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£-estimates in lattice point theory
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o

| Borusrav Divis|

i
Let Qu) = Qluy, #e, -0y 1) = X ey be a positive  definite

i,i=1
quadratic form in # 2= 2 vaviables with resl svmmetrie eoefficient matrix
of determinant D. Let b = {b,, ba, ..., B,} by a asystem of real numbers
patisfylng 0 < B, <1 (I =1, 2, ..., 7). For » > 6, lef us denote by Ag{b; x)
the number of latfice points m = (wy, Ny, ..., #,) With integral coordi-
nates my (I = 1,2, ..., ) satisfving the inequality @(m+ b} < &, that is

dglbza) = N 1.

Gt Dy
Geom etrically, the ellipsoid §{m--b) < 2 has center af the point —5
Obviously, d,-(b; x) is asymptotically equal to

T:f}'a mr}fz

Tolbsz) = Vylo) = ———
e\% ) Q l’.DP(i—ﬁ‘—f—l) r.

the volume of fthe ellipsoid Q(u-+b) <o, which is clearly iiidependeut
of b. Let us put
Polb; w) = Ag{d; »)— Vyla).

Since the form {) and the center — o will be considered fixed, we shall
pimply write A(w), T{z) and P{x) instead of Ay{b;x), Vob;2) and
Pgib; x). We shall study the fnnction P(z), and more generally

1 o
= — | Plpym—yidy 1 . Pylz) = Pa).
P,(a) T@Hﬂﬂmm yeidy  for >0, Pylw) =Pla)

The functions A4,{#) and V,{#) ave defined analogously. Finally, let us

put’ '
K

M () :fPﬁ(y)dy for

[}

020, M) = Hya)
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and

P,(») =1/%Jfg(m) for 020, Px) = F(o).
It is evident that every Q-estimate for P, is also an Q-estimate for P,.
There exist at least three cssentially different (-methods in lattice
point theory. The Landaw method makes no distinction bebween the
forms @ and the centers —b. For sutficiently large values of g, one expands
P,(#) into an irfinite sevies with rvespect to Bessel functions and shows
that at least for some values of » the first term dominates the other.
Then a simple descent argument extends the result to ¢ 2> 0. One ean
obtain in this way
THEOREM 1.

r—1 ¢

Blo) = 22 * ).

Proof can be found in {6].

Let us remark that for » < 2¢+4-3 and fov “almost diagonal” fomns
also holds [3]
r-1 o

Py = 0@+ 3.
The Hardy method uses the fact that P,(x) can be expressed as an

O3
integral transformation of the generating theta function §(s)= 3 ¢ som+d

and vice versa. If we know that 8(s) is not small then P, {%) cannot be
small by the inverse integral representation. A modification is needed
for the function P,. For details, the reader is referred to [7]. For good
estimates, a good deal of information. is needed about the funetion 6(s),
and that is available again only for almost diagonal forms. One can then
obtain

THBEOREM 2,

-—1 &

Polw) =& * ) for ewery £> 0,
fufkfzre B s a special approzimation index of @ system depending on the eoef-
ficients of the form @ and on the coordinates of its center.

The details and a proof can be found in [1]. If the “diagonal blocks®
are large cnongh then also

—1— +&

Pz) =0z ¢ )

for every s> 0 [1].

. In this article, we shall coneentrate on the thj'r_d method which is
due to Jarnik. Tt iy entively elementary and in the simplest cage when @

icm
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has integral coefficients, ¢ — ¢ and b =0, it runs as follows. Since ¢
agsumes only integral values, we have for every nataral number %

P+ —Pn+%) =Adn+d)—dn+H-Fo+H—-Vn
=Vn4+3)—Fim+i) s 21,

This shows that P(x) = o(e"™ ") is untenable, that is
P(zy = Oz,

Jarnflc wsed his method only for ellipsoids with center at 0, for P, with
integral values of p and for P, in which cases it vields the same estimates
for P, and P as Theorem 2 ([4], [81).

The purpose of this note is to extend the applicability of the method
in several directions. Firstly, we shail drop the assumption & = 0. Secondly,
we shall derive estimates for P, for an arbitrary ¢ 0. Thirdly, we shall
show that the method can be used for other regions than ellipsoids, practi-
cally for every région defined by a system of algebraic inequalities. Since
we usually do nof possess the knowledge needed for using the other methods,
it is then the only method available. Judging from the gharpness of the
estimates in case of ellipsoids, one would conjecture that the method is
sharp in general. This was also confirmed by the author for polyhedra ([27).

We shall start with a simple

Lizapga, For g =0,

A @) = fo @ (m + ).

1 W
TRiTy . 2

Qm+bl<x

Proof. For p = 0 the proof is obvious. For o > 0, we have

(w—y) dy
QmEb)sr

1 1 2
Aql2) =—~—Q~"fA(y)(w‘—y)9‘1dy sz

x

: 1
o=y ly =S

__1 N7
T ) e ol'{o)

QL)< Qb

2 (@ —Q(m-+b)j%.

Omr byz

/ : ' .
THEOREM 3. Lef p == 0 be an integer. Lt Q(u) = 3 ayu,u, be a posi-

Tyi=1
tive definite quadratic form and let b = (by, bs, ..., b,) be a system of veal
numbers. Let o(m) be o positive continuous strictly increasing function of

' 2 . . :
a positive real variable with imint ! - ) >1, . in perticular limg(x)
T—+00 A% : G 00

= oo, and let ug denote by v(x) its inverse. Let us suppose that the system of
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wnequalities
iq;_;i Upf,§<}%§5, i, l=1,2,...,r,
lgB8;— 2y < —==, where =2 v—I—lbu =12,

Vo(g) i1
has infinitely many integer solutions py,p; (i,01=1,2,...,1) and ]
with ¢-+ co. Then :

mrlﬂ.—l
biya) = Q|—r—o1.
i) = 0 s)

Proof. Let us first start with p = 0. There is a positive constant ¢
depending only on the form @ such that

Quuy > 0 (3 )

We shall restrict ourselves to g sufficiently laxge, It particular, we assume
that

¢ &
Qu+b) > ﬂp(q)—j}
implies
‘ 10 0
A 5 Q@+ > Q) > ().
Liet us put M = [ qua(g)] '
60a,,
We shall show that there are no lattice points in the region
M+1 MLz
(@) I = QB SQu+d) S ay ;- Tem.
Let ug suppose that {2) holds. Then
M ey Cyplq) ¢ Byy
B S -1} == o
_ Qu+b) > ay 7 > 7 ( 60a,, 1 GO‘P(Q) ¢’

. 4nd henee (1) holds. We have ohviously

' T '
Qu-+b) = Za'ii(ui‘i“bi)(”z‘]"bz) = @11% ;‘i‘uz‘”rl' anz B +Q(B).

1.l

Put
* ) = Pa i &
@ (u) = “112 P '“’i'“z"i‘anzi: 7 ¢ (b).

10
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If © were a lattice point, then 0Q*(u) would have to be of the form
i
qq ? -+&(h), where m is an integer. Now we have

g DPu|

1Q(u+5)— Q" (1) < oy

V|
“fugi - layg) T i fh—

'&i it
ALY AAry
< 1 (?{u{) m--—vw?r,
ge(g) ‘=i elg) <
Lt &1y (2 {n) C'?'(QP
< AR
Gw(q)Q( I+ q Cgf q)! Qu)
{ +67 by (1).
< - C‘q {() GHu )<100q Qlu+B .)5 (1)
This implies
- [ PR
w4+ D)1 — 10 Wy< @lut+b {1+10f—).
Qlur )( Uqcf(q)) ¢l<0 ), Ugolg)
Using (2), we have
M+3 Af thyq 1
toy{1r102 )<_ 2 @) +a,; —-10 40(——)
@l )( Gp@) =™ g YO G 0 ()
M- :'i' allcgﬁr(g) Qs ( 1 )
=a T 10— O
g O e N T\
AL 1 ¥+1 '
= 0 1) +0{ o] <o = Q)
for ¢ large enough.
Analogously,
they M43 M+1 Gy ( 1 )
b1 —~10 = +Q(b)—~a -10 + 0
et }(1 Gszev(q)) Wy T e W T N e
M—}—% 0'11109977@ 2t ( 1 )
= a by — = 10 +0{——
e O S Mo T @

M+ 1 i
>a +Q(6)+ 0(m~) = o
"y Y R
for ¢ large encugh. '
This means that for ¢ large enongh
M ' M1

ail":é“‘ + @by < Q*(u’) < @3 + G (),

.m
and thus *(u) is not of the form an? +4(b).
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Hengce, there are no lattice points in the region (2},
It follows that

M2 M+
'P(b§ 11 3 +Q(b)) —~P (bi Iy - § ‘FQ{b))I
M43 +%
=1V(b§“11 i 7'“@{1’))*‘?(1’5“’11 p 2 'f‘Q(b))I
; i3 7 _%_11_ rf2 M_i_l_ b :r',l:‘,%Il
>(M+%+Q(b)) m(vl’[ J+Q(b)) >( 3+Q( )) 1
q y; q T g &1y q
M+1 (C’qﬂ(g))
mrer o1 Py N (M—}- 1)”1- 1 Y60,
;’>( , ) (:u~1) ’ g (M+1) ;
' s : L2 [
q q
AL 4 1yt M1
) D)
q q

2
! Il;) >1 implies w(

C

since liminf 79
zvc0 ¢ 60 a;,

This means that at least one of the numbers

)> q for sufficiently large q.

!P(b ay 2EE +Q(b))}, i (b 00 +Q(b))1
must bhe _
Since M jg —~ oo with ¢ — oo, this proves
21

Now, let us assnme that ¢ > 0. It will be convenient to reformulate the
statement for ¢ = 0. Leb us denote by 4, {(n =1,2,...0, 04, < A, << ...
“the sequence of all distinet values of @ (m +b) where m is a lattice point
and let us write a, for the number of solufions of @(m4+5) = 1,. We ean
then write by our lemma

1
Tl 2™l

£~ VD2 +o+1)

12 it e
Po(wy=P,(b; z)=

- and the function P,(x) iz infinitely many times differentiable for 1, < @
< Anyy- We have always either [P(1,+)| » 277" (4,00—4,) oF [P (h1—)

for =0,

icm
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> 3 YAysa—4,) or both. What we have proved above is simply

. 1
/?E-rl - _Q( - )'
Pl4y)
Let us choose an integer k3 p+1 and pub #= /“k;ll_si“; For each
T
%2 1, let us define the differences 4, P (2) as follows:
Al,spg(a‘) = Pg($+2«’) _'Pq(m) ’
Aoy Po(®) = 4, P, (w+2) -4, P {x) for 1=1.
Sinee the funetion P (@) is sufficiently smooth for 2z, ~z << 2 < Ayt (k+1)z

there exists an g, 4,42 < @, < 4, (k-+1)2 such that P¥(s)
=54, P, (A, +2), e,

=2, Tf“+ e—k

1
'{3) . 1.1 an am(mn.—‘z'm)g_ -
Tlo—k-+ 1)1"%; VDI(rj2+5—k-+1)

) = (;L +2)k(;'yzl—l _;“n)__k‘dk,:Pg ()'n'i"z)'
Now, if ¢ > 0 is an integer, put & = g+ 1. From (3) then follows

{4) M ein,ot o +2)] > a"ﬂlﬂki(;‘-n-a-l ) L
7ia—1

If we had P,z =o( ), the left-hand side of (4) would be

Jnfz- !
ol——|. Sinee i,,,—24, = 2|———], this is & contradiction. This
(w““ (zn)) s (wuﬂ)) o ' i

completes the proof of Theorem 3.

THEOREM 4. Let p > 0 be not an integer and let otherwwe the assumplions
of Theorem 3 be satisfied. If

Pizy = O(m" a1 ) Jor an 1>¢> 0,

1
y' " )

: 1
g{2--1
daaroer)!

Proof. Let us first consider 0 < ¢ < 1. We shall use the relation (3)
again and restrict ourselves to those n for which 4,,,—2,» 1/w(4,)-
Let & be the smallest integer greater than ¢+ 1. If we assume that

then

Pg(w) =

[ 1
P (x) = oz ———1——;,—),
e . peHIEEe (g
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then
. 1
(R — ) F ity Pyl +r)=0 (ﬁfzf ! W)
=g (zgz—lw(l—‘_’ej(k—g—l) (j‘n)) ,
Further,

A [ A U
-0 (xgz—lw(l-ﬁe)(k—gml) (}'11)) ,
Finally, let us look at the lagt term in (3). We have

2 a’m(mn‘"}"m)g_k g 2 am(ﬂ'nq—l_}*m)@—k
lm{zn ’-ms?'n
> 2 a‘m (}“n-:—l - ;"m)gmk -
_ N (I I N I
Now, we shall use the assumption P{#) = G{z* " 9*}()). In particular,
we have 1,1 ~4, = o{p™"(4,)). This gives us

D (3, — 2 TS (A — Ay by (AR D e,
by sy, A U T T
> DR, YA — (A, — g ()0 (A2 1 (3,)))
5 w(z«—l)(g-—k) (}'n) 1:;,‘2“17,016w1 (Zn) — lgl—lw(l—zs)(k«é—l) (/-l% ) ,
which 18 a contradiction.
Let us remark that we have in fact proved
1

wa+1+28(kk—gu1} (

. 7{2—1
P,(z) = Q(m p

). for 0<e<< .
The proof of Theorem 4 in the case § <C ¢ < 1 is contained in

TEEOREM 5. Let ¢ > 0 be not an integer and let otherwise the assumptions
of Theorem 3 be satisfied. If P(n) = o(z™Y), then

_ 1
i) = 2 )
Proof. Let again be o+1 < k<< p-+2 and let us congsider the relation

(3). We shall restrict ourselves to those n for which 1,,,—1, > 1/p{i,).
Let us remark that Z,,; —1, = o(1) since P() = o(2"*7). T we assume

gy
P,#) =0 (m’n’- 1 et ), then

. ! ,
Um+1 - z’n)ﬁk Ak,z-Pg (}"n + Z) =0 \J':L—l

raer Rt
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Also,
15;;!2+9_k < }.‘Qi::mlj.?fl—k — O(lgﬂ_l) .
On the other hand,

2 a’m(‘pu_]'m)g-k > Z

Ty, , A1y Sy,

e - _k
am("nﬂ —Anz)e > @y
Ap—ldy <y,
__ sF - '3 Fari2—1 =1
= AP (hy = 1yP o (A7) 5 21,
a contradiction.

r

THrRoREM 6. If Q(u) = Y @y Uy 4 a rational guadratic form and
f,j=1
if all the numbers b; (j = 1,2,...,+) are rational then

P,(#) = Q@Y for o 0.

Proof. We have clearly 7,.;,—2,» 1 in this, case. From this, P(z)
= Q(#"*7') immediately follows. If 2> 0 i3 an integer, we can argue as
in the proof of Theorem 3. Namely, if we had P,(x) = o(™* 1), the left-
hand side of (3) would be Q(i7*~"), whereas the right-hand side wounld
be 0(277") (B = o-+-1). If ¢ > 0 is not an integer, we take k> p-+1 in {3\
Assuming P,(z) = o), we get

(Apt1 “Zn)WkAk,ePg(j'n'F'z) == 0(;";"2-‘1);

m;[2+e—k< ;‘:!2”1;!'5&+I~k — O(z:;,lza-l)_

On the other hand,
(3) - Y = > 4,y — )R

Ay Sy
In order to get a contradiction we shall change the meaning of the numbers
4,. These are rational numbers with a finite common denominator d,
say. We shall write 4, — n/d. In this way, some of the numbers g, becoine
zero but that does not matter. We have 1,,, — 4, = 1/d and 6, = Q{i* 1),
since Y a,» A If we use this in (5), we get finally a contradiction.

man

THEOBEM 7. For an arbitrary positive definite quadratic form Q,

- mrlz—l
Py(z) = Plz) = 2 '
o) = Pla) - )
where () has the same memﬁng as in Theorem 3.

Proof follows from a careful study of the proof of Theorem 3. Namely,
we have there shown in fact, that

(g
P> =g
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for @ from an interval of length » 1/g contained in the interval
M M1

(‘511—; +Q0), oy

get the same result if we take an arbifrary integer M from the interval

+Q(b)). The reader can easily see that we

7= ( Ogp(g) C’qso(g))
“\ 6lay ' 60ay | '
It follows that
i e 12 1 (M!q)r—‘l 1)1,'2
—_— P\ d. 3 —
@mu ()as) >@mé§wwmmq
1 “@)wmm )
>(w>(”2mmq vlp(@)
If we write z, for ep{g), we get
' wri2~1
Bl s -
(%) & P

This proves our agsertion. \

In this way, we obtained the estimate given by Theorem 2 for P and
for PL,, g > 0. Tt suffices to take g(#) = &%, § < § and specialize the form Q.
If p is not an integer then we use O-estimates found in {1] in order to
meet the assumptions of Theorems 4 and 5. We did not succeed in ex-
tending the method to P, when g > 0. _

In the introduction, we mentioned that the Q-method considered
here can be applied to very general regions defined by algebraic inequalities.
Ag an example of this kind, lef us consider the biguadratie form B defined by

+

Blu) = 2 aut,

=1

>0, §=1,2,...,7n
Tt b = (by, ...,

b,) is a system of real numbers, leb us write .4 (b; #) for the
number of lattice points m = {m,, ... :

, 1) in the region

Bim+bh <

e
Analogously as above, let us write V(#) for the volume of this region and
put o

P(b;5) = Ab; )~ Viz).

‘We have clearly

Viz) = Cpa™,

where U is a positive constant. Using the method of Theorem 3, we obtain

P(bja) = Q)

icm
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where § is any positive number such that the system

g | oy 0 ey o
gl <ty g < jb;-g’ < g

' i
14 %1 il

o gy . 1l
| Shigl < g™,
L

i=1,2,..,71,
has infinitely many solutions in integers ¢ — oo.
The reader will find it easy to generalize the last result to other
forms of even degree. Let us consider now forms of odd degree. An example
of this kind would be the Lnear form -

r

Lw) = > a;lui,

=1

>0, j=1,2,...,7.
b =(b;, by, ..., b.)isa system of real numbers, 0 < b<1{(i=1,2,...,7,
let us write A (&;#) for the number of lattice points m = (my, ..., m,)
in the region
Lim4-b) < m.
Again, let us put
Pb;x)

where ¥ () is the volume of the region L(u+ by <

= A(b; %)~ V(a),
@, that is
21”{51“

Vie) = e Fr+1)

Oy tly o

Making & little modification in the method of proof of Theorem 3, we
obtain for integral values of p

(b 2} = Q&' 1- (Q+JJ:’6)
where § > 0 is such that the system

11
lal

<o

has ‘infinitely many solutions in integers g —oo. A modification i necesy-
ary because of the presence of the absolute values. First we note that if m;
is an integer then |[my;+&;| = jm;4-b; according as m; = 0 or m; < 0.
We have thus

I r
L{m+b) = Y agjm|+ D' Layby,
F=1 i=1

where the combination of the 4+ signs depends on the lattice point m.

Let ug put then
7 (m) ::2~—imj|-,—2i by,

Jj=1 F=1

4 -— Acta Arithmetlca XXXV.2
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where the combination of the 4+ signs is the saume as in the representation
of L{m--b). The rest of the argument is already as in the proof of the
Theorem 3. For O-estimates see [2].

If we have 2 region defined by a system of algebraic inequalities
then the order of the error term is usually determined by a single piece
of the boundary, that is by just ome of the inequalities. In this gense,
we will not be gefting mauch new.

et us also mention that all estimates still hold if we restrict our-
selves to lattice points with square-free (or cube-free etc.) coordinates
as considered by Lursmanafvii or Podsypanin.

Note added in proof by the editor. Similar results have been obtained
by B. Novik. However he has notified the editors that his paper Kemarks on
Jarnik Q-method in latlice poini theory, announced in J. Number Theory 8{1876),
p. 39, will not appear. -
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Weak equivalence of functions over a finite field
by

Gary L, Muriex (Sharon, Pa.)

1. Introdnction. In a series of papers [1], [3], and [8], L. Qarlitz,
8. Cavior, and the author studied right equivalence of functions over
a finite field. In [3] and [7] 8. Cavior and the author studied properties
of left equivalence of functions over a finite field, while in [3] Cavior
considered the notion of weak equivalence.

In this paper we study a form of weak equivalence which generalizes
all of the above types of equivalence of functions over a finite field. Fven
though we restrict our study to functions of one variable, it will be clear
that our results are readily extendable to several variables and in fact,
may be extended to funections from one finite set to anether.

In Section 1 we are concerned with preliminaries while in Seetion 2
we present the general theory of weak equivalence. In Section 3 the theory
of weak equivalence is applied in the case where the groups of permu-
tations are cyclic. In Section 4, as a special case of weak equivalence, we
present an application to similarity of functions over a finite field as
considered by Cavior in [3]. Finally in Section 5 we give several applica-
tions of weak equivalence to permutation polynomials over a finite field.

- Let K = GF(g) denote the finite field of order ¢ where g = p™ Let
K [z] represent the ring of polynomials over K. Two polynomials f, g & K[#]
are equal I they are eqnal as functions. By the Lagrange Interpolation
Formnula ([5], p. 55), each function from K into K can be expressed uniquely
as a polynorial of degree lesy than g so that K[z] consists of exacily
¢* funetions. The group of all permutations of K will be denoted by @ so that
@ is isomorphic to 8, the symmetrie gronp of order ¢!. That Q iz an arbi-
trary subgroup of & will be denoted by 2 < &, |£] will dencte the order
of @, and [$: Q] will represent the index of £2 in @.

2. General theory. We begin with

DErFNrTION 2.1. Let £2,, 3, < @ and f, g € K [#]. Then f is weakly
equivalent o g relative to £2, and 2, if there exists ¢, & 2, and gy & 02,
such that ¢,fp, = g. :



