@
284 K. F. Roth _ Im“ ACTA ARITHMETICA

: XXXV (19719
[3] X.T. Roth, On irregularitics of distribuiion, Mathematika 1 (1854), pp. '737"79.
[4] — On irvegularities of distribution, 11, Communications on Pure and Applied

Math, XXIX (1976), pp. 749-T54.
[5] Wolfgang M. Sehmidt, Trregularities of distribution, X, Jowmal of Number

Theory, t0 appear- ) i
[6] J.H.Halton and 8. K. Zaremba, The extreme and L? discrepancies of sowme

plane sets, Monatsh, filr Math. 73 (1969), pp. 316-328. ; 17 .

; i Vhite, Mean- e diser 1 he Hammersley and Zarembo

[7]1 Brian E. White, Mean-square diserepancies of t : ) - . .
sequences for arbitrary radis, ibid. 80 (1975), pp. 219-229. Dihedral extensions of Q of degree 21 which contfain

o iniegratio: ian), %. Vytisl. Mab. i Mzt Fiz. 7 . . .
[8] (Iigg:nvgsnic;;:ﬁ@% v;iils t;J; ;zzs'fj‘ﬁ@?}' é%“;:lﬂg‘))m; _Vl‘{'ﬁ_ aja im;h_ Pllfyg_ non-Galois extensions with class number not divisible byl

7 (1) (1967), pp. 238-267. by

MPERIAL COLLBGE ‘
i i 7, Englond ‘ Kivoaxt Trvora (Tokyo)

Received 11, 1. 1977 : (808) . ‘ . . . .
poetuel on 1. Main results. In this paper we specify all dihedral extensions K

of degree 21 over the rational numbers ¢ which contain non-Galois ex-
tensions of odd prime degree I 543 over Q with class number not divisible
by 1 in terms of the conductor of the eyclic extension X [k of degres I,
where k is & unique quadratic subfield of K. In [3] F. Gerth TI{ completely
gave the discriminants of all (non-Galois) cubic extensions of O whose
clags numbers are not divisible by 8. Our paper extends in essence his
work to all non-Galois extensions of @ of odd prime degree { 3 whose
normal clogures have degree 2 over Q.

Now to state our results we need the fellowing fact proved by J. Mar-
tinet [7].

Lenma 1. Let K be a difedral extension of G of degree 21, where 1 is
an odd prime number = 3, let k be the quadratic subfield of K with disori-
minant d, and let L be a non-Galois extension of Q of degree 1 contained
in K. Then the conductor f of the eyclic ewtension E [k of degree 1 has the

Jollowing form:
F=1* [l [ ]
4 3

where p; and q; are railonal primes such that

Py = (i) =1 (med ),

d
g; = (—) ‘= —1 (mod I};
% =14 1)f and Ifd, 4 = 0 otherwise; and v = 0 or 1.

Furthermore the diseriminant of Lj(Q is V2 f-1,
Our main result is: '
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TmroreM 1. Let I be an odd prime number + 3. Let k be a quadratic
exiension of Q with discrimineni d, and let K be a dikedral ewtension of Q
of degree 21 containing k. Let H(k) denote the I-class group of k; i.e., the
Sylow T-subgroup of the ideal class group of k. In each part below, we give
the conductor f of the cyclic extension K of & (of degree 1) which contains
non-Galois extensions of @ of degree 1 with class number not divisible by 1.
There exists o wnique K with the specified conductor f.

{(a) H(k) is not cyclie. Then wo such K exisis.

(by H(k) == 1 but is cyclic. Then [ =1; i.e., K/k s unramified.

{c) H(k) = 1. Let A be the set of rational primes q such that g= !

———
| =y

1

If

= —1 (mod I). Let ¢ be the fundamental unit of k when d > 0, and let ¢
when d << 0. Let

A, = {ged] e is an T-th power residue (mod ¢0,)},
where O, 48 the ving of integers of %y and let Ay, = ANA,. (Note that 4, = 4

d .
when d < 0.) If 1|d (resp. (7) = —1), let B = {I} when ¢ 1s an I-th power

residue (mod 10,) (resp. mod1*0,), and let B s emply when ¢ is an L-th

power nonresidue (mod 10y) (vesp. 12°0.). Then the conduciors | are given
as follows:

(1) f = q where g is any element of A,;

() f = q,0, where g, and g, are any distinct elemenis of Ay
(i) f =14 1|d and [ e B;

(V) f=1lgif 1|d, 1 ¢ B, and q is any element of Ay

W f=01d (f;—) = —1 and [ B;

. . [a
(vi) f =Pq 4f (T) = —1, 1 ¢ B, and ¢ is any clement of A..

Bemark. When ! = 3 and H(k) = 1, there are nine cases to appear
In [3}, Theorem 2 {¢), including our six cases {i)~(vi) in Theorem 1 {c).

TrroREM 2. In Theorem 1, the sets A, and A, both have infinite car-
dinalities whenever d> 0 and @ = (—1*°1 ond so does when d < 0
ond 4 # (1)U (Note that 4 is empty if & — {~—1)d-1h2g )y

In Section 2 wo shall prove Theorem 1, and Theorem 2 will be proved
in Seetion 3 using the Tchebotarey density theorem.

Throughout this paper we use wultiplicative notation for groups
and modules, and the action of a group or a ring on & module ig expressed
by exponentistion. Furthermore (3%)" = 2™, and (L) will denote the Ith
Hilbert symbol. ' :
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2. l-class groups of dihedral extensions, Let & be a dihedral extension
of ¢ of degree 21, where 7 is an odd prime number. Let {g, 7} be a sef of
generators of Gal(X Q) with the relations ¢ = 12 =1, ov = 7o~% Lebt &
{resp. L) e the fixed ficld of (o) (vesp. (z}}). Then k/Q is quadratic and
L@ is non-Galois of degree I. Note that the subfields of X, except @
and K, are only & and I conjugates of L. For any finite algebraic extension
of @, let H(¥F) denote the I-class gronp of F. As the canonical homo-
merphism H (L) —-H (K) is injective, we may consider H (L) as & subgroup
of Z(K). For all nonnegative integers 4, we define

HK) = {he HE) W=V =1}
and

H (L) = (ke Hy(K)| h* = h}.

Then: H;(K) is a subgroup of H(K) and is a Z[Gal(K/Q)}module; H,(L)
is a subgroup of H (L) and H, (L) = H,(K)'*"; H,(K) = H(K) for large £
(cf. [B), Proposition 1). Furtbermore let N: H(HK)—=H(k) be the map
induced by the norm map from ideals of K to ideals of % Note thab
N(H(L)} =1 since H(L) = H(K)"*" and H(Q) = 1.

Our first step in this seetion is to give information about the I-class
aroup of K whieh contains Z such that H(I) = 1. The following result
is known (cf. [1], Proposition 3.9):

Levma 2. If H(L) == 1, then there is no rafional prime which decom-
poses in k and ramifies fully in L.

Since N{H(L)) = 1, Proposition 4.1 of [4] applies fo yield

H (L) = {heH(L) ¥ =1},

from which it is clear that (L) =1 if and only if H; (L) = 1. So we
are now interested only in the group H;_;(L). Now we let, foré =1, 2, ...

V;‘ = (H,-(L), Hi—-l(K)>
and
V= {heH(E) W VeV

Then it It easily checlked that V; and ¥, are both subgroups of H(K)
and Z[Gal(E/Q)]-modules for each ¢>1. Also H, ,(K) < ¥V; = H(K)
and V,c ¥, = H; ,(K).

Lemnza 3. For all ¢ 2= 1, there is an evact sequence

1V —H, H(K)“—’; H (D)1,
Proof. Sinece H,,,(X) is of course a Z;[r]-module, then
Hyyy () = Hypy (D) X Hypy (K)' |
(cf. [2], proof of Lemma 2.1). So to show the exactness of the above '
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sequence, it suffices to show that VI~% = H, (K)" for all i3 1. By

definition ¥; = HHJ(IL), and so V1% < H,  (K)~" Now let b € H,, (E)-.
Then KO~ = 1 and ¥ = &% Now

(o—T)(r~1) __ Iﬂ—a—a”lw (=021 g—(I=1)/2)2
W B " e Ho () nH ()= = H,_ (K)~
Rnce

(o012 _ 5~0-inye

e(c—1)2Z[6] and AV eH, (K).

On the other hand, sincé h°~' € H,(K), there are i, € H (L), hy & H (K}
such that "% = &, h,. Then h(‘““ TN =h;te H, 1(K)1 ¥, which ilmph'e%

that ks e H,_,(K)™" S0 7% = hyh, EH{LH )= :
i— . -]7. g
fpties fhat T & Py Hiyn ()17 — Fiv S0 Pt e T
3 i

LEvdA 4. For all ¢ =1, there is an sxact SEGUENGE

1V sV 5 H (D) -1,

Proc-l)ismce ¥, = Virex Vi, it suffices to show that 71+ = 11, (L.
GIT&uI[y Tof_ H{(L), and so Vi*" = H,(L). Nowlet h & ¥,. Then &°1 e V.
Write 1*7% = Iyhy with kb, € H,(L), hy € H; ;(I}; then

AL CR A (Bt eKo—ye-1i=1 (Ble= D+ (! R e
= (h ]Ez)[l+(l+n‘+...+nl" Nro—1yi—1

— h§17m+(1+ﬁ+...+az_Ij':](a—l)"“'l — hlm(u—ni =1

since by 4, (1) and Bi*t+9"0 = N(R,) e N (H(L) = 1. So
Wi e Hy(E)nH (L) = H/{(L),
which implies that 74" < H,(L}.
LeMva 5. For all i1, VI H (1)
Proof. Since H, ,(K) nH (L)

= H, (K)[H;_ (L)

= H, (L), then

ViH (L) = <H,(L), Hy ((K)>/H;(L) a2 Haﬂl(K”(‘Hﬁm
= Himl(E)/Hi—l(L)‘

LEMATA: 6. For all @')-mege}'s 121, we have

() nH (L)

(2.1)

] 1-;-1(

Proof. We have

VH (L) = Vo[V ], () H,_ ().

Vi) = \H o (B) [H (L)
= |V,/H(L)| (by Lemma 4)
= VIVl By (B) 8, ()]

Now if we apply [4], Ihcorem 4.3 to both Z[ol]modules H, ,(K)

{(by Lemma 3)
- Eﬁ'/’vil lvvi/Hi(L”
(by Lemma 5).
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and V;, we have, for every ¢z L:
(2.2) \H () [H,_ o (E)| = P71 |H(8) [N (H, (K]
(2.3) TV = FRE RN (T,

where 4 denotes the number of primes of % which ramify in K, and »;
and #; for each 4 > 1, are both nonnegative rational integers whose preecise
definitions will be given after eguation (2.6). Now in view of the defi-
nition of V,, ¥(H,(L)) =1 implies that N(V,) = ¥(H,_,(K)} for all
i = 1. Henece from equations (2.2) and (2.3),

(2.4) [PVl =175 [H R H_y (K]

Equations (21) with 4 =1, 3,...,1—2 put together to give
=1z N

(2.8) o () (D) = ] 1Py Vol

j=1

Equations (2.4) and (2.5) together with the eguation
-1

H,_, (K] = H (K [H (B

then yield

{t—l)f«)
(rag_1—rpi—1) (=112

(2.6)  H_(D) = = [ 18 (B Hy o ().
=1

We now give the definitions of the numbers r; and v; that appear
in equations (2.2) and (2.3), following the results in [4], pp. 36-£2.

Tet U, %, ..., Ay (resp. W, 9, ..., %A be ideals of K (resp. L)
which satisfy the following twe condifions:

(Q1) H,_,(K) (resp. H,(L)) is generated by the ideal classes of the
A28 (resp. the 9s). '

(02) If we define § (vesp. §’) to be the ideal group gemerated by
the %’s and their o-eonjugates (resp. the U's, the %Ij’s, and their ¢-con-
jugates), then FNF(E)™' =F ' (resp. ‘{_";’m?‘y{ Yot = 55‘;""1) where
% (K) denotes the group of fractional ideals of K whose ideal classes belong
to H{K).

Note that the ideal classes of the U's and the Uy’s generate ¥y, and
that % and § are both Z[cl-modules. Le’r. w: B*—%, (%) be the map defined
by w(y) ={y) for yek* = kN\{0}, where F(k) denotes the group of
prmmpal fractional ideals of %j let 4 = ¢ ' (N (F)nFp(k) and A7 =

p N (§) oFo (k) where N is the norm map from ideals of K %o ideals of k.
Then AjA? and AJA", which may be viewed as vechor spaces over ¥,
the finite field of I elements, are both of finite dimension, since § and §”



390 K. Iimura

are both finitely generated. So Ict {oy}icscn (resp. {a}icie,) be a set of
generators of the vector space A/A° (vesp. A/A%). Furthermore, let a be

an elenent of the field k(Z) such that K (0) = &(L, i/g), where £ is & primi.
tive fth root of wnity; let pi, pa, ..., p; be the primes of & which ramify
in K; and let EB be any prime of k(L) above p;, 1 <<j <1 Then we can
defme r, and #; respectively to be the ranks of the matrices (over the
finite iield B

(Fp)  A<i<s<m, 1<)

and
Bt (A<j<n, 1<y,
where
éﬁﬂ_(ay,‘l) r<ig<m, 1<y <),
.7

Cﬂ”'”=(—a%—a—) l<ign, 1<r <.
(It should be noted that these definitions of r; and #; are well-defined
(¢f. [4], Proposition 3.4 and Theorem 4.3),)

Now if we choose a set of generators of A’/A" such that AjA* is
generated by one of its subsets (such & set does exist), we see at once
from the definitions of »; and r; that », <7} for all ¢ 1. But in some
special eases, for example, when t < 1 or when the condition of the next
Jlemma is fulfilled, it oceurs that #; = ¢, for all {3 1.

LEnata 7. Assume that there is no rational prime which decomposes
_in & and ramifies fully in L. Then v, = r; for all integers i > 1, and hence

equation (2.6) becomes
(=12

=1 =
i=1
Fm'the?more, H(L) == 1 if and only if | H,(E)/H,(K)| = 1
Proof. Note that a set {«}, ;<. Of generators of A (A" may be
choosen so that, a subset {« }lsmﬂ generates A/A* and oy i8 & rational
number for m -1 < j < n. Then the same argument as in the proof of [6],

(2.8) IH:- 2 (H0) [H o, (X))

Eemma 3, shows that (fwi) =1for m+1<j<n, Lyt Clearly

this implies that 7, =7, for cach integer ¢> 1. The last result follows
at once from equation (2.8) and the fact that (o —1) maps H;,, (K)/H,(K)
injectively into H,(H)/H,_,(K) for all i> 1.

Our next step is to ecompute the order of I 2 () /H (&) under the
agsumption of Lemma 7. From equation (2. 2},

), ()| = B H(fc)/N(Hl(K))l.
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So we must consider the gronp N(Hl(}{)] and the number »,. First we

want to ghow that N{H,(K)| = H(k)'. Let P,, Bs, ..., By be the primes
of A which are ramified over k, and let H,(X) be the subgroup of ¥, (K}
generated by the image of H (%) and the ideal elasses of the $;s Then
NEHE '(K)) H (%Y, since N(P}) = BF (1<j< 1) is principal in k. Also
H (K)[H,(X) is either trivial or eyelic of order I, and in the latter eose
there 15 an ideal of L the image in H,(K)/H,(K) of whose ideal class
generates H,(K)[H (K) (¢t [5], proot of Proposition 2 or [6], proof of
Proposition. 6). So in both ecases N{H, (X)) = N(H(K)} = H(k¥. Hence

| B (&) | ¥ (H L (BD)| = |H (k) (Y] = 1,

where r(k} denotes the rank of H(%); ie., the minimal number of gen-
erators of H (k). Next we give an explicit matrix associated with H,(K)
by taking appropriate ideals as the s with properties (C1) and (C2).
Let g1y Gs; -5 Gy D& ideals of k whose ideal classes generate H(k), and
leti gt = (m;) {1 <4< (%), where =, e & and ¢; is the order of the ideal
class of q; in H(%). Let p, p,, ..., P, be the rational primes which ramify
fully in L; let ¥ be an ideal of L whose ideal class is contained in H,(K)\
NH{(K) when H,(K) = H{(K); let % = (1) when H,(K) = H,(K); and
let @ be a rational number such that ¥ (W) = (a). If we put %, = g; for
1<) <r(E), gy = Py for LG 0, and Wy pqy = U, then it is easy
to see that these U’s satisfy conditions (C1) and ((2). Also the vector
space AjA* (over the finite field F;) corresponding to these s, iv gen-
erated by {e, Py, P2y -ony Pys Ty Fyy oony Typgyy &y = S, where ¢ is the fun-
damental unit of & or ¢ = 1 according as & iz real or complex. Since p,,

b,a )
Bay ory Dy 0 aTe Tational numbers, then (»:’_—-) =1 for b =Dy, Payers Bey
a and 1< »<t, where méﬁ,, is any prime of k() above p, (L<<v<C#), £ 18
a plimitive ith root of unity, and « is an element of %{{) such that K ({)

= I é‘, ]/a) (cf. [6], proof of Lemma 3). Furthermore the product formula

for the ith Hilbert symbol G thatn( ) =1 for all elements y

v

of 8. Hence from these and eguation (2.7), we geb
| ry —ramk(fy) . (L<i<rh)+1, 1<y <i—1),
‘where
B m(”f_’_“) for 1<j<r(h), I<r<t—1,
(2.9) e _ _ _
i - (gia) for * § =r(E)-+1, 1<r<i—1.
B,
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We summarize these results in the following
Tamnra 8. With the assumptlions of Lemma T and the above mmiwns,

]Hz(K)/Hl(K)I — i) +¢~I~r2,

wheie 7, 18 the rank of the ((9"(70) +1) % (t-—l))-mcmiw over the finite field F,
defined by equation (2.9). (Note that ry = 0 when ¢<1.)

We arc now in a position to prove Theorem L. Assume that A containg
I such that H(L) = 1. Then by Lemmas 2, 7, and 8, we have »(k) +1—
—L—ry = 0. If #{k) =2 (which means H (k) is not cyclic), then

PR Ft—l—ryzttl—ry>it+1l—1>0,

. 1"2

which s & contradiction. So #(%) must be 1 or 0. We first assume »(k) =1,
which means H{k) #1 but is eyclic. Since 0<<ryLmax{0,7—1} by
Lemma 8, it follows that

PR Lt =1 =1y == f—ty = 0 =0,

_ in whicl eage clans field theory says that there iy a nnigue cyclic extension
K|k of degree | with conductor 1. Clearly snch a field K is a dihedral
oxtension of @ of degree 2I. Thus we have proved Theorem 1 (a)-(b).
It remains to prove Theorem 1 (e) (i)~{vi). So we assume H (k) = 1, which
means r(k) = 0. By class field theory #(k) = 0 implies t>>1. Then in
Lemma 8, the nmumber r, is the rank of the (1 e (tﬂl))-ma’ﬁrix whose

¢ :
1j-th element f; is given by [/ = (%) « 8o #3 =0 or 1, and hence
:

1'(?5)-}—15—1'—7*2 =0=t=1(and ry = 0‘), or ¥ =2 and r, = 1. We note
that if ¢ = 2, the product formula for the Ith Hilbert symbol implics

€
. that both of ( ’_“) and (e_’_a
Arom our agsumption that H(L) = 1 and from Luemmasg 1 and 2 it follows

that the primes of & which ramify in X must be either rational primes ¢

) are 1, or nefther of them is 1. Furthermore,

a

d ‘ . .
such that ¢ = (E) = —1{mod I), ¥ (if 7 i3 inert in k), or the unique prime

of & above I (if I ramifies in ). Also it is easy to see thatb (%E) == 1 (where 2

i3 any prime of k([) above g} if and only if ¢ is an h power residue
(mod g0,), or equivalently, ¢ i contained in the set 4, defined in Theorem
1. I we correlate these results for the care when H{%) =1, we obtain
the following vestrictions for the conductors f of the cyclic extensions
K[k which contain L sueh that H{IL) = 1.

Levmva 9. Lel nofations be as in Theorem 1, and assums (k) = 1.
Then K contains L such that H(L) = L if and only if the conducior f of

icn

Dihedral emionsions 393

Kk has one of the following forms:

() f = q where ¢ is any element of 4,;
(i) f = q.q, where q, and q, are any distinct elements of Ay
(ifi) £ =1 4f 1ld;
(iv) f =1lg if 1| and q is any element of A,;

o f =23 () = =15

. o fd
(vi) f == l*q if (T) = —1 and q 98 any element of A,.

It still remains to determine completely for which of fhe possible
values of f listed in Temma 9 there exists a dihedral extension K/Q of
degree 27 such that the conductor of K[k is exactly f. To do this we have
only to extend the argnments in [37], Section 3, to our dihedral case.
However there is no difficulty in carrying it out, and so we will not present
it here. Consequently, Theorem 1 (e} (i)—(vi) is pmved

3. Proof of Theorem 2. Let notations be the same as in Theorem 1.
In this section we lot £ be a primitive 21-th root of unity. Let F = Q(¢)
F = F-k(=E(), and let F* be the maximal real subfield of 7. W
consider the case d 7 (—1)&"1, in which case there is only one gnad-
ratic subextension I’ of F(F*t other than F or T*Ek, since the Galois

group G(F/FT) is the four group. Now suppoese 4 > 0, and let ¥ = ﬁ'f/ 6).
Clearly N /Q iz Galois. We want to show that G (¥ [FY) is eyclic of order
21 Let N, be a subfield of ¥ which has degree 1 over F’, and let T be the
generator of G{N/N,). Since the action of ¥ on % iz the same as that of
the generator of G(k/Q), then (y/e) = £%(}/e)™ with ¢ € Z. Butye — (/o)
= [T ]/e which implies « = 0 {(mod ). So ( ]/e) = ’31“1. Now let
be a generator of G(N /F), a cyclie group of order I, 51:11{1 let {11/’5)7’ = Cbprr-’e_,
where & 5 Z. Then ( |/ B (Cbi/g)‘l = (i/ue);;, which implies 7 = 7§, and

G(N[F") ig cyelic of order 21. The Tchebotarev density theorem then
shows that the set of primes L, (resp. Q,) of N for which

sy = (2] s - (2]

(where [N

has positive density. Setting g —-,Q O (i =1,2} we easﬂy see thak
¢; is contained in 4; (i = 1, 2), which completes the proof of Theorem 2
when d> 0. For the case 40 we can again apply the Tehebotarev
density theorem to G(IF/F') to obtain our result.

Q] is the Frobenius symbol) and which are unramified over Q,
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On 3-class groups of non-Galois cubie fields
by

Krvoaxr Tiworas {Tokyo)

Introduction. In this paper we give information about a certain
direct summaend of the 3-class group of o non-Galoiz eubic extension
field of the rational numbers ¢, and show using it that for any finite
elementary abelian 3-gronp €, there exist infinitely many pure cubic
tields whose 3-class groups are isomorphic to G-

Throughout this paper we use multiplicative notafion for groups
and modules, and the action of a group or & ring on a2 module is expressed
by exponentiation. Furthermcre (2°)° = #”. The cubic Hilbert symbol

b
(a;? ) used here corresponds to (a, ), in [5].

1. A divect summand of the 3-class group. Let I be a non-Galois
cubic extension field of @, let K be the normal closure of I, and let %
be the quadratie subfield of K. Let o be a generator of the Galois group
@{E |k}, and let T be the generator of ¢ (K /L), Then G(K /() is generated
by {o, =} with the relations o® = 7* = 1, ov = vo2 For any finite algebraic
extension field # of @, let H(¥) denote the 3-class group of ¥, As the
canonical homomorphisim H(L)—H (K) is injective, we may consider
H(L) as o subgroup of H(K). For all nonnegative integers 4, we define

H{(E) = {h e H(K)| ¥ =1} |
and
H (L) = fthe H(EK)| k" = h}.

Then H,(K) is a subgroup of H(K)} and is a ZIG(K[Q)]-module; H{L)
is a subgroup of H({L) and H (L) = H,(K)Y'™; H,(K) = H(K) for large
(cf. [4], Proposition 1). Furthermore let N: H(K}—H(k) be the map
induced by the norm map from ideals of K to ideals of k. Note that
N{H(L)) = {1} since H{L) = H{KY"™ and H(Q) = {1}.

Now we let H be a maximal direct summand of H(L) contained in

H (L) = {he H(E)| b° =k = h}.



