) +"Pa.('n’)|‘_ at—1 = (& +]/a2 —l)n
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or as Lucas sequences with the defining equations

%al0) = 1,
¥a(0) == 0,

tall) =, pa(n+2) = 2ay,{n+1) -y (n),
pol) =1, ya{n42) = 2ayp,(n-1) —y.(n).

These sequenees have the following properties:
LEma 3.1, 7,(n) = g(n){moda-—0b) and y, (i) = p,(n)(moda—b).
Tonmra 2.2, y,(20) = 2y, ()2 — 1 and yp,(2n) = 2x,(n}u,(n).
Imna 2.3, yaln) = " +y,(n)-{a—s){mod2as —g>— 1),
Lmwnra 2.4, (82— 1)s%y,(n) = s(s™ —1)(mod 2as —s2—1).
Proof. Square both sides of (2.3). Use g(n) = {a®—1)yi(n)+1
and then multiply thru by s.
Leava 2.5. IFf 0 < & < a, then a < 208 —8*—1.
Proof: a<as<as+s—1 =mas+{1-8)s—s—1< as -+ as —s2—1.
LA 2.6, FPor 2 < X, the condition

(%) IHE D) (g +1r+1 =2

implies that X —1 1+ XX < y. Conversely, for any non-negative X, (%) has
arbitrarily large solutions y.

Proof (ef. [6], Lemma 2
in [13]).

LEMDA 2.7, Lat 0 < § < a. Suppose y* < ¢ and 2* << a. Then for any
number 1w both (s*—1)yw = s(y*—1}(mod2as —s*—1) and (s2—1)ey
== ¢{e®—1)(mod 2as — &2 —1) dmply ¥ = 2

Proof. Mnuitiplying the congruences by
oblain

.3 or the First Lemma of Exponential Size

z and y respectively we

(¢2—1)ype e sz{y?—1) and (s2—1)ezyy = sy(*—1)(mod2as—s*—1).
~1) and therefore s(y —2)- (ye+1) = 0{mod2as —

—2)(¥z+1) = 0{mod2as—s*—1).

Henee sz(y?—1) = sy(2®
—s*—1). But s12s-—s>—1. Bo (y
Now

ly—<- e 41 € (@B —1) (P + 1) < e < 25" =1
by Lemma 2.5. Therefore (y—2)-(yz+1) = 0. Since yz2 0, we have
y—z =0 = ' '

The next lemma yields a new definition of exponentiation in b un-
knowns. This method of defining the exponential relation by means of
the congruence of Lemma 2.4, was pointed out 0 us by Julia Robinson.

Timira 2.8, Let 0 < 8. The exponential relation ¥ = 8% holds if and
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only if there ewist integers A and C such that
(i) 8§ < 4,
(i) ST < 4, < 4,

{iil) (8°—1}¥C = S(¥*—1)(mod 248 —8>—1),

(iv) ¢ = w4 (B).

Proof. By Lemmas 2.4, 2.5, and 2.7. Note that the conditions (i)
and (ii) may be replaced by the condition of Lemma 2.8 with X = 3B+
+ ¥+ 2. :

Julia Robinson and ¥uw. V. Matijasevid [137 have worked out 2 Dio-
phantine definition of the relation ¢ = yp,(B) which uses onlty 3 unknowns.
This is given in the next lemma. For @ proof see [13].

Lemva 2.9. Let 1< A and 0 << B. The relation C = w,(B) holds if
and only if there ewisi integers D, B, F, G, H, I and nonnegative iniegers
i, j such that

Al, DFI =, ¥ H-0C,B<(,

A2, D = (42=1)C* 41,

A3, B =2(i+1)D{e+1)07,

AL B = (A1) F* 1,

AB. G = A+ F(F—4),

A8. H = B42j0,

AT, T =(F~1)H*+1.

This definition has the convenient built-in feature that any other
divisibility condition, for example (iii) above, may be combined with
that in A%, For F | e+1 so that #F|H—C and e+1|P is equivalent to
F(e+1)](H—O)-(e+1)—[—FP. Hence only B unknowns are needed to
define the exponential relation by the method of Lemma 2.8. When 1 < B,

we may replace j by 41 in A6 so that 0 < H — ¢ in Al. Thisis important
for applications of Theorem 5.1:

The equations A1-A7 may he rewritten as follows:

‘ Lewya 210. Let 1 < A and 0 < B. The relation O = yp,(B) holds,
if and only if there exist integers B, G, H, I, and nonnegative integers D, ¥, 1,
sueh that

PlL. DI, FII-D,B<C,
P2 D* = (4"—1)CP -1,
P3. B = 2ieC?,

Pe F* = (A*—1) B +1,
P5. G = 4+ F(F— A),
P6. H = B+2i0,

PT. P =(@-1)I+1.

icm
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Proof. Lemma 2.10 may be proved exactly as Theorem 4 is proved
in [13]. The only change required iz to replace the second step down
Iemma for the v sequence by the corresponding lemma for the y sequence
(Lemma 2.24 of Davis [1]), of. also [6], Lemma 2.5.

Now if we take e = 1 and express the conditions D < I and F|I—D
by (3N(I = D-+1F), then the unknowns ¥, &, H and I eliminate by
substitution and the system P1-P7 reduces to the following simple set
{used in writing out (1), (2) and (3}).

QL. B G,

Q2. D* =4 ~1)("+1,

Q3. F* =4{A* - 1) (" +1,

Qd. (DLIFY = ([4 +F(F — A)F —1)(B +2jCP +1.

When these equations are used in the definition of exponentiation,

then, if we wish, we may use the congruence of Lemma 2.3 rather than that
of Lemma 2.4 because y,(w) It now available in the form of D.

3. The Mersenne primes and even perfect numbers. The basic con-
nection between these two sets of numbers was discovered by Buclid and
Tuler who proved that an even number is perfect if and only if it is of
the form 2"~*(2% —1) where 2" —1 is prime. To determine the primality of
a Mersenne number 2" —1, we may use 2 test worked out by Lucas and
Lehmer ([9], [20]). This test uses the sequence 8, defined by s, = 4 and
Spy1 = S5 —32.

Levua 3.1 (Lucas — Lehmer [9]). Let N =2"-1, n>2. N is
prime, if and only if Nis, ;. ‘

Mersenne numbers are always odd and s, iz always even, so the
test may equally well be based on the sequence i, = §,/2. This sequence

‘has the defining equations ¢ =2 and t,,, = 2f) —1. Portunately the

sequence 1, is closely related to the sequence of solutions of the Pell
equation. The author and hig student D. Wiens [24] discovered

Lemua 3.2 %, = go (2" 1)

Proof. From Lemma 2.2 we see that the two sequences have the
same defining equations. @

Nowlet b = 221 so that ¥ = 2"—1 = 4b 3. Then ¥ is & Mer-
senne prime if and only if 5 = 0, or b+1 pow 2 and Nig(b+1)- Let 8
be any fixed positive power of 2, eg. 2 or 4. Then the condition b-+1 pow 2
is equivalent to b41/8°%L Thus ¥ = 4b+3 is a Mersenne prime if and .
only if & = 0 or there exist numbers d, B, ¥ satisfying

G) B=b+1, (i) ¥ =Bd, (i)Y =485 and (iv) NnB)
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The exponential relation (iii) may be defined by the equations of
Lemmas 2.8 and 2.9. These equations define y,(B) rather than y,(B),
which +we need for (iv). Nevertheless, if we are careful to chooge A
= 2(mod.V), then the test condition (iv) may also be defined in terms
0 =y ,(B). Using Lemma 2.1 one can show

if 4 =2(modX), then ¥N|y.(B) +> ¥*[(4*--1)0* 41,

if 4 = 2{mod N?), then N|y,(B} <> N3¢ 4-1.

It is interesting to note that the wnethod here, working with the
Pell equation modulo ¥, is very mauch analogous to the situation in actual
computational praetice where one works with the sequence s, modulo N.

Thus we obtain from Lemmas 2.6, 2.8, and 2.9, the following equa-
tions for the Mersenne primes:

LEanga 3.3, The number 4b + 3 is & Mersenne prime if and only if b = 0
or there ewist integers A, B, ¢, D, B, F, G, H, I, ¥, 8, X, Y and non-negative
infegers d, g, h, 4, such that

(1) § =4, (9) DFI =0, F\H —0,
0 =g+ B,

(2) N = 4513, (10) D = (A2 —1)02 41,

(3) B =041, (11) B = 2(;+1) x

x D{e-+1)02,
(4) ¥ = Bd, (12) B = (A2 —1)F2+1,
(8) 4 = 24+(hL1)N, (13) @ = A+ F(F— 4),
(6) X = Nd, (14) H = B+2§(,

(T) I +2)(h+1)2+1 =13, (158) I = (@2 —1)H>-1,
(8) (§2—1)Y0 = §(F*—1)(mod 248 — 82—1), (16) N*D.

Proof. Suppose b >0 and conditions (1)—(16} hold. Then 1< A’
and 0 < B and by Lemma 2.9, (9)~(15) imply that ¢ — y,(B). Conditions
(1}, {5) and (8) imply ¥ =£ 0. Hence d # 0 by (4). By (2}, (3) 3B< N
and hence 3¥ < X by (4), (6). By (2) and (6) 7 < X. Now (2) and {3} imply
that 3B+1 < N X, By Lemma 2.6, X¥ 2 h< 4 s0 ¥ < 4. Also
NEVLNXF 2V < A hence 8% < 4, By (8) and Lemma 2.8 we
have ¥ = 8%, By (16), Ny, (B). By (), A = 2(mod N). Hence by Lem-
ma 2.1, Ny, (B). Thus {(i)—{iv} hold and 45 }-3 is a Mersenne prime.

Conversely, suppose 45+ 3 is a Mersenne prime and b > 0. Let § — 4
and put & = 4b 3. Choose d, B and ¥ satisfying (i)—(iv). Put X = Nd.

By Lemma 2.6 we may choose % satisfying (7). Put A =24+ (B+1)N.

Pub € = 4, (B). Lemma 2.4 implies condition {8). By Lemma 2.9 we may
choose non-negative integers g, 1, j and integers D, B, T, ¢, H, I satistying
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(9)-(15). Here D =% (B). By (iv), ¥iy(B). By (5}, 4 =2(mod¥).
So by Lemma 2.1, N|y,(B). Hence (16) holds. Hence (1)-(16) all hold. m

From the equations and conditions of Lemma 3.3 it is easy to con-
struct the pelynomial formulas (1) and (2) representing Mersenne primes
and even perfect mumbers respectively. We proceed with this.

Proof of Theorem 1 (formulas (1) and {2)). We obtain shorter
formulas if we first make a few modifications. Lemma 3.3 remains true
if we replace (1) by §= 2, (5) by 4 =2 +kN?, (8) by

D =T+((4~2)mod248 — 8 —1),

(9)-{18) by Q2-Q3 and (16) by XN!D. We need not include
condition QL for we have D® = (A*—1)("+1 =3+ 1{(modN?)
by (5). Hence N"3C*+1 by (16). So 8B*+ 1< N << 30°+1 and there-
fore B < €. Thus Q1 is implied by the ofher conditions. The proof that
¥ #£0 is a little different than before. We must unse the fact thab
0 =y, (B) so that ¥ = 8% (mod248— 8*—1) by (8) and Lemma 2.3,
Then 8% is a power of 2 whereas 248 — §° —1 is an odd number. So ¥ == 0.
The rest of the proof goes thru without change.

The polynomials (1) and (2) are constructed from these modified
equations. Pirst eliminate fhe wvariables 8, B, ¥, X by substitution.
Replace 4, O, F, ¥ by lower case letters. Replace 0 by m? in (7) and N D
by D = kN in (16). Transpose all terms in the equations to one side, sum
the squares of the equations and apply {essentially) the method of Putnam

" [15] explained in § 1. The construction of formula (2) proceeds similarly,

It follows from FEuclid’s formula that 46+ 3 is a Mersenne prime if and
only if {2b-}-2)(4b 4-3) is an even perfect number. B

Proof of Theorem 3 for Mersenne primes and even perfect
numbers. Here we show how te redunee the number of unknowns to 6.
Congider again the conditions (1)-(16) of Lenuna 3.83. The wvariables
S, N, B, Y, A, X, D,E, F, & H, I may be eliminated by substitution.
Then remain two square conditions, {7) and {9), and three divisibility
conditions, (8), (9) and (16), involving the paraneter & and the unknowns
d, g, h, 4, 4. By (1) and (5), 248 — 8*—1 = —1(mod.N). Hence N {248 —
-— 8§21, Therefore the two divisibility conditions (8) and (16) may be
combined into one divisibility eondition with divisor N*(248 —§%*—1).
(This is why we took 8§ = 4 in (1).) If we now put e+1 = N (24882 1)
in (11), then ¥, ¥ and 248-82—1 will be relatively prime in pairs so
that all three divisibility conditions may be combined into one with divi-
sor FN2(248 —82—1). Now e+1 will be positive if we replace k by k41
in (5). The divisor in condition (8) will then also be positive, but the divi-
dend may well be negative. Hence both should be squared. T we algo
replase j by j-+1-in (14) then H —C > 0 and so the entire dividend will
be nonnegative. The divisor, FN?(248—82—1)* will also be positive
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by the choice of 8. Applying [13] the Relation Combining Theorem (see §5)
we obtain a polynomial M,(b, d, g, &, 4,7, #) (In six unknowns) with the
property that 4b+3 is a Mersenne prime if and only if Id, ¢, %, 4,5, n
such that b= 0 or M,= 0. Hence the seven variable polynomial (4&+ 3) x
% (1 —b.M3) represents Mersenne primes. And the seven variable polynomial
{2b +2) (40 3+ 3)(1 — b II3) represents the set of all even perfect numbers, m

OreEN PrROBLEM. The Iuecas — Lehmer primality test for Merszenne
numbers, & = 2"—1 (Lemma 3.1} involves the condition ¥Ns, ,. Can
we replace this condition by N3[s,.,? The latter condition is easily seen
to be neeessary. Is it sufficient?

4, The Fermat primes. Fermat’s numbers are defined by ¥, = 2° +1.
Thus it might appear necegsary to define a double exponential to define
Fermat primes. Fortunately this is not so. We need only define primality
for numbers of the form 2™ -4-1, since any prime number of this form ig
necessarily a Fermat number. )

The primality of & number of the form 2™ +1 may be determined
by a simple test due to T. Pepin [14]. This test also appears in B. M. Robin-
gor [18] and Sierpingki [20]. The test is based on Fuler’s criterion which
states that if ¥ is an odd prime and N+a, then o9 = (a/N){modX),
where on the Tight side of the congrnenee we have a Legendre symbol.

Lemnya 4.1 (Pepin [147). Let N = 2™ -1 and suppose that Nto and
(a/N} = —1. Then N is prime, if and only if a™~° = —1 (mod ¥).

Proof. If ¥ is prime then the congruence holds by Euler’s eriterion.
For the converse, suppose that the congruence holds. Then !
= —1(modN) but 4 = L(modN). So 2™ is the exact order of & to the
modulus . The eongruence also implies ¢ | N o that Euler’s Theorem, o™
=1{mod ¥} holds. Thus 2"|g{¥N). Hence N —1 = 2™ < o(N). It § were
eomposite, then we would have ¢(N) << N —1. Hence N is prime. @

There are several choices for a. For example (3/¥) = —1 and (6/8)
= —1 (¥ > 5). Bubt we prefer ¢ = 12. Tt is not difficult to show, using
quadratic reciprocity, that when N = 2™ 41 is prime and = > 1 then
{(12/N) = —1. This choice of & will allow us to define hoth the Pepin
test condition, and the condition ¥ —1 pow 2, using only one exponential,
2 power of 12. For this purpose ¢ = 6 would also do but if ¥ = 5, then
(6/¥}) = +1 and we have an excepiion. For this reagon we take ¢ — 12.

Lenvas 4.2, AU the Fermat numbers F, (n > 0), have the form 6g 5.
Proof. For n> 0, 2*" = = 4(mod§). Hence F, = = b ({mod 6).

_ Tmvwd 4.3. ¥ = 6y +5 is a Fermat prime, if and. only if there exists ¥
such that

(1) ¥ =129,  (29) 39+2[¥, (3) ¥ = —1(modN).

icm

Diophantine represeniation of Mersenne and Fermal primes 219

Proof. Since N = 6g--5, we have ¥ —1 | 3. Condition (2) asserts
that (¥ —1)/2 divides a power of 12. Henee ¥ —1 is a power of 2. Condi-
tion (3) is Pepin’s congruence test for the primality of &,

Now from Lemmas 4.3, 2.8 and 2.9 we obtain the following equa-
tions for the Fermat primes. By Lemma 4.2, the definition will include
all Fermat primes except F, = 3. .

Lumma 4.4, For any nonnegative integer g, 6g--5 is a Fermat prime,
if and only if there exist integers 4, B, 0, D, B, P,64 H,1,8, X, Y and
nennegative integers h, i, 7, k, i such that

(1) X =3B-+Y+8+2, (9) DFI =g, FIE-C,

¢ =k+B,

(2) XX 4-2)-(y+1)2 41 =0, {10) D = (42 —1)02 1,
(3) (8:—1) ¥C ' (11) B = 2( 1) x

' = S(¥?—1)(mod248—82~1), xD(e+1)02,
(4) 4 =(y+1)-(6g+5)--86, (12) F = (4*—1)E2+1,
() B = 3¢+2, (13} G = A+ F(F—A),
(6) 8 =12, (14) H = B+2(j+1)0,
(7) ¥ = Bh, (15) I = (G2—1)H*+1.
(8) 6g+5|¥+1, '

Here we have taken 4 = (y+1)-(6g-+5)+6 (rather than 4 =y),
§0 that 2A8—82—1> 0 and 6g+5 1248 —82—1. Hence as before all
3 divisibility condifions (3), (8) and (9) may be combined into one div-
isibility condition by choosing e+1 = (6g-+5)-(248—8%*—1) 5o that
the divisors are relatively prime in pairs.

After 4, B, ..., ¥ have been eliminated by substitution there remain
only one divisibility condition and two square eenditions invelving the
parameter g and the uvknowns k, 4,4, %, y. As before these three con-
ditions are definable in 1 additional unknown, %, by the Relation Combining
Theorem of [13] (cf. § 5). The result iy a polynomial My(g, b, 4, J, &, ¥, »)
with the property that 6¢--5 is a Fermat prime, if and only if 35, 4,4, &,
¥, m M, = 0. Hence the Fermat primes (> 3) are representable by the 7
variable polynomial {6g+5) {1 —M.(g, &, %, J, ¥, )"}

When writing out the polynomial (3), given in the introduction, we
have omitted equation (4), taken ¥ = @ in (2), used 2.3 instead of 2Ali11 (3)
and equations Q1-Q4 instead of A1-A7. Variables §, X, ¥ were eliminated
and 4, B, C, _D r retained and replaced by the lower case letters &, b, ¢, 4, f.

5. The degree. What will be the degree of the 7 variable poly-
nomials constructed here? The Relation Combining Theorem, as stated in
[13], is somewhat uneconomieal with respect to the degree. However, Yu.V.
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Matijasevié has since worked out a more efficient version of the Relation.

Oombhining Theorem. We state this version here:

THEOREM 5.1. For all iniegers A, ...,
0<B 0<0, 1+WAI<V, (i =1,...,q), the
(£ =1, 9), BIC and 0 <D ali hold if and only if MA, ..., 4,
B, 0, Dyn Vy, ..., V,) =0 for some n, where M, is the following 2%fold
product over all combinations of signs

M, = [ [(Ba+C—B@D—1)-(C+W, VA VAW, VAW, +

VAW, )],
and W, = V,V,... ¥V

i-

A direet caleulation, based on Theorem 5.1, gives the following
values for the degree. The degree of M, is 456 for the Mersenne prime.

definition and 452 for the Fermat prime definition. Henece the 7 variable
Mergenne prime representing polynomial of Theorem 3 has degree 914.
The 7 variable even perfect number polynomial has degree 915 and that
of the Fermat primes degree 905.

Of course the degree of all of these polynomials can be reduced to 5
by a well known method of substitution due to Skolem [22] (of. Davis [1],
Theorem 7.5). But this methed of reducing the degree increases the number
of variables, from 7 to about 20 in our case.
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