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Remarks on Hua’s estimate of complete trigonometrical sums
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1. Introduction. We are concerned with trzgnnometrleal sums of
the form

8flg) = ) e,
amod g
where ¢ is an integer > 1 and f(#) = @@ +a;_, 2"+ ... L a, is a poly-
nomial with integral coefficients such that {a,, ..., @, ¢} = 1.

Many problems in analytical nember theory {e.g. Waring’s problem
extended to polynomial values) make it desirable to have precize estimates
of 8;(qg) for large q. Since Sy(q} = 0 for & = 1, and since the case k =2 -
can be settled by the theory of Gaussian sums, it is supposed in the sequel
that k= 3.

For the special polynomial f(z) = ¥ Hardy and Littlewood [2]
proved among other things that '

(1) 18:{(g)| << o(R) g%

with u positive constant e(k) depending only on %. Furthermore their
resnlts show that the estimate {1) is best possible except for the congiant
e{k), if there is no restriction for g; namely for each % there exist infinitely
many ¢ with S;(g) = ¢ ¥* The question arises whether (1} remains
true for general f. It will be shown that an affirmative answer to this
question can be given by means of the methods of Hua [31-[6], e.g. in
this way it is easy to see that (1) still holds with ¢(k) = exp(3%) in the
case & >> 8. This estimate can be improved slightly. More precisely, for
general f with &> 3 we ghall deduee the following
TEEOREM 1. We have

18:9)] < [B{k—1) "0 g,

where v{g, k) denoles the number of all primes p with plg and p <<
max {2F, (k—1)0E-,

The proof rests essentizlly on Hua'’s inductive procerlure (3] by Whmh
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he proved that
(@) 18(g)| < T,

where »(g) denotes the number of all prime divisors of ¢; and we start
the indnetion with the decp estimate of Weil-Carlitz—Uchiyama [1]:

(3) 18:(g) < (B —1)g,
if g 18 a prime, i : :
For ¢'s with certain arithmetical properfies Theorem 1 ecan be con-
. siderably improved. Onc example for this statement is already (3), ancther
one i3 provided by

THEOREM 2. If ¢ = p' with o prime p and an integer 12> 2, then
18 ()] < B{k—1)g"",
where 8 = max {1/, 1/k}.
If no special assumpbions are made on 'f and %, Theorem
- exeept for the factor k(k—1), since Hardy and Littlewood [2] obtained
(g) = ¢° for f(u) = &% ¢ =12% 2<I<k, p a prime with ptk. The
proof of Theorem 2 is almost identical with Hua's proof of (2), in particular
independent of (3}, .

Hua generalized (2) for trigonometrical sums over fﬂgebrmc number
fields [4] Improvements of that result are immediately obtained by the
corresponding generalizations of Theorem 1 and 2 (see Theoreros 3 and 4)
whose proofs will be sketched in the last section of this paper.

More precise estimates than those of Theorem 2 are to be expected
in some cases, it certain arithmetical properties of f and g are taken into
account simultaneously. Results of this kind were menfioned by Hua [3],
for instance that [8{g)l < e(k) g™ if g =p, 122, p is a prime

- and w the masimum of the mnltiplicitics of all zerog of p~f" (%) modulo p,
where ¢ is defined by 2'f(z). But. this route will not be pursued any
further in this paper. ' : : a

2 ig sharp

2. Notations. We put e(xz) = 82‘““’ By 2 we mexll smmmation over
amod g

any complete residue system modualo ¢. The pair g, f i always the one
defined in the introduction, except in the last section of this paper. By
2 we denote always a prime. For an infeger » and & polynomial g{z)
= b6+ b, "'+ ... +b, with integral coefficients the symbol ¢°|g(z)
stands for the fwo conditions p®|(by, ..., d,), P 4 (by,..., b,). Let M
be & non-negative integer. A zero z of g() modulo p of multiplicity I
is defined fo be an integer such that g(») = (w—2)"h(») mod p for some
polynomiaJ h{@) with integral coefficients and A(z} = 0 mod p.

3. Proofs of the Theorems 1 and 2. We use the fo]lomng tiwo lelnm‘ts
of Hua [3]: :

icm
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Leaivia 1. If o ds an integer and h(z) @ polynomicl with integral coef-
ficients and

(@) —R(0)} ard p°I{k(p
v < degree of h.

) —h{p)ls
then 1 < ‘

Leanas 2. If hix) is @ polynomial with integral coefficients and b a zero
of T{z) modulo p of multiplicity M, and if p*iih(pa+b), then the number
of all zeros of p~"k{(pz-+b) modulo p, counted modulo p with their multi-
plicities, does not ewceed M.

Fivst we shall prove Themom 2, e we cunqulu the case g = p".
We define ¢ by the condition p'if (#). Consequently p'l{a;, 24,, ..., kay),
and combining this with (aq,..., g, p} =1, we obtain
(4) _ ' < k.

Let w1,
module p, and let wy, ...,

|1

..y ft, De the different zeros modulo p of the polynomial 27 (@)
m, be their multiplicities. Putting m = m(f)

= m,+ ... +m,, one hag obviously

(5) ' o m< k-1

If we define o; by p¥{l {flpe4p;) ——f(,uj)}, then Lemma 1 implies
(6) 1K<k (f=1,.., k).

Because of {3), Theorem 2 is contained in the following
LA 3. We have »
EptVE for 1 =1,

S
1871 < kmex {1, m}p' = - for 1z2.

Proof. The assertion is proved by induetion on l The cage T =1
is contained in (3), bub can also be settled by the elementary method
of Mordell [8], [3]. For I>1 we distinguish two cases:

(a) First let 1> 2¢-1. Then we use the obvious identity
(7) Siphy = ¥ 8,

pmod p

Z g(ﬂgj;_jff_))= Z 2 @(f(y+p';“1§))_

p g,-ncmd:a:a!_t"1 suodpt+1 P
y=pmodp

with

(8) S# -
amodpt—1

We state the trivial estimate

(9) 18, < P

On the other hand, the binomial expansion of each ferm of fly+p _
in ecnjunction with the estimate j(l—wﬁ_—l) =1 for j > 2 yields the con-

for all integers 4.
1—f—~1, )
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gruence
fly+ot ) = fly) +f ()P e mod p'

This shows that if g 5 g, forj = 1, ..., , then the last sum in (8) vanishes,

hence by (7) we have

R
(10) 8y = '8,
j=1
If 1< %, then by (10) and (%) we get
I8P < 7p' ™t < mp™?,

i.e. the assertion. Now let 1 >k, hence [>o6; (1 <<j<¥) by {6). With

the abbreviation

gy(w) = 9~ {f(po -+ us} —F )}
{8) impli_os
. (11) Syj e PD']'—]G (fg:}) )ng(Pl—-aj) .

Observing that by Lemma 2 {applied to h(z) = p~'f'{z) and b = i)
m{g;) < my, we obiain by the induetion hypothesis on ng{pl_"i) that

(S, RS < Ty p O TOUE) L Ty pHE 1)

in view of {6). Therefore (10) yields the asaerbion
" (b) Becondly, let 2 <1< 2t+1. Then t = Tc by (4) and

(8P [p"9  pP < pRasbBHIE ¢ max {k, BEHOE <% om

1, hence p <

Ag for Theorem 1, we reduce its proof first in o well-known manner
to the ease where ¢ is & power of a prime. Namely, if q = ph .. P s
the decomposition of ¢ into powers of different primes with natural ex-
ponents, put ¢, = -;Iﬂ {» =1,...;d). Then & = ayq; + ... + o345 TED-
resents a complete residue system modulo ¢, when each o, runs over
o complete residue system modulo pl. Inserting thiz in S;(g) yields

) = 18, (24) .. 8, (P,

where f{#) = {f(g,#) —a,}/g,. This formula and Lemma 3 show that the
proof of Theorem 1 ig complete, if we prove
Levva 4. For all positive integers 1 and primes p wuh plg and p =
max {2F, (k— 1)1 the estimate
180N < PR
holds.
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Prool. Using the notations of the proof of Lemma 3, we observe
that ¢ = 0 beeanse of (4) and p == 2 > k. Put ¢ = max{ey, ..., 6}, then
(123 r<k+l—o,
sinee on the one hand side we have

rb—w

with w0 == max {iy, ..., m,} because of w+r—1<m <k—1; and on the

other hand side the CO]ldlthl’l

LIy
yf_—n(;ui)p‘-‘;w@ i=1,..7

e=1

shows that f@(u;) = 0 mod p for 1< p <oy —1, hence m; > o;—1 hence
w > o—1. Now we prove Liemma 4 by induction ou 1. The starting point
I =1 is clear by (3) because of p > (k—1** =3, Let 13> 1, then we are
in the case (a) of the proof of Lemma 3. If 1< o, then by (10), (9), (12}
and (6) we infer that

E'Sj(pz)” H1+-1/5) < Tp—iwi-l[k < p—l-l-ulk < (k_a+1)2a—k <1

because of p =28 I 1> o, then we apply the induction hypothesis o
ng( #7%) in (11), and we conclude from (10) that

,.
ISP < YT <o,

j=1
which ag before turns out to be <1, &

4. Extensions to algebraic nmumber fields. Let K be an algebraic
number field of degree n > 1 over the field @ of all rational numbers,
Tet T be the ring of integers of K and D he the different of K. For ana-
Iytical investigations in K the trigonometrical smmns

Sid,g) = > Elflag)

amod 4

are as useful a8 the sums of the previous seetlons with 1espeet to @ (e.g.
see [7]). Here A is a non-zero ideal of I, and flz) = [ Y

.-+ o, is & polynomial with coefficients in I guch tha.t (Byy ony gy A) = I
&ncl ¢ is any number in K with gDA 44 = I and B(z) = (T(w)), where T
denotes the trace K-—@.

Let N{A) be the norm of 4. Again it may be supposed that k=

In order to generalize Theorem 1 and 2 .to 8;(4, g), we first prove the
following analogue of (3):
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Lemma B, If 4 is a prime ideal of I, then
IS4, )] S TRV N (4).

Proof. For acl let @ be the residue class of & modulo A, ie an
element of the finite field /4. Let p be the characteristic of this field.
Then @~ E(ag) defines a character of the additive group I/A. Conse-
quently there exists a b el such that :

T(ab)

Blag) = e( ) for all e,

where 7 denotes the trace of I/4 into the ring of rational integers modulo p.
Therefore, with the abbreviation F(s) = ba,o®-+bay 12" 1 ... +ba,,
it follows that

g 1 [ {F(c)
B, ) = e(i——))
celfd b
For the latter sum Cazlitz and Tehiyama [1] proved that it is in absolute
value <C (—1) ¥ N(4), provided that p > &, But, if p < k, then obvionsly

WS4, g} < N (4) < g™ VI () < k= VN (4). =

The Lemmas 1 and 2 immediately extend to K as was shown by
Huz [4] who also generalized to K the method of proof used for Lemma 3
and 4. Using that generalization we can eagily transiate the proofs of
the Lemmas 3 and 4 to K, and thus we obtain the following generalizations
of the Theorems 1 and 2 (note that (4) is merely replaced by N (P) < k™):

TEEOREM 3. We have

(4, ] = [E°{E—1) 5K [N {A)]Y*,

where 2(d, &, K) denotes the number of all prime ideals P of I with Pid

and N (P) < 1]3&3:{21:’ knk,'(k~2)}‘ :

THEOREM 4. If A = P! with o prime ideal P of T and o vational integer
122, then

| S/(A, )] < B (b— 1) [N (4)]~*
with & = max {1/I, 1/&}.
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